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We prove that there are only finitely many terms of a non-degenerate linear 
recurrence sequence which are qth powers of an integer subject to certain simple 
conditions on the roots of the associated characteristic polynomial of the recurrence 
sequence. Further we show by similar arguments that the Diophantine equation 
a,@ + bx’y + c.r2 + d.? + ey + f  = 0 has only finitely many solutions in integers s. I’. 
and t subject to the appropriate restrictions, and we also treat some related 
simultaneous Diophantine equations. c’ 1987 Academic Press. Inc. 

1. INTRODUCTION 

In [lS] the authors proved that if a, 6, C, and d are integers with 
6’ - 4ac and acd non-zero and if X, y, and t are integers with 1x1 and t 
larger than one satisfying 

ax*’ + bx’y + cy* = d, (1) 

then the maximum of Ix/, ly(, and t is less than a number which is effec- 
tively computable in terms of a, 6, c, and d. Let rl and r2 be integers with 
r: + 4r, non-zero. Let q, and u1 be integers and put 

un =r,unp, +rzu,-2, (2) 
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for n = 2, 3, . . . . Then, for y2 3 0, 

u, = act” + b/3”, (3) 

where tl and /? are the two roots of x2 - r, x - r? and 

The sequence of integers (un)FZO is a binary recurrence sequence. It is said 
to be non-degenerate if ab UP # 0 and N/P is not a root of unity. In the 
course of proving our result concerning Eq. (1) we showed that a non- 
degenerate binary recurrence sequence contains only finitely many terms 
u,,, defined as in (3), which are pure powers whenever a and p are units or 
equivalently whenever (r? 1 = 1. We also established in [ 151 the following 
more general result. Let d be a non-zero integer and let Us, defined as in 
(3) be the nth term of a non-degenerate binary recurrence sequence. If 

de?’ = u,,, (4) 

for integers x and q larger than one, then the maximum of x, q, and n is 
less than a number which is effectively computable in terms of a, a, b, p, 
and d. Independently, Petho [ 121 proved that if in (2) we suppose that r, 
and r2 are coprime and (4) holds for integers x and q larger than one, then 
the maximum of x, q, and n is less than a number which is effectively com- 
putable in term of a, CI, b, ,$ and the greatest prime factor of d. Let c be an 
integer and let u,,, defined as in (3), be the n th term of a non-degenerate 
binary recurrence sequence. In [ 161 Stewart showed that if (r? 1 = 1 and 

xq+c=z4,, 

for integers n, x, and q with Ix/ > 1, n 20, and q 3 3, then the maximum of 
n, 1.~1, and q is less than a number which is effectively computable in terms 
of a, CC, b, b, and c. Further if Ir2 I = 1 and 

x2 + c = U,,) 

for integers n and x with 1x1 > 1 and y1>, 0, then the maximum of n and 1x1 
is less than a number which is effectively computable in terms of a, CI, h, 8, 
and c provided that c* # 4ab when r? = - 1 and that c2 # t_4ab when 
r2 = 1; the preceding provisions were overlooked in [ 161. Just as the study 
of Eq. (1) was related to the study of pure powers in binary recurrence 
sequences there is a generalization of Eq. (1) related to the above result. In 
particular, we are able to prove the following result. 
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THEOREM 1. Let a, h, c, d, e, and ,f be integers. Put D = b’- 4ac and 
A = 4acf + bde - ae’ - c d2 - fb2 and assume that D A # 0. If x, y, and t are 
integers with I?c/ > I and t > 2 satisjj~ing 

ax2’ + b.x’J, + CJ” + d.x’ + ey + ,f = 0, (5) 

then the maximum qf 1x1, 1 y(, and t is less than a number which is effectioel~ 
computable in terms of a, b, c, d, e, andf Further, if‘ e’ # 4cf and x and y are 
integers satisxving 

ax“ + b.v2y + cy2 + d.x’ + ey + f = 0, (6) 

then the rna.xinwn qf 1x1 and ) y is less than a number which is effectioel~~ 
computable in terms of a, b, c, d, e, and f 

The hypothesis D A # 0 is clearly required in the statement of Theorem 1. 
To see that the additional hypothesis e2 # 4cf is require when t = 2, observe 
that if e’= 4ef and b = 0 then (6) is equivalent to 

(ax” + d)s’ = -c(y + e/2c)‘; 

note that c#O since D #O. Thus, if 2c divides e, to obtain infinitely many 
pairs of integers X, 1’ satisfying (6) it suffices to find infinitely many pairs of 
integers .Y, t satisfying 

ax2 + ct’ = -d, (7) 

and to put J’ = xt - e/2c for each such pair. Plainly there are infinitely many 
such choices of a, c, d, and e for which (7) has infinitely many pairs of 
solutions .Y and f and for which D A # 0. In particular, we may take 
u = - 1, d = 1, c a positive integer which is not a square, and e = 2c. 

Let a, b, c, d, a,, b,, c,, and d, be integers with ac da,c, d, #O, 
b:#4a,c,, b’Z4ac and such that the roots c(, and a2 of a,x’+b,x+c, 
are not roots of ax” + bx + c. In [ 151 the authors also showed that if I, I’, 
,I, and q are integers with q and z larger than one for which 

a,s2+b,xy+c,y2=dl (8) 

and 

a.? + bxy + cv" = d9, (9) 

then the maximum of 1x1, I.Y[. (21, and q is less than a number which is 
effectively computable in terms of a, b, c, d, a,, bl, c,, and d,. This exten- 
ded earlier work of Mordell [9] who proved, with the above hypotheses 
and q = 2, that the simultaneous Eq. (8) and (9) have only finitely many 
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solutions in integers x, y, and z-. We are now able to generalize this result 
considerably. 

THEOREM 2. Let a, h, c, d, e, and f be integers and let F( t, v) be a binary 
form with integer coefficients and degree at least one. Put D = b’ - 4ac and 
A = 4acf + bde - ae2 - cd’ - fb2 and assume D Af # 0. Suppose that F( t, 1) 
has a simple root c1 such that aa2 + ba+c#O and 4f(acx’+ ba+c)# 
(dcc + e)‘. Zf x, ,v, 2, s, and q are integers with s#O, q> 1, and );I > 1, for 
which 

and 

ax’+bxy+cy’+d-x+ey+f=O (10) 

F(x, y) = s?, (11) 

then the maximum of (.x1, (~1, 1~1, I ( s , and q is less than a number which is 
effectively computable in terms of a, b, c, d, e, f, the greatest prime factor of 
s and the binar)i.form F. 

For the proof of Theorem 2 we employ Lemma 6 together with a result 
of Baker on the solutions of the hyperelliptic equation in an algebraic num- 
ber field. We remark that if we use a result of Brindza [4] in place of the 
above-mentioned result of Baker, it is possible to show that the condition 
4f(aa2+ bcl+c)# (da +cz)~ may be omitted if q is greater than 2. 
Lemma 6, which is a slight generalization of Lemma 6 of [15], yields some 
information on qth powers in general linear recurrence sequences. 

Let rI , . . . . rk and LfO, . . . . 1~~ ~, be integers and put 

u, =rlu, ~, + ... +rkzf,, p, (12) 

for n = k, k + 1, . . . . The sequence (u,,);=, is a linear recurrence sequence. 
We shall assume that k > 1 and that the terms of (u,,);=~ do not satisfy a 
relation of the form (12) with fewer terms; in particular there does not exist 
an integer 1 with 1 <k and integers s,, . . . . sI such that 

u, =.s,u,I-l + ..’ +s,lf,,-,, 

for n = 1, l+ 1, . . . . It is well known (see page 62 of [7]) that for n > 0, 

u, = fi(?l) a; + . . + f,(n) a:‘, (13) 

where fi, . . . . f, are non-zero polynomials in n with degrees less than I,, . . . . 1, 
respectively and with coefficients from Q(a,, . . . . CY,), where c(,, . . . . M, are the 
distinct roots of the characteristic polynomial of the sequence 

xk-r,xkp’- ... -rB 
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and I,, . . . . 1, are their respective multiplicities. Note that c~i, . . . . CI, are non- 
zero since rk is non-zero by the minimality of (12). We shall say that the 
sequence (u,,)F= 0 is non-degenerate if t > 1 and ~,/a, is not a root of unity 
for 1 ,< i< j< t. Observe that this definition is consistent with our earlier 
definition of non-degenerate binary recurrence sequences. We shall be 
interested in linear recurrence sequences (u,);~=~ with U, defined as in (13) 
for which f,(n) is a non-zero constant, 1, say. Thus 

u,, = 2, ap + j;(n) al: + . + f,(n) a:. (14) 

Let a be a real algebraic number larger than one from a field K of degree 
D over the rational numbers. Further let d, a, and b be non-zero numbers 
from K and let 6 be a positive real number. In Lemma 6 of [ 151 the 
authors showed that if 

d.xy = act” + b. 

with IhI <cY”” ” and with I, q, and n integers larger than one, then q is 
less than a number which is effectively computable in terms of D, d, a, x, 
and 6 only. As a consequence we showed that if d is a non-zero integer, u, 
is the n th term of a non-degenerate linear recurrence sequence, as in (14) 
Icy, / > lc~,I for j = 2, . . . . t, u,, - A, cc; is non-zero, and 

d.? = u,, , (15) 

for integers x and q larger than one, then q is less than a number which is 
effectively computable in terms of d and the sequences (u,);=,. Kiss [S] 
proved that in fact q is less than a number which is effectively computable 
in terms of the greatest prime factor of d and the sequence (u,);:~. Kiss 
[5] also showed that if we further assume that ( M> 1 > I c(, ( forj = 3, . . . . t and 
that 1 CI~ ( > 1 then, in place of (15) we have 

1 dx“ - u, I > e”‘“, 

for integers .Y and q with x larger than one, provided that II and q are 
larger than n,, where ci and n, are positive numbers which are effectively 
computable in terms of the greatest prime factor of d and the sequence 
(u,,),‘=~. If we make no assumption on the size of (CI~ ( it is still possible to 
conclude that the distance between U, and the nearest qth power, for q suf- 
ficiently large, eventually tends to infinity exponentially with n provided 
that 1, a; is not the q th power of an integer for n sufficiently large. This 
follows from our next result, which is a consequence of Lemma 6. 

THEOREM 3. Let 6 be a positive real number and let P be a positive 
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integer. Let u,, defined as in (14) be the n th term of a non-degenerate linear 
recurrence sequence and assume that 

INI I > l"(jlt for j = 2, . . . . t. 

There exists a real number Co, which is effectively computable in terms of 6, 
P, and the sequence (u,,),“=o,, such that (f s, x, q, and n are non-zero integers 
M’ith the greatest prime factor of s less than P, 1x1 > 1, q > Co, n > 0, and 
sxy # A, cc’,‘, then 

Isx~-uu,I > /cc, l’T”--6’. (16) 

While C, is effectively computable it is in general rather large as we 
employ estimates for linear forms in the logarithms of algebraic numbers 
due to Baker in the proof of Theorem 3. We are able to reduce con- 
siderably the size of C, by employing an extension of Roth’s theorem due 
to Lang [6]. 

THEOREM 4. Let u,,, defined as in (14), be the nth term of a non- 
degenerate linear recurrence sequence and assume that 

b1l > I4 2 b,15 for j= 3, . . . . t. 

Let y be a real number with y > 1 and 

let d be the degree of CY, over the rationals, and let P be a positive integer. 
There exists a number C, such that ifs, x, q, and n are non-zero integers 
wjith the greatest prime factor of s less than P, Ix/ > 1, n > C,, sxy # I,, al, 
and 

q>(dlog l~,O/bdl~, I/Y), (17) 

then 

(sx~ - u, 1 > y”. (18) 

Taking u, = 2” + 1 for n = 0, 1, 2, . we see that the restriction sxy # A, cc’,’ 
in Theorem 4 is certainly required. Further, put u, = (& + l),, + 
(& 1)” for n=O, 1,2, . . . and observe that for any positive integer q 

4 - %/ =q((&+ l)YP”)” 

+; 0 ((Ji+ l)“-“)“+ ... +q((& l))“-I)“. 
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Therefore if q 3 2 and ‘J > (4 + 1 )(y ““‘, the inequality 

has infinitely many solutions in positive integers n and x; hence, we cannot 
replace condition (17) by the condition 

for any E > 0. 
Because of the ineffective nature of Lang’s result we are not able to give 

an effectively computable number C, such that (18) holds for all integers 11 
with n > C, Theorems 3 and 4 yield information on the equation 

II,, = L1.P -t T( .Y ), (19) 

where T(X) is a polynomial with integer coefficients having height H and 
degree Y, considered by Nemes and Pethii [ 10, 1 I]. Let u,, be defined as in 
(14) and assume 

Ix, I ’ I% > lql for ,j= 3, . . . . t. 

with C.Y? # _+ 1. Using Lemma 6 of [ 151, Nemes and PethG [lo] showed 
that there are positive numbers C,, C’,, and C, which are effectively com- 
putable in terms of d, ff, and the sequence (u,,),:=, such that if H, .Y, and r/ 
are integers with n > C,, 1.~1 > 1, and q> 1 for which (19) holds and if 
Y < Cjq then q < C,. Further, in the special case II,, is the nth term of a 
non-degenerate binary recurrence sequence and II,, satisfies a relation as 
in(2) with Irz I = 1. Nemes and Pethii [ll] were able to show that if q is a 
fixed integer larger than one and Eq. (19) has infinitely many solutions in 
integers II and .Y. then T(.Y) can be characterized in terms of the Chebyshev 
polynomials. By means of Theorem 4 we are able to obtain further infor- 
mation on solutions of (19). 

COROLLARY 1. Let u,~, &finned us in (14), hr the ~th term of LI tzon- 
degenerate &ear recurrence sequence and ussume that 

Ia, I > l%l > b;l, 

Jbr j = 3, . . . . t. Let d be the degree of CC, over Q and let T(s) be u polynomiul 
w’ith integer coejficients and degree r; we take r = 0 if T(x) is the zero 
polynomiul. If’ c[, and cx2 ure multiplicutivel~~ independent und x2 + _+ 1 then 
there are only finiteI>? muggy integers n, s, and q IrUz n 3 0. 1.~1 > 1, und 

( 
cl’log IEI I 

q’max log(Icr,I/max(l, Iz~\))‘~+~ 1 
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for which 

u,, = x4 + T(x). 

As a special case of this result note that if (~4,);~~ is a non-degenerate 
binary recurrence sequence whose characteristic polynomial has roots 
which are multiplicatively independent with one root inside the unit circle, 
then for any integer c the equation 

has only finitely many solutions in integers H, X, and q with II >, 0, 1.~1 > 1, 
and q > 2. Thus the distance from, for example, 

u,, = (2 + \/?y + (2 - Ji,” 

to the closest pure power larger than 2 tends to infinity with II. We remark 
that if the coeficients of the characteristic polynomial of a non-degenerate 
binary recurrence sequence are relatively prime then the roots of the 
polynomial are multiplicatively independent. 

Our next result may be viewed as a p-adic analogue of Theorem 3. Let K 
be a field of finite degree over Q and let ,& be a prime ideal of the ring of 
algebraic integers of K. For any element z in K we denote by ord, a the 
order to which # divides the principal ideal generated by SI. 

THEOREM 5. Let u,,, defined as in (14), he the nth term of a non- 
degenerate linear recurrence sequence and put K= Q(a,, . . . . zl). Let ,4 he a 
prime ideal in the ring of algebraic integers ?f K lying above the prime p and 
assume that 

ord, 3, < ord,, x,, 

for j = 2, . . . . Z. (f s, x, q, and n are integers with s # 0, 1x1 > 1, (p, q) = 1, 
n>O, s,?‘#/l.,a’,‘, and 

.s.Y? = u II > (20) 

then q is less than a number which is effectivel?, computable in terms qf the 
greatest prime factor of s, p, and the sequence (u,,);~:,. 

We remark that if sx“ = ,I1 E; and (20) holds then 

fJn)c$+ I.. + f,(n)a:=O. (21) 

Clearly if lc(* 1 > Ia,1 for j = 3, . . . . t all solutions of (21) are less than C,, a 
number which is effectively computable in terms of CL~, . . . . a, and J2, . . . . .f,. 
In this case the conditions n 3 0 and S.Y” # I”, a; in the statement of 
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Theorem 5 can be replaced by the condition n > Cs, or alternatively, since 
1x1> 1, the condition sx4 # 1, cc; may be dropped. In general, Eq. (21) has 
only finitely many solutions by the Skolem-Mahler theorem [S] and so 
the conditions n 2 0 and 3x4 # Ai cr; may be replaced by the condition that n 
be sufficiently large. 

Let us recall some facts about valuations. Let {pi, pr, . . . } be the set of 
prime numbers. Let 1 IPO denote the ordinary absolute value on Q and let 
1 I,,! denote the p,-adic value on Q normalized so that (pilP, =p,-’ for 
i= 1, 2, . . . . Let K be a field of finite degree over Q and let v be a non-trivial 
valuation on K. Then v restricted to Q is equivalent to j 1 p, for some i 3 0. 
We shall suppose that u is normalized so that 

14, = blP,’ (22) 

for all a in Q. Let K,, be the completion of K at U, let Q, be the completion 
of Q at p,, and put 

for all y in K, where N, is the degree of K,, over 0,. Let I/ be the set of 
non-trivial valuations v, normalized as in (22), on K. Then, for all non-zero 
elements 1’ in K, we have 

,!I, llrll, = 1. (24) 
’ 

Combining Theorems 3 and 5 with Lang’s generalization of Roth’s 
theorem we are able to prove the following result. 

THEOREM 6. Let (u,),T=, he a non-degenerate linear recurrence sequence 
M’ith u,, defined as in (14) and put K= Q(a,, . . . . CC,). Let vI. . . . . v, be 
inequivalent valuations on K normalized as in (22) and suppose 

fi)r j=2, . . . . I and i= 1, . . . . r. Put Oi =max(llazll.,, . . . . lJa,lJ,,,} for i= I, . . . . r 
\i,ith 11 Ijc, defined as in (23) and let b be an integer kth 1 <b < t for Mlhich 

jbr j = 1, . . . . t. Let D be the degree of K over Q and let P be a positive 
integer. The equation 

sxq = u,, 
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has only finitely many solutions in integers s, x, q, and II, with the greatest 
prime factor of s less than P, (xl > 1, n > 0, and 

Theorem 6 has the following consequence. 

COROLLARY 2. Let (u,)FEO be a non-degenerate linear recurrence 
sequence with 1.4, defined as in (14) and let P be a positioe integer. Assume 
that fi(n) is a non-zero constant, t = 3, and that la, I = Ic(J = lclj I. Then the 
equation 

has on!y jkitely many solutions in integers s, x, q, and n with the greatest 
prime factor of s at most P, 1.~1 > 1, q > 2, and n 2 0. 

We remark that with the above hypotheses Iu,, I + x, as n + x, by 
Lemma 5. Thus a non-degenerate ternary recurrence sequence, the roots of 
whose characteristic polynomial have the same absolute value, contains 
only finitely many q th powers of integers for q > 2. In particular let d be a 
positive square free integer and let a and h be non-zero integers with 
a# +b if d= 1 and a# */I and a# rfI3b if d=3. Then there are only 
finitely many integers n such that 

((a + b ,/-d)‘)” + ((a-b &d)‘)” + (a’ + db’)” 

is the 9th power of an integer with q > 2. The hypothesis q> 2 in 
Corollary 2 cannot be replaced by q > 1 since, for example, for all IZ >, 0, 

2. PRELIMINARY LEMMAS 

Let c(,, c12, . . . . GI, be non-zero algebraic numbers. Let K = Q(cc,, . . . . a,) 
and denote the degree of K over Q by D. Let A r, . . . . A, be upper bounds 
for the heights of c1 r, . . . . CI,, respectively; the height of an algebraic number 
is the maximum of the absolute values of the relatively prime integer coef- 
ficients in its minimal polynomial. We assume that A, is at least 4. Further 
let b,, ..,, b,-, be rational integers with absolute values at most B, and let 
b,, be a non-zero rational integer with absolute value at most B’. We 
assume that B’ is at least 3. Put 

A=b,logcr, + ... +b,logcr,, 
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where the logarithms are assumed to have their principal values. In 1973 
Baker proved the following result; take 6 = l/B’ in Theorem 1 of [2]. 

LEMMA 1. rf n # 0 then IA 1 > exp( - C(log B’ log A, + B/B’)), where C 
is a positive number which is effectivelUy computable in terms of n, D, and 
A,, . . . . A,--, only. 

In 1976 van der Poorten established the following p-adic analogue of 
Baker’s theorem; take S= 1 in Theorem 3 of [13]. 

LEMMA 2. Let #Z be a prime ideal of K lying above the rational prime p 
and assume that b, is not divisible by p. If $1 . . CL? - 1 is non-zero, then 

ord, ( CQ . . . ~9 - 1) < C(log B’ log A,, + B/B’), 

where C is a positive number which is effectively computable in terms of n, D, 
A,, . . . . A,-,, andp only. 

We shall also require the following result, due to Baker, which gives 
bounds for the solutions of the hyperelliptic equation. Let 0 be an algebraic 
number. We denote by 11811 the maximum of the absolute value of the 
conjugates of 0 over Q. 

LEMMA 3. Let K be an algebraic number field of degree d over Q. Let 

a,, a, - , , . . . . ao, and b be algebraic numbers from K with a, b # 0, and 
let m and n be positive integers with m 3 2. Further let f(x) = 
a,x” + . + a,.~ + a, be a polynomial with at least 3 simple roots. All 
solutions in algebraic integers x, y, from K of 

bv” = f(x) 

satisfy max { llxll, II yll 1 < C, w h ere C is a number which is effectively com- 
putable in terms of b, a,, a,, . . . . a,,, and K. 

Proof When K is the field of rational numbers the result follows from 
Theorems 1 and 2 of [ 11. The generalization to an algebraic number field 
K follows directly as is indicated by Theorems 4.1 and 4.2 of [3]. 

Let K be a field of finite degree over Q and let V be the set of non-trivial 
valuations v, normalized as in (22) on K. For any p in K we define HK(fi) 
by 

ffAP)= n max(L ll8llJ. 
L’E b 

The following generalization of Roth’s theorem is due to Lang. 
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LEMMA 4. Let K be a field of finite degree over Q. Let V be the set of 
non-trivial valuations v, normalized as in (22), on K and let S be a finite sub- 
set of V. For each v in S let a, be non-zero and algebraic over K and assume 
that v is extended to the algebraic closure of K in some way. Let E be a 
positive real number. There is a positive real number C which depends upon E 
and ~1, for v E S such that 

x n min(l, IlF ‘II,,)> 
C 

r,tS (HK(p))2+f’ 

for all elements p in K which are non-zero and different from c(, for v in S. 

Proof: This follows from Theorem 1.1, page 160, together with remarks 
(iv) and (v), page 161 of [6]. 

LEMMA 5. Let (x,, . . . . CI, be non-zero algebraic numbers and let 
f,(n), . . . . f,(n) be polUynomials which are not identically zero with coefficients 
which are algebraic numbers. Put v,, =f,(n)a;+ ... + f!(n)cc:, ,for n= 
0, 1, 2, . . . . If ct,/~, is not a root of unity for 1 < i< j< t then v, = 0 for only 
finitely, many integers n. 

Proof. See [S or 71, page 59. 

LEMMA 6. Let c( be a real algebraic number larger than one from a field 
K of degree D over Q. Let s be a non-zero integer, let a and b be non-zero 
numbers from K, and let 6 be a positive real number. If 

sxy = aan + b, (25) 

with (bl < x”(‘-~’ and with x, q, and n integers larger than one, then q is less 
than C, a number which is effectively computable in terms of the greatest 
prime factor of s, D, a, M, and 6 only. 

Proof Let c,, c2, . . . be positive numbers which are effectively com- 
putable in terms of the greatest prime factor of s, D, a, a, and 6 only. We 
shall assume that n is larger than c, , where c, is chosen sufficiently large to 
ensure the validity of the subsequent arguments. Note that if II < c, and 
(25) holds then q < c2 as required since s is an integer larger than one. 

From (25) we have 

S?? 
-=l+-$ 
aa” 

t-26) 

so 
1 -(]a[ c?~))‘< IsI la\-’ U-‘xY< 1+ (Ial all’))‘. 
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For II sufficiently large (Ial c?)’ < l/2. On taking logarithms and recall- 
ing that (log( 1 + ,rl)I d )J and Ilog( 1 - J)/ d 2p for 0 d JJ< l/2, we find that 

llog JSI - log Ial -H log E + y log x/ < c3GI mSn. (27) 

We have 1.~1 = p;’ ... pi! with k 30 and p,, . . . . pl, prime numbers. Note that 
the maximum of r,, . . . . rfi is at most can. Put 

A =r, log p, + ... fr, log pk -log Ial 

-nlogcc+qlogx. 

By (26) and the fact that b # 0 we see that A # 0. We may now apply 
Lemma 1 with B’=q and B the maximum of rl, . . . . rk and n to obtain 

lnl >ev-c,(log 4 log-~+ (n/q)). 

Comparing (27) and (28) we find that 

c6 n < log y log x + n/q. 

Certainly we may assume that y > 2c, and therefore 

(‘711 < log q log 1. 

(28) 

On the other hand, by (25). 

log ISI + q log x < (‘gn 

hence 

q log .Y < cg log q log .Y. 

Since x is at least 2 we conclude that q < cIO as required. 

3. PROOF OF THEOREM 1 

Let c,, c2, . . . denote positive numbers which are effectively computable in 
terms of a, b, c, d, e, andJ: Let us first assume that (5) holds for integers x, 
I’, and t with 1x1 > 1 and t> 1. 

If a and c are both zero then, since D is non-zero, b is non-zero. Thus, 
from (5), 

(by+d)x’= -ey-f: (29 1 

If by + d = 0 then, from (29), ey + f = 0 and so de - fl= 0, contradicting 
the assumption d # 0. Thus by + d# 0 and so by (29), (~‘1 < c, hence the 
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maximum of 1x1 and t is at most c,. Further (bx’+ r),, = -f - dx’ and, 
since A # 0, bx’ + e # 0 hence ) yl < c?. Therefore the theorem holds if a and 
c are both zero. We shall assume henceforth that at least one of a and c is 
non-zero. 

If a is non-zero put 

X=2ax’+bVv+dand Y=y+(bd-2ae)/D. 

Then (5) is equivalent to 

X2-DY’=M, 

(30) 

(31) 

where A4 = 4a A/D. Further, if D is less than zero or if D is the square of a 
non-zero integer then, by (31) /XI and I Yl are at most c3 hence 111, 1~91, 
and t are at most cd. Thus if u is non-zero we may assume that D is 
positive and not the square of an integer, hence that c is non-zero. On the 
other hand, if c is non-zero then arguing as above we may deduce that a is 
non-zero. Therefore we may assume that both a and c are non-zero and 
that D is positive and not the square of an integer. 

Since a A is non-zero, A4 is non-zero and thus, by (31), X- fi Y is 
non-zero. Let E denote the fundamental unit in Q(G). Define n to be that 
integer for which 1 < 1(X-fi Y)E-“1 <E and put rrl = (X-~~Y)Ec”. 
Then 

x-fiY=7[,E”. (32) 

Let CJ denote the non-trivial element of the Galois group of O(fi) over Q 
and apply it to both sides of (32) to obtain 

x+Js Y=5(7c,)5(E)‘i. 

Put n, = o(n,) and observe that -the heights of n1 and rcZ are at most c5 
since 1 < )rcl/ <E and rr,rc* = (ED(E))-” M. Further 

2X= 7C,En -t 712~(&)n, (33) 

and 

BY (3Oh 

-2fiY= 7c,&n-7125(E)n. 

2DX-26 DY=4a Dx’t R, 

(34) 

where R = 4a(be - 2cd). Thus, from (33) and (34), 

4aDx’=(D+bfi)7c,c”+(D-b,,/%)n,cr(~)”-R. (35) 
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Notice that E> 1 and 0~ jo( < 1. Further (D + b fi)rcr and 
(D - b @)7rz are non-zero, since UC D # 0, and have heights at most cg. If 
n > c, then 1 (D - b fi) ~L~[T(E)” - R I< E”” and we may apply Lemma 6 
with b = l/2 to deduce that t < cg while if n < -cg then 
l(D+&‘% TEPEE- RI < IcT(E)]“‘~ and, again by Lemma 6, t < cIO. Finally, 
if InI CC,, then, since IxJ > 1, we conclude from (35) that t < c,~. 

Denote fi((D+bfi)a,t?-(D--~~~)Tc~~J(E)“) by z and observe 
that z is an algebraic integer in Q(G) which is invariant under CJ. Thus z 
is a rational integer. Further, 

z’=D((D+b,/$ TC~I’~ + (D-b fi) x~~T(E)“)~ 

-4 D(D’- b2 D) ~,Tc~(E(T(E)): (36) 

Recall that 7c, ~c~(E~(E))~ = M. Therefore, by (35) and (36), z2 = f(x), where 

f(x)= 16~’ D3x2’+ 8a D’Rx’+ D(R’-4D(D-b*)M). 

Put g(u) = 16a2 D3u’ + 8a D*Ru + D( R2 - 4D(D - b*)M). Since UC D A is 
non-zero the two roots of g are distinct. Since one of the roots of g is non- 
zero f has at least t simple zeros and so, for t > 2, we may apply Lemma 3 
to conclude that 1x1 CC,, and hence, by (35), that InI CC,,. Further, by 
(30) and (34) 1 y( < c,. Similarly if t = 2 and both roots of g are non-zero f 
has four simple zeros and we may apply Lemma 3 as above. The additional 
hypothesis e2 f4cf ensures that D(R’-4D(D- b2)M) is non-zero and 
hence that both roots of g are non-zero, and this completes the proof. 

4. PROOF OF THEOREM 2 

Let C, , c2, . . . denote positive numbers which are effectively computable in 
terms of a, b, C, d, e,f; the greatest prime factor of s, and the binary form F. 
As in the proof of Theorem 1 we may assume that a and c are non-zero 
and that D is positive and not the square of an integer. Further, put 

X=2ax+by+d and Y = y + (bd - 2ae)/D, 

so that (10) is equivalent to 

X2-DY’=M, 

where M= 4u A/D. Finally, define E, LT, E,, and ?c2 as in the proof of 
Theorem 1. 

From (35), 

.~=(l+~)~,:.,,(l-~)~~(,,.,~, (37) 
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while, from (30) and (34) 

(38) 

Let h be the degree of CI over the rationals and letf(t, u) be the binary form 
of degree h for which f(t, 1) is the minimal polynomial of tl over the 
rationals. Since c( is a root of F(t, 1) we have 

where f,( t, u) is a binary form with integer coefficients. Since u is a simple 
root of F(t, 1) we see that the binary formsf(t, u) andf,( t, u) have no com- 
mon linear factor in their factorizations over the complex numbers. Plainly 
the greatest common divisor of x and 1’ divides f, and f is non-zero. 
Therefore the greatest common divisor off(x, y) andf,(x, JJ) is at most c, . 
Thus there are non-zero integers m, s,, and Z, with Im( and the greatest 
prime factor of s, at most c2 such that 

mf(x, y) = s, zf. (39) 

Put 

and 

It follows from (37) and (38) that 

mf(x, y)=A,&““+B+A,~(E)h”, 

where 

max{ IB), lo(B)/} d c3.sChp ‘)lnl. (40) 

Note that A 1 and A, are non-zero since f(t, 1) is the minimal polynomial 
of tt and, by assumption, act2 + bcr + c # 0. Further if InI > cq then, by (40), 
Al~h”+B#O and B+A,a(~)~“f0. Thus if n>c,, 

mf(X, ~)=A,E~“+B~, 

withA,B,#OandIB,J<(s) h “- 1’2h)n. Therefore, if n > c5 and Izl( > 1, then 
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on applying Lemma 6 with CI = sh and 6 = 1/2h we conclude that q < c6. On 
the other hand, if -n>c, then 

mf(x, y) = A*(~J(E) ~h)‘n’ + B,, 

with A? B, # 0 and 1 B, ( < lo(e) ‘1” ~ ‘/2h,,‘,, and on applying Lemma 6 we 
conclude that q < cg. Note, by (37) and (38) that if -c, d n 6 c5 then 
maxjl.YI, /J’I) < c9 hence, from (1 l), maxi 121, IsI, q} < c,~ and the theorem 
holds. Therefore we may assume that 13, I = 1 or that 12, I > 1 and q < ~7,~. If 
12, ( = 1 put q, = 2 and otherwise put q, = q. Further, put s, = s2sg,, where 
s2 and sj are integers, s1 is not divisible by the q, th power of a prime, and 
s, and s? have the same sign. Then Is? ( < c,, and, by (39) 

mf(x, y) = s,zp, (41) 

where -I? = ~~2,. Let a = c(, , CC>, . . . . c(,, be the conjugates of SI over Q and let 
u be the coefficient of th in f‘( t, 1). Let r = hn (mod q, ) with 0 < r < q, Mul- 
tiply both sides of (41) by eh” to obtain 

where z3 = c [‘2fr~c~~‘~2. If n s 0 (mod 2) put k = 0, while if n = 1 (mod 2) put 
k= 1. By (37) and (38) for i= 1, . . . . h, 

E”(X - a, J’) = Y I,,(& cm)4 + ?, .(Elw*1)2 + y 
-,I 3 I) 

where 

and 

Y3.i = 7C,(ECJ(E))“. 

Thus the hyperelliptic equation 

mu fi (y,,, T4 + ya,;T’ + y3,,) = E~s~I“’ 
,=I 

has a solution T = ~~~~~~~ and Z = -i3. Since q, 3 2, if the polymonial f( T) = 
mu nf=, (y,,;T4 + yr.;T2 + Y~,~) has at least three simple zeros then by 
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Lemma 3 max{ I(crflizll(, I/z3 II} CC,?. But then InI < cl3 hence, by (37) and 
(38), max(lxl, IyJ)<c,, and so by (11) max(lsl, ~z~,q)<cls as required. 
Therefore, to complete our proof it suffices to show that f( T) has at least 
three simple zeros. Put gi(U) = yr,,U* + yz,,U+ y3,,, for i= 1, . . . . h, and 
observe that f(T) has 411, hence at least three, simple zeros provided that 
g,(U) has two distinct non-zero roots for i = 1, . . . . h and that g,(U) and 
gi( U) have no common root for i < i < j d h. 

We shall first show that g,(U) has two distinct non-zero roots for 
i = 1. . . . . h. To this end it suffices to show that yl.,y3,, #O and 
,I* ,2.i -4y,,,~~,~ #O, for i= 1, . . . . h. Recall that ~c~TL~(E(T(E))‘~= M= (40 d)/D 
hence 

lll,iY32 = - (mf + hcc; + c).sZk A/D*, 

for i = 1, . . . . h. Since A is non-zero and since ~1, is a conjugate of c( and 
uaz + hcc + c # 0 we have y,,,y3,, # 0 for i = 1, . . . . h. Next observe that 

YZ., - 4Y I.ii’?,! =g((d’-4af)a:+(Zde-4hf)cc,+(e2-4c;f’)), 

for i= 1, . . . . h. Since IX, is a conjugate of c( and 4f(ac~’ + hcc + c) # (&I + e)‘, 
y: -4~~,,y~,~ #O, for i= 1, . . . . h. 

%oriand,jwith l<i<j<hput 

G~.,=(YI.;Y~.,-YI,,~~~.,)*+(YI,~Yz.,-~~~,,~~.~) 

x (YxrY*., -Y3.,Y*.,h 

and observe that if g,(U) and g,(U) have a common root then G,,j = 0. 
However, some calculation reveals that G, i = -(a, - aj)’ AfE4k/D2. Since 
,f( t, 1) is the minimal polynomial of CI, f(t, 1) has no repeated roots and 
thus C(~ # c1,, hence G,, , is non-zero as required. 

5. PROOF OF THEOREM 3 

Let cl, c2, . . . be positive numbers which are effectively computable in 
terms of 6, P, and the sequence (u,);;=*_,. We have 

u, = lb,cq + f*(n)a’l+ “. + f,(n)M:. 

We may assume that ~1, is positive by, if necessary, changing the sign of I., . 
Further since a, is an algebraic integer with absolute value strictly larger 
than all its conjugates, CI~ is real and either CI~ > 1 or c1r is 1. But if CY, = 1 
then t = 1, contradicting our assumption that the sequence (u,,);=, is non- 
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degenerate, and so we may assume CY, > 1. Further we may assume, 
without loss of generality, that 1~ 13 Itl,( forj= 3, . . . . t. Put 

d, = max(degree(f,) ) j= 2, . . . . t). 

Then 

If&)a’z’+ ... +f,(n)a:l dc,n”’ IaJR. (42) 

We shall now assume that for some non-zero integers S, X, q, and n with 
the greatest prime factor of s at most P, 1.~1 > 1, n > 0, and s?’ # I., a;, that 
( 16) does not hold and we shall show that q < c7 as required. Therefore 

ISY-&,I <aypc5’, (43) 

and since 

IXYY - II, I 3 Ix? - A, a’(/ - I,fJtz)a; + . . +,f,(n)ag, 

by (42) and (43) 

Jsx4-&a;/ <<,;(I -“‘+c,d la*\“. (44) 

Put 8= 0 if Ia2 16 1 and b, = (log Ia,I)/log a, otherwise and put 6, = 
min { d/2, ( 1 - Q)/2 }. Then, by (44), 

(45 1 

for n > c3. Notice that if n < cj then, since 1x1 is at least 2, q < cd. On the 
other hand, if n > c3 then (45) holds and since XX“ # 1-r a;, we may apply 
Lemma 6 to conclude that q < c5. Our result now follows, 

6. PROOF OF THEOREM 4 

Let E be a positive real number and let 1’ be a real number with 
la, I > y > jaz I and y > 1. Let cl, c?, . . . be real numbers which depend only 
on P, (u,);: 0, y, and E. We shall assume that S, x, q, and n are non-zero 
integers with the greatest prime factor of s at most P, 1x1 > 1, SX” # %,cry, 
and 

I.s.YY - u, I < y”, (46) 

and we shall show that if n is greater than cl then 
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Define d, as in (42). Then 

hence, by (46), 

O<lsXq-;1,CC?Id2yn, (47) 

for n > c2. Thus, by Theorem 3, q < cg for n > cl. Therefore we may write 
xx?=s,.xf, where S, and x, are integers with Is, 1 < cq and x1 3 1. 

Consequently 

1 6x, de, Ia, J”‘Y. (48) 

Put n, = [n/q] and A, =IZ,U.‘,~“~YS;~. Then 

JSXY-Iz,ay1 = Is,a;‘q I(x,/a;“)Y-A, I. (49) 

Further 

I(x,/a;‘y-A,l 2c, I(x)/a;‘)-AyI, (50) 

where A t“’ is the q th root of A r closest to x1/$‘. Applying Lemma 4 with 
K= Q(a;‘) and S the set of Archimedean valuations on K normalized as in 
(22), together with those normalized non-Archimedean valuations u for 
which ICC;’ It’ < 1, we obtain 

x HK(x,/a;‘)-‘2+f’). 

But x1 is an integer and therefore 

f-f,& I /a?) = n max(L llx~l~~~II.)= n max(l, llx,la;lII1,) 
08 v c E s 

Thus, 
I(x,/a;l)-AAtlYI ~~~/(H~(x~/a;~))~(l+‘). (51) 

By the product formula (24), HK( 0) = H,(O - ’ ) for every non-zero 
element t? in K. For any algebraic number p we shall denote the height of /I 
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by H(b); recall that the height of an algebraic number is the maximum of 
the absolute values of the relatively prime integer coefficients in its minimal 
polynomial. We have (see Schmidt [ 14, pp. 2555257]), for any non-zero 
algebraic number B, 

H o,,dP) 6 CfW’). 

where C is a positive number which is effectively computable in terms of 
the degree of p only. Thus 

H,Jx,/cx;‘) = H,(a;‘/.u) 6 c8 H(a’l’/x). 

Let d, denote the degree of $1 over Q. Since ICI, ( 3 IOL, 1 for j= 2, . . . . t we 
have, by (48), 

H( cc’l’/s) d c, 12, 1 d”‘ri, 

and since n, 6 lf, 

Thus, from (49 )-( 52 ), 

~sx~-~.,a;I >c,, la, In (“+c’dn’q), 

and so, by (47), 

nlogy3-c-1, +n(l-(l+E)rElq)logIcc,I. 

Since q is at most c3 and la, I is greater than one, 

nlogy3n(l-(1+2~)d/q)log(cc,~, 

hence 

(1+2a)dlog lclrl 

log(a, Ilr) 
3 4, 

for n > cIZ. Our result now follows since q is an integer and E can be 
arbitrarily small. 

7. PROOF OF COROLLARY 1 

We shall suppose that there are infinitely many integer triples (n, X, q) 
with n 3 0, 1x1 > 1, and 

i 
dlw Ia, I 

q’max log(Ia,I/max(l, la,l))‘d+r (53) 
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such that 

u, = x4 + T(x), (54) 

and we shall show that this leads to a contradiction. The condition. 

is equivalent to (53). Further, since q is an integer, there exists a real num- 
ber y with 

y>max(l, (cQJ, Jc(~)~‘(~+‘)), 

such that (53) is equivalent to 

(55) 

(56) 

It follows from Theorem 4, (55), and (56) that either there are infinitely 
many triples (n, x, q) as above with 

1-P - u,, I > y’l, (57) 

or there are infinitely many such triples (n, X, q) with .YY = I., rw’f. 
Let cl, c?, . . . denote positive numbers which depend only on (u,,);= D and 

T. For n sufficiently large 

Iu,J =1x4+ T(x)1 2 III~-c, Ix\‘>f J.xIy, 

and, since (cI,~ > /cI~I, 

(58) 

bnl G IA,1 I~lI”+l.mb;+ “. +.f,(nMl cc2 l~,ln. 

Thus, from (58) and (59), 1x1 <c, ltl, I’Z’y, hence 

(59) 

I T(.~)l < CA la, lrn’4 de4 la, (‘n’(d+r), (60) 

for n sufficiently large. It follows from (54), (55), and (60) that (57) holds 
for only finitely many integers n, hence for only finitely many triples 
(n, x, q) with n 20, 1x1 > 1, and q satisfying (53). Therefore we have 
.Y” = 2, cr; and so by (54), 

T(x) = fi(n)a; + . + f,(n)a:, (61) 

for infinitely many such triples (n, x, q). Notice that ~1~ is a real number 
since Ic(~ I > lc12 ( > 10(,1 forj= 3, . . . . t, and since the conjugates of ~1~ over the 
rationals are in (12~) . . . . cr,}. Further, since ICQ I > 1~~1 for j = 3, . . . . t, 
f2(n)a$ + . . . + f,(n)a: is non-zero for n sufficiently large. Thus if /a2 ) < 1 
then 

1 > If2(n)a; + ... +f,(n)a:l > 0, 
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for II sufficiently large. However. T has integer coefficients and so either 
T(x)=0 or IT( 3 1. Therefore, by (61), jclzj 3 1. Furthermore Ic(~/ > 1 
since ax2 is real and, by hypothesis, xl # f 1. 

Let ci, denote the degree off,. For n sufficiently large 

c4nd2 Ia,j”< If2(n)cc’;+ ... +f,(n)$ <c,i& Ia21n., 

and, by (611, 

(62) 

c6 I.ylr< IT(x)1 <c, lx/‘. (63 1 

It follows from (62) and (63) that if Y’=A,RC; then I.Y/‘= IA, I+ /CZ, /r’z’y 
hence 

clcd2 /a, I’l < la, I- < cgnd’ /a? )‘I. (64) 

Let E be a positive real number. Since there are infinitely many triples 
(n, .Y. q) as above with Y’= A, a; there exists such a triple (n,, .Y(), qO) with 
n, sufficiently large that, by (64), 

log l@z I (1 -E)--- <L<(l+&)-. 1% 1% I 

1% la, I 40 log Ia,1 

Since E is arbitrary and r is fixed there exists a positive integer q1 with 

Thus Ic[, 1 and Ic(~ / are multiplicatively dependent and, since rl and CI~ are 
real, a, and CY~ are multiplicatively dependent. This contradicts our 
hypothesis and so establishes the result. 

8. PROOFOF THEOREM 5 

Let c1 , c2, . . . denote positive numbers which are effectively computable in 
terms of the greatest prime factor of s, the prime p, and the sequence 
(u,,),:=~. BY (14) and W), 

sx4=A1a~+fz(n)a~+ ... +f,(n)c~;. 

Thus, since ord,(ol,/a,) 3 1 for j = 2, . . . . t, 

ord,(s.PA; ‘E,~~“- 1) = ord,(A; ‘fi(nNa21a,)” 

+ .” +A,-‘f,(n)(a,/a,)“) 

an-c, logn. (65) 
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Certainly 

/u, 1 < P, (66) 

for all positive integers n, and thus on writing s = ( - 1)‘” p’;’ . . p;” with 
k>O and p,, . . . . pk distinct prime numbers we see that the maximum of rO, 
Yl, . ..1 rk is at most c3n. Thus, since sxy # i, a; and p does not divide q we 
may apply Lemma 2 with B’ = q to obtain 

ord/,(s.Pk; ‘E, “-l)=ord,((-l)“‘p;l...p~~,‘x, “.y(/-l) 

< r,(log q log .Y + n/q). (67) 

Comparing (65) and (67) we find that 

12-c, logn-c,n/q<c,logqlog.u. (68) 

Notice that we may assume q> c,/3 since otherwise our result holds. 
Similarly we may assume that c, log n <n/3 since otherwise II < c5 whence 
from (20) and (66) q < cg as required. Thus from (68) 

n/3 < c4 log q log .Y. 

But since sxq = u,, we have, from (66) and (69) 

(69) 

q log s < CT log q log X, 

and thus q < c8 as required. 

9. PROOF OF THEOREM 6 

Let E be a positive real number an let c,, c7, . . . denote positive numbers 
which depend only on E, vl, . . . . v,, P, and (u,);=,. Let s, X, q, and n be 
integers with the greatest prime factor of s less than P, Ix] > 1, IZ 3 0, and 
q 3 1 for which ssy = u,. 

If u1 is an Archimedean valuation then by Theorem 3 we may suppose 
that q < ci or that sY’ = 1,, cry. If v, is non-Archimedean then by Theorem 5 
we may suppose that q < c2 or that sex4 = 1.i al; the condition (p, q) = 1 in 
the statement of Theorem 5 does not pose a problem since if pk divides q 
then we may replace, if necessary, x by .ypk and q by qJpk. If S.Y~ = 2, cc’,’ then 

fi(n)a; + ... + .f,(n)$=@ 

and by Lemma 5 this happens for only finitely many integers n since 
(u,),“‘,, is a non-degenerate recurrence sequence. Similarly, by Lemma 5, 
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U, = 0 for only finitely many integers n. Let us therefore assume that n is 
sufficiently large that $x4 # il, a; and II, # 0. Then q < c3 and so we may 
write sxy=s,x~ where s, and .v, are integers with jsr I < cq and x1 > 1. 
Therefore 

s,q-A,cq=J;(n)cx;+ ... +f,(n)a:‘. 

Further, since )u,, 1 < nC5 la, 1’ for n > 1, 

16x, dn” (ClJ? 

Put 11, = [n/q] and A,, = J,z~~“~Ys;‘. Then, for i= 1, . . . . r, 

(70) 

hence 

6 ~6~~“(~,III~,III~, II J”. (71) 

Also 

II~-~lI~;“~Y--AolI,.~3(.x II(~~,I~?‘)--A,ll,.,> (72) 

where Ai is the qth root of A, for which Il(s,/c~~l) - A, /11’, is minimal. 
Let S be the set of all normalized Archimedean valuations on K, the 

valuations u, , . . . . u,, and all normalized non-Archimedean valuations r such 
that Ilc(, IIL, < 1. Put A,, = A, for i= 1, . . . . r and for OE S with v different from 
v , 3 . . . . v, put A,. = 1 unless x, = cl:‘, in which case put A,, = 2. Then from 
(71) and (72) 

t~ymin(l, lI(.~~/~(~~)-~~.ll,.)~~~n~” ( fl (~illb, II,.,) j”. (73) 
,=l 

Notice that A,, can assume at most c ,0 possible values since q < c3 and 
Is, I < cq and thus there are at most c,, different possible values for A, with 
u in S. Further A,, is non-zero and algebraic over K for v in S. Furthermore 
x,/a;1 is non-zero since U, is non-zero and x,/cc:1 is different from A, for v 
in S since sxy # 1, CX;. Therefore we may apply Lemma 4 to conclude that 

fl min(l, ll(-~,/~l~)-A, II,) 
1’ E s 
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As in the proof of Theorem 4 we find that 

Thus 

(74) 

Put K, = Q(a;‘), D = [K : Q], and d= [K, : Cl]. We have 

H&*/q) = HK(cq’/X,) = (HKO(OI;‘/x))DY 

Again as in the proof of Theorem 4, 

ff,(q’l.~, 1 d cl3ff(cql-~,), 

.,) denote the height of $1/x,. Thus, by (70) 

H(cq’/x,) 6 C14Y1”sdlC(h lHd’4. 

(75) and (76) 

where H( cr;‘/~ 

Therefore, by 

(75) 

(76) 

(77) 

We find, from (73), (74) and (77), that 

Since E is arbitrary and q is an integer we have 

qGlog (;;“‘/Z$))3 

for n sufticiently large. Our result now follows. 

10. PROOF OF COROLLARY 2 

Let g(x) be a polynomial with integer coefficients and let the roots of 
g(x) be aI, a2, and c+ with multiplicities 1, 1, and m, respectively. Assume 
that ]c(r I = (a2 I = 1~1~ 1 and that U~/IX, is not a root of unity for 1 d i < j< 3. 
Then exactly one of ~1, , q, and ~1~ is a real number and the other two num- 
bers are complex conjugates, hence of the same multiplicity. Therefore it is 
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no loss of generality to assume that ~1, and a2 are complex conjugates and 
that c(~ is a real number. Since la, 1 = laj 1 there is a real number 8 such that 
CC, = ef0c13 and since c(* = CI,, c12 =e “cl3 hence CL,CX~C~~ = CX:. Since c(~(x~cx~ is 
an integer, CX: is an integer and since CC~/U~ and ~Jc(~ are not roots of unity, 
c(~ itself is an integer. In summary, c(~ is an integer and LX, and ~1~ are com- 
plex conjugate algebraic integers of degree 2 with CI, CI? = ~5. Thus 
(x-c~~)(x--~)=.x’+ hx+c’ with b and c integers. Put k= (h, c). Then 
a,/k and ct2/k are algebraic integers since they are the roots of 
.Y’ + (h/k).x + (c/k)‘. For any 8 in the ring of algebraic integers of Q(a,) 
let [Q] denote the ideal generated by 0 in that ring. Then 
(C~,/kl~ C~,/kl)= Cll. 

Let u,, be the nth term of a non-degenerate recurrence sequence as in 
(14) with t = 3, f;(n) a non-zero constant, i2 say, and ILX, / = /LX? 1 = (G(~ 1. 
Thus, by the above remarks, 

where )ji = cci/k for i = 1, 2, 3 and ([ri], [y2]) = [ 1 ] in the ring of algebraic 
integers of Q(y ,). Let us put 

for n = 0, 1, 2, . . Notice that (w,,),:=~ is a non-degenerate linear recurrence 
sequence with (y 1 1 = Iyz 1 = Iy3 j and as before 

1’*y2 = 7;. (78) 

Put K= Q(y,). Let S be the set of non-Archimedean valuations on K, 
normalized as in (22), for which ilyZll t’ < 1. Each prime ideal /Z dividing 
[yz] also divides [r3] by (78) and does not divide [rl] since 
(lIy,l, CyJ)= Cll. Therefore, by (78), 

hllr = llY,ll:> for UE S, 

and so, 

~=llY,II,-> lIY3lI~‘l/?Z/lr~~ for vE S. 

Thus Kts (Ilr, II./IIy3 II,) = LItitS lh ll;1/2, and by the product formula 
(221, n,,, l/Y2 II, li2 = rI”, T IlYr llY2> where T denotes the set of normalized 
Archimedean valuations on K. T consists of a single element v0 and 
/IY~II~~ = b212. Therefore 

fl fllr1 IltAY3Il”)= IYZI. (79) 
I’E s 
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Denote the maximum of P, k, and 2 by PO. We now apply Theorem 6 with 
r1 ,..., u, the valuations in S. By (79) there are only finitely many integers s, 
s, q, and n with s.xy = w,, s # 0, and the greatest prime factor of s at most 
P,, n > 0, and q > 2. Similarly putting 23w, = z, for n = 0, 1, 2, . . . . we see by 
Theorem 6 that there are only finitely many integers s and n with .F # 0 and 
the greatest prime factor of s at most P,, n 3 0, and s .2’ = z, or 
equivalently s = w,. 

Suppose that there are infinitely many integer quadruples (s, X, y, n) with 
s # 0 and the greatest prime factor of s at most P,, x > 1, n > 0, q > 2, and 
ssy = u,,. Then either there exist infinitely many integer quadruples (s, x,- 

q, n) with s # 0 and the greatest prime factor of s at most P,, n >, 0, q > 2, 
and SP = u,, or there exist infinitely many integer pairs (s, n) with s # 0 and 
the greatest prime factor of s at most P,, n 3 0, and s = u,. Recall that u’, is 
an integer and that u,, = k”w, for n = 0, 1, 2, . . . . Thus in the former case 
there are infinitely many integer quadruples (s, X, q, n) with s # 0 and the 
greatest prime factor of s at most P,, n 30, q> 2, and XL? = w,,. By the 
preceding paragraph there are only finitely many such quadruples. In the 
latter case there are infinitely many integer pairs (s, n) with s # 0 and the 
greatest prime factor of s at most P,, n 3 0, and s = w,,. Again, by the 
preceding paragraph, this is not possible. Therefore the above supposition 
is false and this establishes our result. 
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