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Abstract

We discuss possible choices for boundary conditions in the AdS/CFT correspondence, and calculate the renorm
group flow induced by a double-trace perturbation. In running from the UV to the IR there is a unit shift in the central
The discrepancy between our result and results obtained by other authors is accounted for by the discovery that
non-trivial flow for perturbations induced by bulk fields with masses saturating the Breitenlohner–Freedman bound.
 2004 Published by Elsevier B.V.

1. Introduction

The AdS/CFT correspondence [1], in relating conventional quantum gauge field theories to gravitatio
string theories in higher dimensions, has proved to be of great importance in elucidating non-perturbative
of both kinds of theory, and is likely to retain a central role for some time to come. Most of the work th
been done on this correspondence has involved taking the large-N limit of the gauge theory, which corresponds
the classical limit of the gravity theory. But it is of considerable interest to go beyond this limit and conside
corrections on the gravity side, which giveO(1/N) corrections to the gauge theory.

The calculation of string loops in AdS backgrounds is difficult, because the cancellation of diverge
not well understood, and the Ramond–Ramond fields make calculations in the string genus expansio
intractable. However, for the calculation of certain quantities it is sufficient to consider loop corrections
supergravity limit of string theory. This is particularly true when there are non-renormalisation theorems pro
the quantities on the gauge theory side.

It is also interesting to consider relevant perturbations of the gauge theory that correspond to tachyon
in the supergravity theory. These break the conformal symmetry of the boundary gauge theory, and
renormalisation group flow. To understand the effects of these perturbations on the gauge theory req
understanding of their asymptotic behaviour near the boundary, and the boundary conditions that we ca
on them. These boundary conditions were first considered in [8,13], though the older work of [2] is also re
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Boundary conditions were also discussed in [12]. For tachyonic modes whose masses lie in an appropria
the difference between the ultraviolet and infrared fixed points is just a difference in boundary conditio
will describe these boundary conditions from a Hamiltonian perspective in which this difference corre
to the choice of Dirichlet or Neumann boundary conditions for the bulk field. The partition functions o
perturbed boundary theory are then related by a functional Fourier transform (in the large-N limit a saddle point
approximation reduces this to a Legendre transform).

In a series of publications we have obtained results on one-loop Weyl anomalies in AdS/CFT [4–
reproduce the exact form of the anomaly on the gauge theory side, including 1/N corrections. The coefficients o
these anomalies are central charges that, according to the holographic c-theorem, should be larger for th
fixed point than the ultraviolet one, for the range of scaling dimensions where both correspond to norm
perturbations. The main purpose of this Letter is to verify this using our calculation of the Weyl anomaly.

The result we obtain is in contradiction with the work of [7], which was made use of in other studies
renormalisation group flow in AdS and dS spaces [18]. The calculation of [7] assumed that there is no fl
bulk masses saturating the Breitenlohner–Freedman bound. We will show that this is not true; there is a no
flow in this case that can be related to an ambiguity in the boundary term [9,10]. Hopefully this accounts
discrepancy with our result for the anomaly, which is linear in the scaling dimension of the field.

This Letter is organised as follows: in Section 2 we discuss boundary conditions for AdS fields. In Se
we discuss canonical quantisation. In Section 4 we discuss the AdS/CFT correspondence formulae for s
multi-trace perturbations, and show how they are related to boundary conditions for bulk fields. In Sectio
review our calculation of the Weyl anomaly and calculate the running of the central charge for a doub
perturbation.

2. Boundary conditions on AdS fields

We write the metric of EuclideanAdSd+1 as

(1)ds2 = 1

z2

(
dz2 +

d∑
i=1

dx2
i

)
= dr2 + z−2

d∑
i=1

dx2
i ,

wherez = exp(r), and we have set the length scale of AdS to unity. The boundary is atz = 0. Now consider a
scalar field of massm propagating in this metric. Near the boundary it has the asymptotic behaviour

(2)φ = α(x)zd−∆ + β(x)z∆ + · · · ,
where∆ is a root of the equation

(3)∆(∆− d)=m2.

For∆ = d/2 the second asymptotic solution goes likezd/2 ln z. From a Hamiltonian point of viewα andβ are
conjugate variables, in a sense that we will make more precise shortly.

Let us consider more carefully how the asymptotic form (2) of bulk fields near the boundary is related
boundary condition. The action for a free scalar field in AdS is given by

(4)
∫
dd+1x

√
g

1

2

(
gµν∂µφ∂νφ +m2φ2),

with linear variation

(5)
∫
dd+1x

√
gδφ

(−∇2 +m2)φ + 1

2

∫
ddx z−d+1(φ∂zδφ − (∂zφ)δφ

)
.
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For this variation to vanish, we needφ to obey the classical equations of motion in the bulk, with the boun
condition [13]

(6)∂rφ|∂AdS = ωφ|∂AdS,

whereω is arbitrary. If we takeω =∆ and insert the asymptotic form (2) forφ near the boundary, this becomes

(7)z∆−d(∂r −∆)φ|∂AdS = 0,

where we multiplied byzd−∆ to obtain a relation that is finite atz= 0. This condition diagonalises the value ofα,
but places no restriction onβ . So we can identifyα, β as conjugate variables.

Suppose that∆ is the smaller root of (3). If we make the change of variablesφ̃ = z−∆φ (so thatφ̃ ∼ β at the
boundary) then we see that (7) corresponds to Neumann boundary conditions forφ̃. If ∆ is the larger root of (3)
then we can change variables toφ̄ = z∆−dφ so thatφ̄ ∼ α at the boundary, and then (7) corresponds to Diric
boundary conditions for̄φ. Henceforth we will use∆ to denote the larger root of (3).

In the case where∆ = d/2, we can change variables toz−d/2φ and impose either Dirichlet or Neuman
boundary conditions on this field, corresponding again to diagonalising the two possible asymptotics of th

At the quantum level, the above boundary conditions can be imposed by adding a boundary term to th
these boundary terms may be renormalised by interactions of the bulk field.

3. Canonical quantisation

Consider a free scalar field of massm. For greater generality it is convenient to perturb theAdSd+1 metric in
such a way that the boundary has ad-dimensional Einstein metriĉg [5]. The perturbed metric is

(8)ds2 =Gµν dX
µ dXν = dr2 + z−2eρĝij (x) dx

i dxj , eρ/2 = 1−Cz2, C = l2R̂

4d(d − 1)
,

whereR̂ is the Ricci tensor on the boundary, and the(d + 1)-dimensional Einstein equations are still satisfied. T
action for the scalar field in this metric can be written as

(9)Sφ = 1

2

∫
dd+1X

√
G
(
Gµν∂µφ∂νφ +m2φ2)= 1

2

∫
ddx dr

z4

√
ĝe2ρ(φ̇2 + z2e−ρĝij ∂iφ∂jφ +m2φ2),

where the dot denotes differentiation with respect tor. The norm on fluctuations of the field, from which t
functional integral volume elementDφ can be constructed is

(10)‖δφ‖2 =
∫
dd+1X

√
Gδφ2 =

∫
ddx dr

zd

√
ĝe(d/2)ρδφ2.

We will interpret the co-ordinater as Euclidean time, so to write down a Schrödinger equation we first re-d
the field by settingφ = zd/2e−(d/4)ρϕ to make the ‘kinetic’ term in the action into the standard form, and rem
the explicitr-dependence from the integrand of the norm. The action becomes

Sφ = 1

2

∫
ddx dr

√
ĝ

(
ϕ̇2 + z2e−ρϕ

(
✷ + (d − 2)R̂

4(d − 1)

)
ϕ +

(
m2 + d2

4

)
ϕ2
)

− 1

2

∫
ddx

√
ĝ

(
d

4
ρ̇ + d

2

)
ϕ2

(11)= Sϕ + Sb,

where✷ is thed-dimensional covariant Laplacian constructed fromĝ. Note that✷ + (d − 2)R̂/(4(d − 1)) is the
operator associated with a conformally coupledd-dimensional field, and the mass has been modified to an effe
massMr =√

m2 + d2/4.
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In the first instance we will consider diagonalising the boundary value ofϕ, so thatϕ̇ is represented by functiona
differentiation acting on a boundary wave-functional. This wave-functional can be represented by a path in

(12)
∫

Dφe−Sφ
∣∣
φ(r=r0)=φ̂ = e−Sb

∫
Dϕe−Sϕ

∣∣
ϕ(r=r0)=ϕ̂ ≡ e−Sb+W [ϕ̂,g], W [ϕ̂] = F + 1

2

∫
ddx

√
ĝϕ̂Γ ϕ̂,

where a regularisation is achieved by taking the boundary atr = r0 rather thanr = −∞.
This satisfies a functional Schrödinger equation that can be read off from the action and gives

(13)
∂

∂r0
Γ = Γ 2 − τ2e−ρ

(
✷ + (d − 2)R̂

4(d − 1)

)
+M2

r ,
∂

∂r0
F = 1

2
TrΓ,

solved by expandingΓ in powers of the differential operator [5]. The result is easily summed in terms of B
functions. To get the correct scaling dimension asr0 → −∞ requires discarding terms of order less thanτ2Mr

in the asymptotic expansion ofΓ . Such terms should be removed by an appropriate renormalisation. Name
discard these terms so thatΓ has the asymptotic behaviour

(14)Γ ∼ τ2Mrp2Mr .

Hereτ = ln r0 is the boundary value ofz. To get a finite wave-functional as the cutoff is removed, we perf
a wave-function renormalisation̂ϕ → τ−Mr ϕ̂. The scaling dimension of our canonical field can be read off
asymptotic form of the wave-functional, and has the correct value (by construction). Nowϕ̂ corresponds toα
in (2), where the scaling dimension∆ is taken to be the larger root of (3). This is in accordance with our prev
discovery that diagonalisingα corresponds to a Dirichlet condition on a suitably defined bulk field.

To get the other condition, we can perform a functional Fourier transform on the boundary. This give
Neumann condition for our “canonical” field, so that the wave-functional is written in terms of a boundary
π for the fieldϕ̇. When the wave-function renormalisation is taken into account, it is clear thatπ must undergo a
wave-function renormalisationπ → τMr π . Thenπ corresponds to the other asymptotic in (2) and has the co
scaling dimension. Henceforth when we talk about imposing Dirichlet or Neumann conditions on the ca
field, it is important to note that it is thewave-function renormalised canonical field on which Dirichlet or Neuman
conditions are imposed.

In the case where∆ = d/2 there is no wave-function renormalisation, and as before we can impose
Dirichlet or Neumann conditions on the canonical field.

The wave-functional with Dirichlet conditions is always normalisable, but it is not immediately clear wh
this is true for the wave-functional with Neumann conditions. Unitarity constraints on the bulk field reveal th
latter is normalisable if and only ifMr � 1 [10].

Notice that although this discussion applied to free scalar fields, it applies equally well to interacting bulk
(of course there may be additional renormalisations to deal with). Also, it is straightforward to extend the a
to fields of other spin, and in this way perturbations preserving some supersymmetry could be considered

4. AdS/CFT correspondence formulae

In the usual version of the AdS/CFT correspondence, we equate the partition functions of the co
boundary theory and the bulk gravitational theory:

(15)Z[φ]grav=Z[φ]CTF ≡
〈
exp

∫
φO

〉
CTF

.

Here φ̂ on the CFT side is a source for the operatorO, which is any scalar primary of the boundary theory. T
partition function on the left-hand side can be identified with the wave-functional considered in the last s
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On the gravity side it corresponds to a boundary value for the corresponding bulk field. The usual prescr
to diagonalise the boundary value of (2) corresponding to thelarger scaling dimension, since this always give
normalisable solution. However, as first found in [2], in the ranged/2<∆< d/2+ 1 both asymptotics in (2) ar
normalisable, and in this case a single bulk field gives rise to two different relevant perturbations of the CF

A multi-trace interaction in the boundary theory is obtained by adding an extra term to the boundary act

(16)Ipert= ICTF +W [O],
whereW [O] is an arbitrary functional of primary scalar operators. Let us see how this affects the can
quantisation. For the purposes of illustration it is convenient to consider a double-trace perturbation, so
the partition function

(17)Zf [φ] =
〈
exp

(
−
∫
f

2
O2 +

∫
Oφ

)〉
CTF

.

The coupling toO can be linearised with a Hubbard–Stratonovich transformation:

(18)Zf [φ] = det1/2
(

− 1

f

)∫
Dσ

〈
exp

∫ (
1

2f
σ 2 + (σ + φ)O

)〉
CTF

.

As we have seen, according to the AdS/CFT correspondence,Z0[φ] can be interpreted as the wave-functio
of a bulk scalar. This implies that to quadratic order

(19)Zf [φ] = det1/2
(

− 1

f

)∫
Dσ exp

∫ (
F + 1

2
(φ + σ)Γ (φ + σ)+ 1

2f
σ 2
)
,

whereF andΓ are the free energy and quadratic kernel given in Section 3. Performing theσ integral, we have

(20)Zf [φ] = det−1/2(f Γ + 1)exp

(
F + 1

2
φ

Γ

1+ f Γ
φ

)
.

Notice that for smallf we recover the previous result forZ0[φ], while in the limit f → ∞ the kernelΓ is
replaced with 1/f . Now consider how all this is affected by the wave-function renormalisation. Assumin
started with Dirichlet conditions,Γ ∼ τ2Mr , φ is renormalised byφ → τ−Mrφ as before, and the effect is to se
f → 0.

If we started with Neumann conditions on the canonical field thenΓ ∼ τ−2Mr . For anyf exceptf = 0 there is
no wave-function renormalisation: (20) gives a wave-functional that is finite as the cutoff is removed:

(21)Zf [φ] = det−1/2(f Γ + 1)exp

(
F + 1

2
φ

1

f
φ

)
.

Since the conjugate field is represented on this wave-functional by functional differentiation, we see t
corresponds to imposing the boundary conditionsα = fβ on the bulk field (2), in accordance with the prescript
of [8]. Thus the limitf → ∞ corresponds to Neumann conditions on the canonical field (the kernel in (20) nat
tends to zero in this limit because we did not introduce a source for the conjugate field). As pointed out in [
for f = 0 or ∞ does the bulk propagator respect SO(4,2) invariance. So only in these cases should we expec
AdS/CFT correspondence to work.

In conclusion, we can identify Dirichlet and Neumann conditions on the canonical field with thef = 0 and
f = ∞ limits of (20), respectively. Finitef represents a mixture of Dirichlet and Neumann conditions, but
loop effects will deform the AdS background in this case.

From the gauge theory side the situation is as follows. The perturbation(1/2)fO2 drives a renormalisatio
group flow from a UV fixed point, wheref = 0, to an IR fixed point, atf = ∞. At the fixed points the gravity
dual of this theory lives on AdS space, and the UV and IR fixed points correspond respectively to Dirich
Neumann conditions for the bulk field dual toO.
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Multi-trace perturbations of dimension more than two are similarly described by the prescription of [8].
Fourier transform (21) we get a functional written in terms of a source for the canonical conjugate field

(22)Zf [π] = det−1/2
(
f Γ + 1

f

)
exp

(
F − 1

2
fπ2

)
.

From this we see that as a result of the wave-function renormalisation the prescription for a perturbatioW [O]
is to replace the wave-functional (15) withW [π], whereπ is a boundary value for theconjugate of the canonica
field. The free energy is also changed as a result of the extra determinant in (22).

5. Central charges and the c-theorem

On general grounds, [16,17], the Weyl anomaly takes the formA = −aE − cI whereE is the Euler density
(RijklRijkl − 4RijRij +R2)/64, andI is the square of the Weyl tensor,I = (−RijklRijkl + 2RijRij −R2/3)/64.
The c-theorem in four dimensions [14,15] suggests that the central charge as defined in [15] (which is re
heat-kernel coefficients and is in general a combination ofa andc) should be larger in the ultraviolet than in th
infrared. In this section we will check this for a double-trace deformation.

The exactN -dependence of the Weyl anomaly of the boundary CFT was calculated from the AdS
correspondence in [4,6] (an overview of the complete calculation for theN = 4 SYM/Type IIB gravity
correspondence is given in [5]). The leading order result in the large-N expansion was first found by [3], bu
at subleading order there are contributions from all the Kaluza–Klein modes of supergravity, the contribu
each supergravity field on AdS being given by a universal formula.

In our calculation of the anomaly Dirichlet boundary conditions were assumed for all of the bulk fields
are no fields with masses in the range for which Neumann conditions are admissible). It would be intere
consider compactifications (such as type IIB supergravity onAdS5 × T 1,1) for which there are masses allowin
Neumann conditions.

In this section we will extend our result for the Weyl anomaly to theories with double-trace perturbatio
Neumann boundary conditions for some of the bulk fields). As explained in [5], the Weyl anomaly is given
response of the free energy to a Weyl scaling of the boundary metric, which is equivalent to scaling the cr0,
so that the contribution of a bulk scalar to the anomaly is

(23)
∫
ddx

√
ĝδA= ∂

∂r0
F = 1

2
TrΓ,

where we used the Schrödinger equation (13). The expansion ofΓ in powers of the differential operator gives

(24)Γ =
∞∑
n=0

bn(r0)

(
✷ + (d − 2)R̂

4(d − 1)

)n
,

with

(25)b0 = −
√
m2 + d2

4

andbn → 0 asr0 → ∞ for all n �= 0.
The functional trace is regulated with a Seeley–de Witt expansion of the heat-kernel

(26)TrΓ =
∞∑
n=0

bn(r0)

(
− ∂

∂s

)n
Trexp

(
−s
(

✷ + (d − 2)R̂

4(d − 1)

))
,

(27)Trexp

(
−s
(

✷ + (d − 2)R̂

4(d − 1)

))
=
∫
ddx

√
ĝ

1

(4πs)d/2
(
a0 + sa1(x)+ s2a2(x)+ s3a3(x)+ · · ·),
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with s small. Assuming an even-dimensional boundary, in the limits → 0 andr0 → −∞ the only surviving
contributions are froma0, a1, . . . , ad/2. The coefficients of all butad/2 diverge, and can be cancelled by add

counterterms toF , but the finite contribution proportional toad/2 determines the anomaly. Since
√
m2 + d2/4 =

∆− d/2, we find that

(28)A= −∆− d/2

2(4π)d/2
ad/2.

All this assumed Dirichlet conditions for the canonical bulk field, but we would like to know if Neum
conditions give a different result for the anomaly. To change from Dirichlet boundary conditions to the
general conditioṅϕ = λϕ, we add to (12) the boundary term exp(−(α/2) ∫ ϕ̂2) and integrate over̂ϕ, giving the
determinant det−1/2(Γ − λ). Sinceφ has the asymptotic formατ∆−d/2 + βτd/2−∆, what we called Neuman
boundary conditions (diagonalisingβ) correspond toλ= d/2−∆.

We have

(29)det(Γ − λ)= e−2δF ,

whereδF is the correction to the free energy. Thus using (13)

(30)
∂

∂r0
δF = Tr

(
− ∂r0Γ

2(Γ − λ)

)
= Tr

(
−Γ

2 − z2e−ρ(✷ + (d − 2)R̂/(4(d − 1)))−M2
r

2(Γ − λ)

)
.

As r0 → ∞ Γ → −Mr − 1/(2+ 2Mr)(✷ + (d − 2)R̂/(4(d − 1)))z2 + · · · and forλ �= −Mr = d/2 −∆ (30)
tends to zero. For the specific valueλ= d/2−∆, however, it tends to Tr(−1), giving a correction to the anomal

(31)δA= − 1

(4π)d/2
ad/2.

Notice that for generic mixed boundary conditions there is no correction to the anomaly.
From the point of view of a double-trace perturbation, as we go from the UV (Dirichlet conditions andf = 0) to

the IR (Neumann conditions andf = ∞) (31) implies that the central charge (as defined in [15]) is decreased
This is in accordance with the c-theorem, which predicts thatcUV > cIR [14,15]. The correction to the anoma
applies even in the case∆= d/2. In other words there is a non-zero flow for bulk fields with masses saturatin
Breitenlohner–Freedman bound, in contradiction with the assumption to the contrary made in [7]. This e
the discrepancy with that result. From the gauge theory side the result of [7] was reproduced in [11], but t
function regularisation used there is tantamount to making the same assumption, since it is based on an e
in odd powers of∆− d/2.

The result (31) can be extended to all the fields of supergravity by using the results of [5] in whi
Schrödinger equations for bosonic and fermionic fields of higher spin were reduced to the same form as t
field equation. This will be discussed in a forthcoming publication.

References

[1] O. Aharony, S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323 (2000) 183.
[2] P. Breitenlohner, D.Z. Freedman, Phys. Lett. B 115 (1982) 197.
[3] M. Henningson, K. Skenderis, JHEP 9807 (1998) 023.
[4] P. Mansfield, D. Nolland, JHEP 9907 (1999) 028.
[5] P. Mansfield, D. Nolland, T. Ueno, hep-th/0311021.
[6] P. Mansfield, D. Nolland, Phys. Lett. B 495 (2000) 435;

P. Mansfield, D. Nolland, T. Ueno, Phys. Lett. B 565 (2003) 207.
[7] S.S. Gubser, I. Mitra, Phys. Rev. D 67 (2003) 064018.
[8] E. Witten, hep-th/0112258.



D. Nolland / Physics Letters B 584 (2004) 192–199 199
[9] V. Dobrev, Nucl. Phys. B 553 (1999) 559.
[10] E. Witten, I.R. Klebanov, Nucl. Phys. B 556 (1999) 89.
[11] S.S. Gubser, I.R. Klebanov, Nucl. Phys. B 656 (2003) 23.
[12] P. Minces, V. Rivelles, JHEP 0112 (2001) 010.
[13] M. Berkooz, A. Sever, A. Shomer, JHEP 0205 (2002) 034.
[14] D.Z. Freedman, S.S. Gubser, K. Pilch, N.P. Warner, Adv. Theor. Math. Phys. 3 (1999) 363.
[15] J.L. Cardy, Phys. Lett. B 215 (1988) 749.
[16] L. Bonora, P. Cotta-Ramusino, C. Reina, Phys. Lett. B 126 (1983) 305.
[17] M.J. Duff, Class. Quantum Grav. 11 (1994) 1387.
[18] S.Nojiri, S.D. Odintsov, hep-th/0302054.


	AdS/CFT boundary conditions, multi-trace perturbations,  and the c-theorem
	Introduction
	Boundary conditions on AdS fields
	Canonical quantisation
	AdS/CFT correspondence formulae
	Central charges and the c-theorem
	References


