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We prove that there are only finitely many terms of a non-degenerate linear
recurrence sequence which are gth powers of an integer subject to certain simple
conditions on the roots of the associated characteristic polynomial of the recurrence
sequence. Further we show by similar arguments that the Diophantine equation
ax¥ + bx'y + cy* + dx' + ey + f =0 has only finitely many solutions in integers x, y,
and ¢ subject to the appropriate restrictions, and we also treat some related
simultaneous Diophantine equations. € 1987 Academic Press. Inc.

1. INTRODUCTION

In [15] the authors proved that if @, b, ¢, and d are integers with
b* —4dac and acd non-zero and if x, y, and ¢ are integers with |x| and 1
larger than one satisfying

ax*+bx'y +cy’=d, (1)

then the maximum of |x|, | y|, and ¢ is less than a number which is effec-
tively computable in terms of a, b, ¢, and d. Let r; and r, be integers with
r?+4r, non — zero. Let u, and u, be integers and put

unzrlun71+r2un—25 (2)
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for n=2, 3, ... Then, for n >0,
u, =ax" +bp", (3)
where « and f are the two roots of x> —r,;x —r, and

_uoﬁ_ul

Uy — Upl
_, h=—-.
B—a B—a

The sequence of integers (u,)>_, is a binary recurrence sequence. It is said
to be non-degenerate if abaff #0 and «/f is not a root of unity. In the
course of proving our result concerning Eq. (1) we showed that a non-
degenerate binary recurrence sequence contains only finitely many terms
u,, defined as in (3), which are pure powers whenever « and § are units or
equivalently whenever {r,| =1. We also established in [15] the following
more general result. Let d be a non-zero integer and let u,, defined as in
(3), be the nth term of a non-degenerate binary recurrence sequence. If

dx‘=u,, (4)

for integers x and g larger than one, then the maximum of x, ¢, and #n is
less than a number which is effectively computable in terms of a, «, b, 8,
and d. Independently, Petho [12] proved that if in (2) we suppose that r,
and r, are coprime and (4) holds for integers x and g larger than one, then
the maximum of x, ¢, and » is less than a number which is effectively com-
putable in term of a, «, b, p, and the greatest prime factor of d. Let ¢ be an
integer and let u,,, defined as in (3), be the nth term of a non-degenerate
binary recurrence sequence. In [167 Stewart showed that if |r,| =1 and

x'+ce=u,,

for integers n, x, and g with [x{ > 1, >0, and ¢ > 3, then the maximum of
n, |x|, and g is less than a number which is effectively computable in terms
of a, a, b, p, and c. Further if |r,| =1 and

2
xX"+c=u,,

for integers n and x with |x| > 1 and n >0, then the maximum of # and |x|
is less than a number which is effectively computable in terms of a, o, b, S,
and ¢ provided that ¢>#4ab when r, = —1 and that ¢?># +4ab when
r, = 1; the preceding provisions were overlooked in [167]. Just as the study
of Eq. (1) was related to the study of pure powers in binary recurrence
sequences there is a generalization of Eq. {1) related to the above result. In
particular, we are able to prove the following result.
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THEOREM 1. Let a, b, ¢, d, e, and | be integers. Put D =b>—4ac and
A=4acf + bde —ae® — c d* — fb* and assume that D A #0. If x, v, and 1 are
integers with |x| > 1 and t > 2 satisfying

ax? +bx'y 4+ oy +dx'+ey+ f=0, (3)

then the maximum of |x|, | y|, and 1 is less than a number which is effectively
computable in terms of a, b, ¢, d, e, and f. Further, if e* # 4cf and x and v are
integers satisfying

ax*+bx’y+ ey’ +dx’ +ey+ =0, (6)

then the maximum of |x| and |y| is less than a number which is effectively
computable in terms of a, b, ¢, d, e, and f.

The hypothesis D 4 # 0 is clearly required in the statement of Theorem 1.
To see that the additional hypothesis e # 4cf is require when =2, observe
that if e =4cf and » =0 then (6) is equivalent to

(ax? +d)x* = —c(y+ef2c);

note that ¢ # 0 since D # 0. Thus, if 2¢ divides e, to obtain infinitely many
pairs of integers x, y satisfying (6) it suffices to find infinitely many pairs of
integers x, f satisfying

ax’+ct’=—d (7)

and to put y = xt —e/2c for each such pair. Plainly there are infinitely many
such choices of a, ¢, &, and e for which (7) has infinitely many pairs of
solutions x and ¢ and for which D 4+#0. In particular, we may take
a=—1,d=1, ¢ a positive integer which is not a square, and e = 2c.

Let a, b, ¢, d, a,, by, ¢,, and d, be integers with acda,c,d, #0,
bl#4a,c,, b>#4ac and such that the roots a, and «, of a, x>+ b,x+ ¢,
are not roots of ax*+ bx + c¢. In [15] the authors also showed that if x, y,
-, and g are integers with ¢ and z larger than one for which

ax*+ b xy+c y'=d, (8)
and
ax® + bxy + v = dz, (9)

then the maximum of |x|, |y|, {z|, and ¢ is less than a number which is
effectively computable in terms of a, b, ¢, d, a,, b,, ¢,, and d,. This exten-
ded earlier work of Mordell [9] who proved, with the above hypotheses
and g =2, that the simultaneous Eq. (8) and (9) have only finitely many
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solutions in integers x, v, and z. We are now able to generalize this result
considerably.

THEOREM 2. Let a, b, ¢, d, e, and f be integers and let F(t, v) be a binary
form with integer coefficients and degree at least one. Put D= b*> —4ac and
4 =4acf + bde — ae* — cd* — fb* and assume D Af #0. Suppose that F(t, 1)
has a simple root o such that aw*+ba+c+#0 and 4f(ax® + bo+ c)#
(du+e) If x, y, z, s, and q are integers with s#0, g> 1, and |z| > 1, for
which

ax*+bxy+cv +dx+ey+ f=0 (10)

and
F(x, y)=sz" (11)
then the maximum of \x|, |y|, |z, |s|, and q is less than a number which is

effectively computable in terms of a, b, ¢, d, e, f, the greatest prime fuctor of
s and the binary form F.

For the proof of Theorem 2 we employ Lemma 6 together with a result
of Baker on the solutions of the hyperelliptic equation in an algebraic num-
ber field. We remark that if we use a result of Brindza [4] in place of the
above-mentioned result of Baker, it is possible to show that the condition
4f(ax®+ba+c)# (da+e)> may be omitted if ¢ is greater than 2.
Lemma 6, which is a slight generalization of Lemma 6 of [15], yields some
information on gth powers in general linear recurrence sequences.

Let ry, .., r, and uy, ..., u, _; be integers and put

Up=r Uy, |+ - +ru, 4 (12)

for n=k, k+1,... The sequence (u,)_, is a linear recurrence sequence.
We shall assume that k> 1 and that the terms of (u,)*_, do not satisfy a
relation of the form (12) with fewer terms; in particular there does not exist

an integer / with / <k and integers s,, ..., s; such that
U, =S81U, + - +Slun—/!

forn=1[ 141, .. It is well known (see page 62 of [7]) that for n >0,

U, = filn)ai+ -+ + fi(n) o, (13)
where f, ..., f, are non-zero polynomials in # with degrees less than /,, ..., /,
respectively and with coefficients from Q(«,, .., «,), where «,, ..., a, are the

distinct roots of the characteristic polynomial of the sequence

X x*'— oy,
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and /,, .., {, are their respective multiplicities. Note that «,, ..., o, are non-
zero since r, is non-zero by the minimality of (12). We shall say that the
sequence (u, ), is non-degenerate if 1> 1 and a,/«; is not a root of unity
for 1 <i< j<t Observe that this definition is consistent with our earlier
definition of non-degenerate binary recurrence sequences. We shall be
interested in linear recurrence sequences (u,)*_ , with u, defined as in (13)
for which f\(n) is a non-zero constant, 4, say. Thus

, =i+ frn)ag+ -+ fi(n) oy (14)

Let « be a real algebraic number larger than one from a field K of degree
D over the rational numbers. Further let d, a, and b be non-zero numbers
from K and let & be a positive real number. In Lemma 6 of [15] the
authors showed that if

dx?=ao" + b,

with |p| <a™' ) and with x, ¢, and n integers larger than one, then g is
less than a number which is effectively computable in terms of D, d, a, «,
and J only. As a consequence we showed that if 4 is a non-zero integer, u,,
is the nth term of a non-degenerate linear recurrence sequence, as in (14),
la;] > |o;] for j=2, .., t, u, — A,af is non-zero, and

dx'=u (15)

for integers x and ¢ larger than one, then ¢ is less than a number which is
effectively computable in terms of ¢ and the sequences (u,)*_,. Kiss [5]
proved that in fact ¢ is less than a number which is effectively computable
in terms of the greatest prime factor of d and the sequence (u,)”_,. Kiss
[57 also showed that if we further assume that |a,| > ;| for j=3, ..., r and
that o, | > 1 then, in place of (15), we have

ldx? —u,| > e,

for integers x and g with x larger than one, provided that » and ¢ are
larger than n,, where ¢, and s, are positive numbers which are effectively
computable in terms of the greatest prime factor of 4 and the sequence
(u,)7_,. If we make no assumption on the size of [, ] it is still possible to
conclude that the distance between u,, and the nearest gth power, for ¢ suf-
ficiently large, eventually tends to infinity exponentially with » provided
that 4,af is not the gth power of an integer for » sufficiently large. This
follows from our next result, which is a consequence of Lemma 6.

THEOREM 3. Let 6 be a positive real number and let P be a positive
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integer. Let u,, defined as in (14), be the nth term of a non-degenerate linear
recurrence sequence and assume that

oy [ > o], for j=2,.,1

There exists a real number C, which is effectively computable in terms of 9,
P, and the sequence (u,)r_,, such that if s, x, q, and n are non-zero integers
with the greatest prime factor of s less than P, |x|>1, ¢> C,, n>0, and
sx?# Ayaf, then

lsx —u, | > Jory |20, (16)

While C, is effectively computable it is in general rather large as we
employ estimates for linear forms in the logarithms of algebraic numbers
due to Baker in the proof of Theorem 3. We are able to reduce con-
siderably the size of C, by employing an extension of Roth’s theorem due
to Lang [6].

THEOREM 4. Let u,, defined as in (14), be the nth term of a non-
degenerate linear recurrence sequence and assume that

loy| > loal 2 1o,  for j=3,.,¢
Let 7 be a real number with y> 1 and
lory | >y > foal,

let d be the degree of o, over the rationals, and let P be a positive integer.
There exists a number C, such that if s, x, q, and n are non-zero integers
with the greatest prime factor of s less than P, |x}>1, n>C,, sx?# 4,a7,
and

q> (dlog |a})/log(le; |/y), (17)
then

lsx9 —u,|>y" (18)

Taking u, =2"+ 1 for n=0, 1, 2, ... we see that the restriction sx? # 4,a}
in Theorem4 is certainly required. Further, put u, = (\/E +1)y' +
(\/5— )" for n=0, 1, 2, .. and observe that for any positive integer ¢

Ul =ty = q((/24 1))
(3 W a2
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Therefore if ¢ =2 and y > (\/§+ 1)~ 24 the inequality
’xtl — U, | < "l"”

has infinitely many solutions in positive integers » and x; hence, we cannot
replace condition (17} by the condition

q¢>(2—¢)log |a,|/log(lx,|/7),

for any £> 0.

Because of the ineffective nature of Lang’s result we are not able to give
an effectively computable number C| such that (18) holds for all integers »
with n > C,. Theorems 3 and 4 yield information on the equation

u, =dx?+ T(x), (19)

where T(x) is a polynomial with integer coefficients having height H and
degree r, considered by Nemes and Pethd [10, 117, Let u, be defined as in
(14) and assume

oy | > [y | > [a;], for j=3,..,1

with a, # +1. Using Lemma 6 of [15], Nemes and Pethé [10] showed
that there are positive numbers (', C;, and C, which are effectively com-
putable in terms of d, H, and the sequence (u,)_, such that if #, x, and ¢
are integers with n>C,, |x|>1, and ¢>1 for which (19) holds and if
r<Cyq then ¢ < C,. Further, in the special case u, is the nth term of a
non-degenerate binary recurrence sequence and u, satisfies a relation as
in(2) with |r,| = 1. Nemes and Petho [11] were able to show that if ¢ is a
fixed integer larger than one and Eq. (19) has infinitely many solutions in
integers n and x, then 7(x) can be characterized in terms of the Chebyshev
polynomials. By means of Theorem 4 we are able to obtain further infor-
mation on solutions of (19).

COROLLARY 1. Let u,, defined as in (14), be the nth term of a non-
degenerate linear recurrence sequence and ussume that

lory | > Jota | > oty

Jor j=3, .., t. Let d be the degree of o, over Q and let T(x) be a polynomial
with integer coefficients and degree r; we take r=0 if T(x) is the zero
polynomial. If o, and o, are multiplicatively independent and %, # +1 then
there are only finitely many integers n, x, and q with n=0, |x| > 1, and

dlog |a;]
log(la, |/max(1, |x,|))

q>max< ,d+r)
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for which
u, =x44+ T(x).

As a special case of this result note that if (u,)_, 1s a non-degenerate
binary recurrence sequence whose characteristic polynomial has roots
which are multiplicatively independent with one root inside the unit circle,
then for any integer ¢ the equation

u, =x+c¢

has only finitely many solutions in integers n, x, and ¢ with n >0, |x| > 1,
and ¢ > 2. Thus the distance from, for example.

=2+ + 2= /7"

to the closest pure power larger than 2 tends to infinity with n. We remark
that if the coefficients of the characteristic polynomial of a non-degenerate
binary recurrence sequence are relatively prime then the roots of the
polynomial are multiplicatively independent.

Our next result may be viewed as a p-adic analogue of Theorem 3. Let K
be a field of finite degree over 0 and let 4 be a prime ideal of the ring of
algebraic integers of K. For any element « in K we denote by ord , a the
order to which # divides the principal ideal generated by x.

THEOREM 5. Let u,, defined as in (14), be the nth term of a non-
degenerate linear recurrence sequence and put K= Q(x,, ..., «,). Let 4 be a
prime ideal in the ring of algebraic integers of K lving above the prime p and
assume that

ord , «; <ord ,

for j=2,.., 1 If s, x, q, and n are integers with s#0, |x|>1, (p,q)=1,
n=0, sx’# Ao, and

sx?=u,, (20)

then q is less than a number which is effectively computable in terms of the
greatest prime factor of s, p, and the sequence (u,)r._ .

We remark that if sx?=4,af and (20) holds then
falm)as+ - + filn)ap =0. (21)

Clearly if |o;| > || for j=3, .., ¢ all solutions of (21) are less than Cs, a
number which is effectively computable in terms of «,, ..., ¢, and /5, ..., f,.
In this case the conditions n>0 and sx?# A2} in the statement of
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Theorem 5 can be replaced by the condition n> Cs, or alternatively, since
|x| > 1, the condition sx? 4,a7 may be dropped. In general, Eq. (21) has
only finitely many solutions by the Skolem-Mahler theorem [8] and so
the conditions » > 0 and sx? # 1, a” may be replaced by the condition that »
be sufficiently large.

Let us recall some facts about valuations. Let {p,, p,, ..} be the set of
prime numbers. Let | |,, denote the ordinary absolute value on @ and let
| |, denote the p,-adic value on Q normalized so that |p;], =p; " for
i=1,2, .. Let K be a field of finite degree over Q and let v be a non-trivial
valuation on K. Then v restricted to @ is equivalent to | |, for some i>0.
We shall suppose that v is normalized so that

lal, = lal,, (22)

for all @ in Q. Let K, be the completion of K at v, let Q,, be the completion
of @ at p,, and put

e = 17h, (23)

for all y in K, where N, is the degree of K, over Q. Let V' be the set of
non-trivial valuations v, normalized as in (22), on K. Then, for all non-zero
elements v in K, we have

Iyl =1 (24)

vel’

Combining Theorems 3 and 5 with Lang’s generalization of Roth’s
theorem we are able to prove the following result.

THEOREM 6. Let (u,))_, be a non-degenerate linear recurrence sequence
with u, defined as in (14) and put K=Q(a,,..,«,). Let v, .., v, be
inequivalent valuations on K normalized as in (22) and suppose

]al )1', > Ia/ln,’

Jor j=2, . tand i=1, .., r. Put 0, =max{|osl,, ... e} for i=1, .., r
with || ||, defined as in (23) and let b be an integer with 1 <b <1 for which

LAESAH

Jor j=1,..,t Let D be the degree of K over Q and let P be a positive
integer. The equation

sx¥=u,
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has only finitely many solutions in integers s, x, q, and n, with the greatest
prime factor of s less than P, |x| > 1, n 20, and

D log jay|
log(TT;_y (ot 1,/6:))

Theorem 6 has the following consequence.

q>

CoroOLLARY 2. Let (u,)X_, be a non-degenerate linear recurrence
sequence with u, defined as in (14) and let P be a positive integer. Assume
that f,(n) is a non-zero constant, t =3, and that |\a,| = |a,| = |o3|. Then the
equation

sx=u,

has only finitely many solutions in integers s, x, q, and n with the greatest
prime factor of s at most P, |x{>1, ¢>2, and n = 0.

We remark that with the above hypotheses |u,| =0 as n— 0 by
Lemma 5. Thus a non-degenerate ternary recurrence sequence, the roots of
whose characteristic polynomial have the same absolute value, contains
only finitely many gth powers of integers for ¢ > 2. In particular let d be a
positive square free integer and let ¢ and b be non-zero integers with
a# b if d=1 and a# +bh and a# +3b if d=3. Then there are only
finitely many integers n such that

((a+b/=dVY' +((a—b/—d))' +(a’ +db?)"

is the gth power of an integer with g>2. The hypothesis g>2 in
Corollary 2 cannot be replaced by ¢ > 1 since, for example, for all n =0,

(24" +Q-)")VP=3+4i)"+(3—4)"+2-5"

2. PRELIMINARY LEMMAS

Let «,, @5, .., ®, be non-zero algebraic numbers. Let K= Q(«,, ..., 2,)
and denote the degree of K over Q by D. Let 4, .., 4, be upper bounds
for the heights of «, ..., «,, respectively; the height of an algebraic number
is the maximum of the absolute values of the relatively prime integer coef-
ficients in its minimal polynomial. We assume that 4, is at least 4. Further
let by, ..., b,,_, be rational integers with absolute values at most B, and let
b, be a non-zero rational integer with absolute value at most B’. We
assume that B’ is at least 3. Put

A=b,logo, + --- +b,loga,,

641/27/3-8
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where the logarithms are assumed to have their principal values. In 1973
Baker proved the following result; take 6 = 1/B" in Theorem 1 of [2].

LeMMA 1. If A#0 then |A| >exp(—C(log B’ log 4, + B/B')), where C
is a positive number which is effectively computable in terms of n, D, and
Ay, .., A, only

In 1976 van der Poorten established the following p-adic analogue of
Baker’s theorem; take d=1 in Theorem 3 of [13].

LEMMa 2. Let 4 be a prime ideal of K lying above the rational prime p
and assume that b, is not divisible by p. If a8 .- a% — 1 is non-zero, then

ord ,(a}' ---alr— 1)< C(log B'log A, + B/B’),

where C is a positive number which is effectively computable in terms of n, D,
Ay 4,4, and p only.

We shall also require the following resuit, due to Baker, which gives
bounds for the solutions of the hyperelliptic equation. Let 6 be an algebraic
number. We denote by [[8] the maximum of the absolute value of the
conjugates of § over Q.

LeMMA 3. Let K be an algebraic number field of degree d over Q. Let
Apy Ay 1, dy, and b be algebraic numbers from K with a,b#0, and
let. ' m and n be positive integers with m=2. Further let f(x)=
a,x"+ - +a,x+aq, be a polynomial with at least 3 simple roots. All
solutions in algebraic integers x, y, from K of

satisfy max{ (x|, |y} <C, where C is a number which is effectively com-
putable in terms of b, ay, a,, .., a,, and K.

Proof. When K is the field of rational numbers the result follows from
Theorems 1 and 2 of [1]. The generalization to an algebraic number field
K follows directly as is indicated by Theorems 4.1 and 4.2 of [3].

Let K be a field of finite degree over @ and let V' be the set of non-trivial
valuations v, normalized as in (22), on K. For any f in K we define H ()
by

H ()= 1 max(1, IBl.).

velV

The following generalization of Roth’s theorem is due to Lang.
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LEMMA 4. Let K be a field of finite degree over Q. Let V be the set of
non-trivial valuations v, normalized as in (22), on K and let S be a finite sub-
set of V. For each v in S let a, be non-zero and algebraic over K and assume
that v is extended to the algebraic closure of K in some way. Let ¢ be a
positive real number. There is a positive real number C which depends upon ¢
and o, for ve S such that

[1 min(L, Jo, — BIl,) [] min(1, {B1l,)

ve s ve S

. 4 C
L mint VB> Gy

for all elements B in K which are non-zero and different from a, for v in S.

Proof. This follows from Theorem 1.1, page 160, together with remarks
(iv) and (v), page 161 of [6].

LEMMA 5. Let oy,..,a, be non-zero algebraic numbers and let
fi(n), ..., f,(n) be polynomials which are not identically zero with coefficients
which are algebraic numbers. Put v, = f(n)al+ -+ + f(n)a?, for n=
0,1,2,... If a;/a; is not a root of unity for 1 <i< j<t then v, =0 for only
finitely many integers n.

Proof. See [8 or 7], page 59.

LEMMA 6. Let o be a real algebraic number larger than one from a field
K of degree D over Q. Let s be a non-zero integer, let a and b be non-zero
numbers from K, and let 6 be a positive real number. If

sx9=aa" + b, (25)

with |b| < a™' =) and with x, q, and n integers larger than one, then q is less
than C, a number which is effectively computable in terms of the greatest
prime factor of s, D, a, a, and  only.

Proof. Let ¢, c,,.. be positive numbers which are effectively com-
putable in terms of the greatest prime factor of s, D, a4, a, and J only. We
shall assume that # is larger than c,, where ¢, is chosen sufficiently large to
ensure the validity of the subsequent arguments. Note that if n < ¢, and
(25) holds then g < ¢, as required since x is an integer larger than one.

From (25) we have

x4 b
sx g

n n’

ao

(26)

ax
SO

T—(lal o®) ' <sl la) P a™"x! < T+ (Jal 2™) .
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For n sufficiently large (|a] «®") ' < 1/2. On taking logarithms and recall-
ing that [log(1 + y)| < y and |log(1 — y)] <2y for 0 < y < 1/2, we find that

llog |s| —log |a| —nlog a + ¢ log x| < cy0 =", (27)

We have |s| = p;--- pix with k20 and p,, .., p, prime numbers. Note that
the maximum of r, ..., r, 1s at most ¢,n. Put

A=vrlogp, + - +r.log p, —log|a
—nloga+qlog x.

By (26) and the fact that 5#0 we see that 4#0. We may now apply
Lemma 1 with B'=¢4 and B the maximum of r,, .., r, and » to obtain

[A] > exp(—cs(log ¢ log x + (n/q)). (28)
Comparing (27) and (28) we find that
cen<logqlog x+n/q.
Certainly we may assume that ¢ > 2¢, and therefore
c7n <log g log x.
On the other hand, by (25),
log |s| + g log x < cgn

hence
g log x < ¢y log g log x.

Since x is at least 2 we conclude that g < ¢,, as required.

3. PROOF OF THEOREM 1

Let ¢,, ¢,, ... denote positive numbers which are effectively computable in
terms of a, b, ¢, d, e, and f. Let us first assume that (5) holds for integers x,
¥, and ¢ with |x| > 1 and t> 1.

If a and ¢ are both zero then, since D is non-zero, b i1s non-zero. Thus,
from (5),

(by+d)x'= —ey~f. (29)

If by +d=0 then, from (29), ey + /=0 and so de — fb =0, contradicting
the assumption 4 #0. Thus by + d+#0 and so by (29), |x’| < ¢, hence the
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maximum of |x| and ¢ is at most ¢,. Further (bx'+e¢)y= —f—dx' and,
since 4#0, bx' + e #0 hence | y| < ¢,. Therefore the theorem holds if @ and
¢ are both zero. We shall assume henceforth that at least one of ¢ and ¢ is
Nnon-Zero.

If a is non-zero put

X=2ax'+by+dand Y= y+ (bd—2ae)/D. (30)
Then (5) is equivalent to
X*-DY*=M, (31)

where M =4a A/D. Further, if D is less than zero or if D is the square of a
non-zero integer then, by (31), | X| and | Y] are at most ¢, hence |x|, | yl,
and ¢ are at most ¢,. Thus if ¢ is non-zero we may assume that D is
positive and not the square of an integer, hence that ¢ is non-zero. On the
other hand, if ¢ is non-zero then arguing as above we may deduce that a is
non-zero. Therefore we may assume that both ¢ and ¢ are non-zero and
that D is positive and not the square of an integer.

Since a 4 is non-zero, M is non-zero and thus, by (31), X—\/B Y is

non-zero. Let ¢ denote the fundamental unit in CD(\/I_)). Define » to be that
integer for which 1< |(X—\/—5 Y)e "|<e and put n, = (X—\/D_Y)g”’.
Then

X—/DY=n¢" (32)

Let ¢ denote the non-trivial element of the Galois group of O \/B ) over @
and apply it to both sides of (32) to obtain

X+./DY=0(n)ole)"

Put 7, =o(n,) and observe that -the heights of n, and =, are at most ¢,
since 1 <|7n,| <¢ and 7,7, = (eo(e)) " M. Further

2X =7 &"+myo(e)", (33)
and
=2 \/Banls"—nza(s)”. (34)
By (30),
2DX —2bDY=4a Dx'+ R,
where R =4a(be—2cd). Thus, from (33) and (34),
4a Dx'=(D+b /D) m,e" + (D —b /D) n,0(s)" — R. (35)
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Notice that ¢>1 and 0<|o(¢) <1. Further (D+b./D)n, and
(D—~b \/B )7, are non-zero, since ac D # 0, and have heights at most ¢,. If
n>c, then |(D—b \/B) n,0(e)"— R| <&"* and we may apply Lemma 6
with 6=1/2 to deduce that t<ec¢; while if n< —-c, then
(D+b \/B) m,&¢"— R| < |o(g)|™? and, again by Lemma 6, ¢ < ¢,,. Finally,
if |n] <¢,, then, since |x] > 1, we conclude from (35) that 1 <c,,.

Denote \/—5((D +b \/5) n,e"—(D—b \/1_'5) n,0{(e)") by z and observe
that z is an algebraic integer in @Q(,/D) which is invariant under ¢. Thus z
is a rational integer. Further,

2=D(D+b/Dyn,e"+(D~b./D)n,5(c)")
—4 D(D>— b2 D) m,m,(e0(e))". (36)

Recall that ©,7,(¢a(e))” = M. Therefore, by (35) and (36), z° = f(x), where
f(x)=16a> D*x¥ 4+ 8a D*Rx' + D(R* —4D(D — b*) M).

Put g(u)=16a> D*u> + 8a D*Ru+ D(R* —4D(D — b*)M). Since ac D 4 is
non-zero the two roots of g are distinct. Since one of the roots of g is non-
zero f has at least ¢ simple zeros and so, for t>2, we may apply Lemma 3
to conclude that |x| <c;5; and hence, by (33), that || <c¢,,. Further, by
(30) and (34), | y| <c,. Similarly if =2 and both roots of g are non-zero /'
has four simple zeros and we may apply Lemma 3 as above. The additional
hypothesis e # 4cf ensures that D(R?—~4D(D—b*)M) is non-zero and
hence that both roots of g are non-zero, and this completes the proof.

4. PROOF OF THEOREM 2

Let ¢, ¢,, ... denote positive numbers which are effectively computable in
terms of a, b, ¢, d, e, f, the greatest prime factor of 5, and the binary form F.
As in the proof of Theorem 1 we may assume that a and ¢ are non-zero
and that D is positive and not the square of an integer. Further, put

X=2ax+by+d and Y= v+ (bd—2ae)/D,
so that (10) is equivalent to
X’ -DY'=M,

where M =4a A/D. Finally, define ¢, ¢, n;, and n, as in the proof of
Theorem 1.
From (35),

7[1 b 7{7_ 2Cd——be
2l en 1——— =2 n 7
as +< >4aa(£)+ D (37)
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while, from (30) and (34),

2ae — bd
D

)"+ (38)

ny )
y=- g"+ o(e
2 /D 2 /D
Let /4 be the degree of o over the rationals and let f(t, v) be the binary form
of degree h for which f(, 1) is the minimal polynomial of « over the
rationals. Since « is a root of F{z, 1) we have

F(Ia U)zf(t’ U) fl(t’ U)a

where f,(¢, v) is a binary form with integer coefficients. Since « is a simple
root of F(¢, 1) we see that the binary forms f(z, v} and f,(z, v) have no com-
mon linear factor in their factorizations over the complex numbers. Plainly
the greatest common divisor of x and y divides f, and f is non-zero.
Therefore the greatest common divisor of f(x, v) and f,(x, y) is at most ¢,.
Thus there are non-zero integers m, s,, and z, with |m| and the greatest
prime factor of s, at most ¢, such that

mf(x, y}=s,z49. (39)
Put
b\ 1 1y,
4y :’”f«”ﬁ)E’ ‘ﬁ)“‘
and

It follows from (37) and (38) that
mf(x, y)=A,e" + B+ A,a(e)",
where
max{|Bl, |o(B)|} < c;e¥~ (40)

Note that 4, and A4, are non-zero since f(¢, 1) is the minimal polynomial
of a and, by assumption, ax® + ba + ¢ #0. Further if |n} > ¢, then, by (40),
A, e"+ B#0 and B+ A,0(¢)" #0. Thus if n> c¢s,

mf(x, y)=A,e"+ B,,

with 4, B, #0 and |B, | < (¢")! ~/*» Therefore, if n > ¢5 and |z,| > 1, then
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on applying Lemma 6 with o = ¢ and § = 1/2h we conclude that g < 4. On
the other hand, if —#> ¢, then

mf(x, y)=A,(a(e) ") + B,,

with 4,B, #0 and |B,| <|a(¢) #/"' 712" and on applying Lemma 6 we
conclude that g <c¢g. Note, by (37) and (38) that if —c; <n<c¢s then
max{|x|, | y|} <c¢q hence, from (11), max{|z], |s|, ¢} < ¢, and the theorem
holds. Therefore we may assume that |z,| =1 or that |z,| > 1 and g <c¢,,. If
|z,| =1 put ¢, = 2 and otherwise put ¢, = ¢q. Further, put s, = 5,54, where
s, and s, are integers, s, is not divisible by the ¢, th power of a prime, and
s, and s, have the same sign. Then |s,| < ¢, and, by (39),

mf(x, v)=s,z9, (41)

where z, =s5;2,. Let a=a,, a5, .., a, be the conjugates of « over Q@ and let
v be the coefficient of " in f(#, 1). Let r = hn (mod ¢,) with 0 <r <g,. Mul-
tiply both sides of (41) by ¢* to obtain

mo({e"(x—o,¥)) - (e"(x—a, ¥)))=&"5,29,

where z; =z, If n=0 (mod 2) put k=0, while if n=1 (mod 2) put
k=1.By (37) and (38), fori=1, .., A,

g"(x—o,y)= Vl.i(g["ﬂ] )+ Vz,i(a[n/z])z + V3

where
b 1 o;
= 1+—)—+————'—>n %,
& (( /D)%y o)™
B ZCd—be_a (2ae — bd) o
Vi = D i D s
and

Thus the hyperelliptic equation

h
my ﬂ (Vl.l'T4+72.iT2+73,f)=3r523‘“

i=1

has a solution T=¢!"?} and Z = z;. Since ¢, > 2, if the polymonial f(T)=
moT1%_, (7. T*+7,,T*+7,,) has at least three simple zeros then by
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Lemma 3 max{[e™?1|, |z;]|} <c,,. But then |n| < ¢, hence, by (37) and
(38), max(|x|, |¥|)<c,, and so by (11), max(|s], |z|, ¢) <c,s as required.
Therefore, to complete our proof it suffices to show that f(T) has at least
three simple zeros. Put g(U)=7y,,U*+7y,,U+7ys,, for i=1,.. h and
observe that f(T) has 4h, hence at least three, simple zeros provided that
g/{U) has two distinct non-zero roots for i=1, .., 4 and that g (U} and
g;/(U) have no common root for i<i< j<h.

We shall first show that g(U) has two distinct non-zero roots for
i=1,.,h To this end it suffices to show that 7y,,7,,#0 and
y3,—4y,.72: #0, for i=1,.., h Recall that 7,n.(ea(e))" =M ={(4a A)/D
hence

T S— 2 2k 2
Viivs = —(aa; + ba; +c)e™ 4/D7,
for i=1,.., h Since 4 is non-zero and since a; is a conjugate of o and

an’ + ba + ¢ #0 we have y,;7,, #0 for i=1, .., h. Next observe that

2k

13— 47175 = o (0 = daf )k + (2 de—4bf )2, + (€ = def ),

for i=1, .., h Since a; is a conjugate of a and 4f (ax’® + ba + ¢) # (dox + e)*,
y3,— 41,75 #0, fori=1, ., h
For i and j with 1 i< j<h put

Gi./’ =(V1iV3,;— “/1,;'“/3.1‘)2 + (yl.i?l/' =YV
X (Ys.i“/z,,/ - 73.,/“/2.,'),

and observe that if g,(U) and g/(U) have a common root then G, ; =0.
However, some calculation reveals that G, ;= — (a; —o;)> 4f¢**/D?. Since
flz, 1) is the minimal polynomial of «, f(z, 1) has no repeated roots and
thus a; # a;, hence G, ; is non-zero as required.

5. PROOF OF THEOREM 3

Let ¢, ¢,,.. be positive numbers which are effectively computable in
terms of d, P, and the sequence (u,)_,. We have

u, :}'1a7+f2(n)ag+ e +f1(n)a7'

We may assume that «, is positive by, if necessary, changing the sign of 4,.
Further since «, is an algebraic integer with absolute value strictly larger
than all its conjugates, «, is real and either o, > 1 or o; is |. But if o, =1
then 1 =1, contradicting our assumption that the sequence (u,)’_, is non-
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degenerate, and so we may assume «, > 1. Further we may assume,
without loss of generality, that |x,| > |«;| for j=3, .., 1. Put

d, =max{degree(f,) | j=2, .., t}.
Then
[fa(n)os+ - + fin)ar| <eyn®a,|”. (42)

We shall now assume that for some non-zero integers s, x, ¢, and n with
the greatest prime factor of s at most P, |x| > 1, n>0, and sz¥+# A, a7, that
(16) does not hold and we shall show that g < ¢, as required. Therefore

[sx¥—u, | <ol =9, (43)
and since
lsx? =1, | 2 [sx?— 4] = | fr(n)os + - + fln)af],
by (42) and (43),
lsx?—~ A e a9 4 o n a, | (44)

Put 8=0 if |a,|<1 and 6= (log |x,|)/loga, otherwise and put é, =
min{d/2, (1 —6)/2}. Then, by (44),

Jex? — Al < ot — ) (45)

for n> c;. Notice that if n< ¢, then, since |x| is at least 2, g <c¢,. On the
other hand, if n> ¢, then (45) holds and since sx?# A,«%, we may apply
Lemma 6 to conclude that g < ¢s. Our result now follows.

6. PROOF OF THEOREM 4

Let ¢ be a positive real number and let y be a real number with
lo; | >7v>la,| and y > L. Let ¢;, ¢4, ... be real numbers which depend only
on P, (u,)X_, 7. and &. We shall assume that s, x, g, and » are non-zero
integers with the greatest prime factor of s at most P, |x| > 1, sx9# A,af,
and

lsx¥—u,| <", (46)
and we shall show that if » is greater than ¢, then

g < ((1+2¢)dlog |a;])/log(le,|/7)-
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Define d, as in (42). Then

|qu_un| Z |qu—'11a7| —-!un_'lla’lll

hence, by (46),
0 < |sx?— 2,07 <2y, (47)

for n> c¢,. Thus, by Theorem 3, ¢ < ¢, for n> ¢,. Therefore we may write
sx?=s,x9, where s, and x, are integers with |s,| <c, and x, > 1.
Consequently

1<x; <es o )™ (48)
Put n, = [n/q] and A, = A, 2"~ ™45 '. Then
box? — Ay o] = |s o ?) | () o) — Ay . (49)
Further
(g faf) — Ay] = 6 103y o) — A1, (50)

where 414 is the gth root of 4, closest to x,/a7. Applying Lemma 4 with
K=Q(a?) and S the set of Archimedean valuations on K normalized as in
(22), together with those normalized non-Archimedean valuations v for
which |a}'|, <1, we obtain

[(xy /i) — A1) = ¢4 ( [T min(1, g/, | v)’>

res

X H y(x, faf) =240,

But x, is an integer and therefore

H(x, foit)y= ] max(1, llx,/apll,) = [T max(l, ix, /27,
velV veS
= [] min(1, lef/x, [} "
ve S
Thus,
|(xy fat) = AV = 00 /(H (x Joir)) ~ 02, (51)

By the product formula (24), H(0)=H(0"") for every non-zero
element 8 in K. For any algebraic number 8 we shall denote the height of



344 SHOREY AND STEWART

by H(f); recall that the height of an algebraic number is the maximum of
the absolute values of the relatively prime integer coefficients in its minimal
polynomial. We have (see Schmidt [14, pp. 255-257]), for any non-zero
algebraic number S,

Hg ()< CH(B),

where C is a positive number which is effectively computable in terms of
the degree of § only. Thus

H g (x Jot) = H ga]'/x) < eg H(o}/x).

Let d, denote the degree of af' over Q. Since |o,| > |o;| for j=2, .., 1 we
have, by (48),

Ha/x) < ey oy |00,

and since d, <d,
H(a/x) < eq oy [ (52)

Thus, from (49)-(52),
[sx?—A,0% =0y o, |7 HEMmG)
and so, by (47),
nlogy>2 —c,, +n(l —(1+¢)d/g)log |a,|.
Since ¢ is at most ¢, and |, | is greater than one,

nlogy=n(l — (14 2¢)d/q)log |a,|,

hence
{1 +2¢)dlog |a,] S
log(a, |/7) -

for n>e¢,,. Our result now follows since g is an integer and & can be
arbitrarily small.

7. PROOF OF COROLLARY 1

We shall suppose that there are infinitely many integer triples (n, x, q)
with n >0, |x| > 1, and

dlog o]
q> max (log(m max(L, [%D)’ d”) (53)
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such that
U, = x7+ T(x), (54)
and we shall show that this leads to a contradiction. The condition,
q> (dlog |a;|)/log(la, |/max(1, |a,], o, |79* "))
is equivalent to (53). Further, since ¢ is an integer, there exists a real num-
ber y with
y>max(1, la, ], Jo; [7“* "), (55)
such that (53) is equivalent to
q> (dlog |o,[)/log(lay |/y). (56)

It follows from Theorem 4, (55), and (56) that either there are infinitely
many triples (n, x, q) as above with

lxq_unl >y"’ (57)

or there are infinitely many such triples (n, x, ¢) with x7=1,a%.
Let ¢, ¢,, ... denote positive numbers which depend only on (u,)7., and
T. For n sufficiently large

Ju, | =1x/+ T(x) = |x]? — ¢ |x]" =3 |x], (58)
and, since |a,| > |o,],
b, | < U2y oy "+ 1oy + -+ film)af] < ey oy |7 (59)
Thus, from (58) and (59), |x| < c5 |«,|™ hence
[T S eq o ™ < e g |7, (60)

for n sufficiently large. It follows from (54), (55), and (60) that (57) holds
for only finitely many integers n, hence for only finitely many triples
(n,x,q) with n=0, |x|>1, and ¢ satisfying (53). Therefore we have
x?= Ao} and so by (54),

T(x)= faln)as + --- + filn)al, (61)

for infinitely many such triples (n, x, ¢). Notice that o, is a real number
since o, | > |y | > |a,| for j=3, ..., 1, and since the conjugates of a, over the
rationals are in {a,,.,a,}. Further, since |a,|>]|a;| for j=3, ., 1,
SLnyat+ - + f(n}a) is non-zero for n sufficiently large. Thus if |a,| <1
then

1> fo(n)az+ - + fin)a?} >0,

641/27/3-9
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for n sufficiently large. However, T has integer coefficients and so either
T(x)=0 or |T(x)| > 1. Therefore, by (61), |a,| = 1. Furthermore |a,| > 1
since «, is real and, by hypothesis, a, # + 1.

Let d, denote the degree of f5. For n sufficiently large

can® oy | < | faln)a+ - + fln)al] <csn |as|"., (62)
and, by (61),
e [XI"<[T(x)] <y [x]". (63)

It follows from (62) and (63) that if x/=4i,a% then |x|"=|A,|7 |a,|™
hence

Cn™ oy |7 <oy |9 < con® o, |, (64)

Let ¢ be a positive real number. Since there are infinitely many triples
(n, x, q) as above with x?= 1, a7 there exists such a triple (n,, xq, g,) with
n, sufficiently large that, by (64),

lOg]azf <(I+8)]0g lecs |

(I—¢) )
log |« 1| log |o,|

Since ¢ is arbitrary and r is fixed there exists a positive integer g, with
rlog la;|=q, log |,].

Thus |«,| and |a,| are multiplicatively dependent and, since x, and o, are
real, o, and «, are multiplicatively dependent. This contradicts our
hypothesis and so establishes the result.

8. PROOF OF THEOREM 5

Let ¢,, ¢5, ... denote positive numbers which are effectively computable in
terms of the greatest prime factor of s, the prime p, and the sequence
(u,)7_,- By (14) and (20),

sx?= Ao+ frln)as + - + fi(n)al.
Thus, since ord ,(a;/a;) > 1 for j=2, .., ¢,
ord ,(sx?A; 'a; " —1)=ord (4, 'fr(n)(az/et,)"

b A ), [ )
=>n—c, logn. (65)



PURE POWERS IN RECURRENCE SEQUENCES 347

Certainly
|u, | <e, (66)

for all positive integers n, and thus on writing s=(—1)"p} .- p% with
k=0and p, .., p, distinct prime numbers we see that the maximum of r;,
Fi, .. I is at most cyn. Thus, since sx? # 4,27 and p does not divide g we
may apply Lemma 2 with B’ = ¢ to obtain

ord/,(s.‘c"}t('ocI "—1)=ord ((—=1)"p} coe pRAT T X — 1)
< c4(log g log x + n/q). (67)
Comparing (65) and (67) we find that
n—c;logn—cyn/qg<cylogglogx. (68)

Notice that we may assume ¢ > c,/3 since otherwise our result holds.
Similarly we may assume that ¢, log n < n/3 since otherwise n < ¢s whence
from (20) and (66) ¢ < ¢¢ as required. Thus from (68),

n/3 <c,log qlog x. (69)
But since sx‘=u, we have, from (66) and (69),
glog x < ¢4 log g log x,

and thus ¢ < ¢ as required.

9. PROOF OF THEOREM 6

Let ¢ be a positive real number an let ¢, ¢,, ... denote positive numbers
which depend only on ¢, vy, .., v,, P, and (u,)”_,. Let s, x, g, and n be
integers with the greatest prime factor of s less than P, |x| > 1, n=0, and
g =1 for which sx?=u,.

If v, is an Archimedean valuation then by Theorem 3 we may suppose
that ¢ < ¢, or that sx?=4,a% If v, is non-Archimedean then by Theorem 5
we may suppose that g <c, or that sx?=4,a7; the condition (p,g)=1 in
the statement of Theorem 5 does not pose a problem since if p* divides ¢
then we may replace, if necessary, x by x** and ¢ by g/p*. If sx¥= 4, o7 then

fm)og+ - + fi(n)ay =0,

and by Lemma 5 this happens for only finitely many integers n since
(u,)7_, is a non-degenerate recurrence sequence. Similarly, by Lemma 5,
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u, =0 for only finitely many integers n. Let us therefore assume that » is
sufficiently large that sx?# 1,07 and u, #0. Then ¢ <c; and so we may
write sx?=y,x9 where s, and x, are integers with |s,|<c, and x, > 1.
Therefore

s x{—Ahaj= fr(n)os+ oo+ fin)a].
Further, since |u, | <n|a,|” for n> 1,
1< x, <ne o, | (70)

Put n, =[n/q] and A, = A,2?~"9s ! Then, for i=1, .., r,

Is1x = Ayl = lls @il 110, /o) — Aol
hence
ey faqty = Ao |, = llsyo ¥l falm)as + - + flm)ar]l,,
<collal,” max |fm)al,
<cen(0 /Nl /o |l,)" (71)
Also
ey foft ) — Ao Lo, = e 1 (xy fa') — A, (72)

where A, is the gth root of 4, for which | (x,/a}')— 4,],, is minimal.

Let S be the set of all normalized Archimedean valuations on K, the
valuations v, .., v,, and all normalized non-Archimedean valuations v such
that |||, <1. Put 4, =4, for i=1, .., r and for v e S with v different from
Ups e U, put 4. =1 unless x; =af!, in which case put 4, =2. Then from
(71) and (72),

[T min(L, [Gx /o) — A, ||l,)<c9n"'7(f[ 0./ nv,)) TS

ve S i=1

Notice that A4, can assume at most ¢,, possible values since g <c, and
|§;] < ¢, and thus there are at most ¢,, different possible values for 4, with
v in S. Further A4, is non-zero and algebraic over K for v in S. Furthermore
X, /of' 1s non-zero since u,, is non-zero and x,/a% is different from A, for v
in § since sx¥# A, af. Therefore we may apply Lemma 4 to conclude that

[T min(1, [[(x, /1) — A4,1,)

res

> ( [T min(1, foitix | )) (H e, fa)) 2

re S
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As in the proof of Theorem 4 we find that

H(x, /o) = [T min(1,floq/x )"

vesS

Thus

[T min(L, [1(x, foi) = A, ) = eo(H lxy fogt)) 710

ves
Put K, = Q(a}"), D=[K:Q], and d=[K,: Q]. We have
H(x, Je) = H o] /x 1) = (H g (27/x)) P
Again as in the proof of Theorem 4,
H g (a/xy) < ¢y Hlal/x,),
where H(a%'/x,) denote the height of «7'/x,. Thus, by (70),
H(o?x, ) < ¢ qn9o, |,
Therefore, by (75) and (76),
H(xy fo) S cysns? |a, |09,

We find, from (73), (74), and (77), that

. Ilale, " 17 (1 + &)nDy/
I1 0 Seyen o, T T

i=1 !

Since ¢ is arbitrary and ¢ is an integer we have

(D log |a,|)

i (53]

for n sufficiently large. Our result now follows.

q<

10. PrRoOF OF COROLLARY 2

349

(74)

(75)

(76)

Let g(x) be a polynomial with integer coefficients and let the roots of
g(x) be o, a,, and a; with multiplicities 1, 1, and m, respectively. Assume
that o, | =|a,| = |a;| and that a,/a; is not a root of unity for 1 <i< j<3.
Then exactly one of a,, «,, and a5 is a real number and the other two num-
bers are complex conjugates, hence of the same multiplicity. Therefore it is
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no loss of generality to assume that «, and «, are complex conjugates and
that a5 is a real number. Since |«, | = |«,| there is a real number 6 such that
a, =" and since o, =&, &, =e “a; hence a, 2,05 = a3 Since a, aya; is
an integer, o3 is an integer and since a, /a5 and a,/«; are not roots of unity,
a5 itself is an integer. In summary, o, is an integer and «, and «, are com-
plex conjugate algebraic integers of degree 2 with o a, =« Thus
(x —a; )(x —0ay)=x*+bx+c> with b and ¢ integers. Put k= (b, ¢). Then
a,/k and «a,/k are algebraic integers since they are the roots of
x? + (b/k)x + (c/k)?. For any 6 in the ring of algebraic integers of Q(a,)
let [6] denote the ideal generated by 6 in that ring. Then
([oy /KT [ea/k ) =11

Let u, be the nth term of a non-degenerate recurrence sequence as in
(14), with =3, f5(n) a non-zero constant, 4, say, and |a,|=|a,|=[u;].
Thus, by the above remarks,

u, = Ao+ Ao+ fy(n)al
= K" (AT + A5+ f3(n)75),
where y, =0, /kfori=1, 2, 3and ([y,], [y.])=[1] in the ring of algebraic
integers of Q(y,). Let us put
Wa =AY+ A+ f3(n) s

for n=0, 1, 2, ... Notice that (w,)>_, is a non-degenerate linear recurrence

"

sequence with |y, =ly,|=|y;] and as before

Yi¥2 z'/'g- (78)

Put K=Q(y,). Let S be the set of non-Archimedean valuations on K,
normalized as in (22), for which {y,|, < 1. Each prime ideal 4 dividing
[y.] also divides [y,] by (78) and does not divide [y,] since
([v:1, [v.1)=[1]. Therefore, by (78),

lv2llo =llysl3  for ves,
and so,

1=“’Yl||l> H’))3H17>N‘y2“177 for UES

Thus [T.cs (I710./11730,) =TTees Iv2ll; % and by the product formula
(22), T1oes hv2 V2 =T11,c 7 1721112 where T denotes the set of normalized

Archimedean valuations on K. T consists of a single element v, and
1721l 4 = 7217 Therefore

[T v/l =1val (79)

res
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Denote the maximum of P, &, and 2 by P,. We now apply Theorem 6 with
vy,., U, the valuations in S. By (79) there are only finitely many integers s,
X, g, and n with sx?=w,, s#0, and the greatest prime factor of s at most
Py, n=0, and ¢ > 2. Similarly putting 2*w, =z, for n=0, 1, 2, ..., we see by
Theorem 6 that there are only finitely many integers s and n with s # 0 and
the greatest prime factor of s at most Py, n>0, and 5-2'=z, or
equivalently s=w,,.

Suppose that there are infinitely many integer quadruples (s, x, ¢, n) with
s#0 and the greatest prime factor of s at most Py, x>1, n20, ¢>2, and
sx?=u,. Then either there exist infinitely many integer quadruples (s, x,-
g, n) with s 0 and the greatest prime factor of s at most Py, n >0, g> 2,
and sx?=u, or there exist infinitely many integer pairs (s, n) with s # 0 and
the greatest prime factor of s at most Py, n>0, and s =u,,. Recall that w, is
an integer and that u, =k"w, for n=0, 1,2, ... Thus in the former case
there are infinitely many integer quadruples (s, x, ¢, n) with s#0 and the
greatest prime factor of s at most Py, n20, ¢>2, and sx’=w,. By the
preceding paragraph there are only finitely many such quadruples. In the
latter case there are infinitely many integer pairs (s, n) with s #0 and the
greatest prime factor of s at most P,, n>0, and s=w,. Again, by the
preceding paragraph, this is not possible. Therefore the above supposition
is false and this establishes our result.
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