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1. Introduction

Let C denote the field of complex numbers. By projective complex variety we mean the set of zero locus of a family of ho-
mogeneous polynomials in some complex projective space Pn . By quasi-projective complex variety or simply complex variety
we mean a Zariski open subset of a projective variety. The morphic cohomology was first introduced and studied by Fried-
lander and Lawson in [8] for projective varieties and then generalized to normal quasi-projective varieties by Friedlander
in [4]. The morphic cohomology of a complex variety X is bigraded and denoted as Lq H p(X), where p and q are integers
satisfying q,2q − p � 0. Roughly speaking, Lq H p(X) is the (2q − p)-th homotopy group of the space of q-cocycles over X and
hence the theory of morphic cohomology is to study algebraic cycles using homotopy theory. Many properties of morphic
cohomology have been proved for smooth complex varieties but not much for singular normal complex varieties.

Morphic cohomology has deep relations with many other cohomology theories such as singular cohomology and motivic
cohomology. Recall from [16, §14] that the motivic cohomology of a complex variety X , denoted as H p,q(X) where q and p
are integers with q nonnegative, can be represented in Voevodsky’s triangulated category of motives over C, denoted as DM.
That is, there exists an object ℘mot(q) in DM such that

H p,q(X) = HomDM
(
M(X),℘mot(q)[p − 2q]),

where M(X) denotes the motive of X . In this paper, we study the morphic cohomology from the motivic point of view, i.e.,
via the category DM. We construct objects ℘mor(q) and ℘Sing(q) in the category DM to represent morphic cohomology and
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singular cohomology of complex varieties. More precisely, for any smooth quasi-projective complex variety X , we prove in
Theorem 5.1 and Theorem 6.9 that

Lq H p(X) = HomDM
(
M(X),℘mor(q)[p − 2q]),

H p
Sing

(
Xan) = HomDM

(
M(X),℘Sing(q)[p − 2q]).

The formula for singular cohomology remains valid if X is singular. As an application, we can define morphic cohomology
and singular cohomology on motives, i.e., objects in DM. In particular, we re-define the morphic cohomology of a singular
complex variety X to be

Lq H p(X) = HomDM
(
M(X),℘mor(q)[p − 2q]).

With this definition, many properties of morphic cohomology can be extended from smooth varieties to singular varieties.
For example, we show in Theorem 6.12 that Friedlander’s comparison result Lq H p(X) ∼= H p

Sing(Xan), where X is smooth of
pure dimension d and q � d, can be generalized to singular varieties. As a second application, we consider natural transfor-
mations of morphic cohomology of motives, where morphic cohomology is now regarded as functors on DM. Theorem 7.9
suggests that the Friedlander–Mazur s-operation (see [7]) is conjecturally the only nontrivial natural transformation of mor-
phic cohomology of motives.

Here is an overview of the paper. We briefly recall in Section 2 the backgrounds, notations and techniques that are
needed in this paper. Section 3 provides a general criteria for representing cohomology theories in the triangulated category
of motives over a perfect field, which is used in Section 5 and Section 6 to represent morphic cohomology and singular
cohomology of complex varieties. In Section 4, we apply the functor-on-curves topology (see [11]) on the category CorC

to show that CorC is a topological category. This fact helps us to define the object representing morphic cohomology in
Section 5. Section 7 provides a calculation of natural transformations of morphic cohomology of motives. We show that
the s-operation is a natural transformation of morphic cohomology of motives. We also show that, if there is a natural
transformation which is not generated by s, then there is a natural transformation, say τ , such that there exists for any
natural number n a unique natural transformation τn satisfying τ = nτn.

2. Recollections and notations

2.1. Motivic cohomology

Throughout this subsection, letter K denotes a perfect field. The category of finite correspondences over K , denoted as CorK ,
has objects smooth quasi-projective varieties over K . For objects X, Y ∈ CorK , define HomCorK (X, Y ) to be the free abelian
group on the elementary finite correspondences from X to Y , i.e., irreducible closed subvarieties of X × Y that are finite
and surjective onto some irreducible component of X along the projection X × Y −→ X . When K is understood, we simply
write Cor(X, Y ) for HomCorK (X, Y ). For elementary finite correspondences V ∈ Cor(X, Y ) and W ∈ Cor(Y , Z), the composition
morphism W ◦ V is defined as the push-forward of the cycle theoretic intersection (V × Z) • (X × W ) along the projection
X × Y × Z −→ X × Z . This extends by linearity to the definition of the composition map Cor(X, Y )×Cor(Y , Z) −→ Cor(X, Z).
By identifying a morphism f : X −→ Y as its graph in X × Y , the usual category of smooth quasi-projective varieties over K ,
denoted as Sm/K , is a subcategory of CorK .

A presheaf with transfers is a contravariant functor from the category CorK to the category of abelian groups. A Nisnevich
sheaf with transfers is a presheaf with transfer which is also a Nisnevich sheaf (see [17] for definition). Let ShNis(CorK ) denote
the category of Nisnevich sheaves with transfers over K . It is proved by Voevodsky that ShNis(CorK ) is an abelian category
with enough injective objects. Let D−(ShNis(CorK )) denote the derived category of ShNis(CorK ) whose objects are cochain
complexes bounded from above. We also refer cochain complexes simply as chain complexes.

Let As denote the s-dimensional affine space over K . A presheaf F on Sm/K is said to be homotopy invariant if
π∗ : F (X) −→ F (X × A1) is an isomorphism for any X ∈ Sm/K , where π is the projection X × A1 −→ X . A chain com-
plex of presheaves P∗ is said to be strictly homotopy invariant, if all cohomology presheaves of P∗ are homotopy invariant.
A chain complex of Nisnevich sheaves F ∗ is said to be A1-local, if all the cohomology sheaves (with respect to the Nisnevich
topology) of F ∗ are homotopy invariant. If P∗ is a strictly homotopy invariant chain complex of presheaves with transfers,
the Nisnevich sheafification of P∗ is A1-local by [16, Theorems 22.1, 22.2].

Definition 2.1. ([16, Definition 14.1]) The triangulated category of motives over a perfect field K , denoted as DMeff ,−
Nis (CorK ),

is defined to be the full subcategory of the derived category D−(ShNis(CorK )), which consists of only the A1-local objects.

Since we assume that K is perfect, DMeff ,−
Nis (CorK ) inherits the triangulated category structure from D−(ShNis(CorK )). We

next construct a functor C∗ : D−(ShNis(CorK )) −→ DMeff ,−
Nis (CorK ). For any nonnegative integer n, let �n denote the algebraic

n-simplex which is defined as the affine variety
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�n = Spec

(
K [x0, . . . , xn]

x0 + · · · + xn = 1

)
.

Exactly as in the topological situation, we have the boundary maps ∂n
i : �n−1 −→ �n and the degeneracy maps

σ n
i : �n+1 −→ �n where 0 � i � n. In other words, we have a cosimplicial object �• = (�n, ∂n• , σ n• | n � 0) in the cate-

gory Sm/K . If P is a presheaf of abelian groups on Sm/K , then there is a chain complex of presheaves bounded from above,
denoted as C∗ P , which sends X ∈ Sm/K to the following chain complex

· · · −→ P
(

X × �2) −→ P
(

X × �1) −→ P
(

X × �0) −→ 0 −→ 0 −→ · · · .
In the above chain complex, the group P (X ×�0) has degree 0 and the differential maps are defined as the alternating sums
of the boundary maps. If F ∗ is a bounded above chain complex in ShNis(CorK ), then there is a bi-complex (s, t) �→ F t(X ×�s),
whose total complex is denoted as C∗ F ∗ . It is easy to see that the chain complex C∗ F ∗ is also bounded from above. As
shown in [10, Lemma 4.1], C∗ F ∗ is A1-local and hence an object in DMeff ,−

Nis (CorK ). Actually, C∗ is right adjoint to the

inclusion of DMeff ,−
Nis (CorK ) into D−(ShNis(CorK )). Let X be a not necessarily smooth quasi-projective variety over K . X may

not be an object in CorK but we still have a well-defined presheaf with transfers sending Y ∈ CorK to the free abelian group
Cor(Y , X) on elementary finite correspondences from Y to X . We denote this presheaf with transfers by hX . It is shown in
[16, Lemma 6.2] that hX is a Nisnevich sheaf with transfers. So M(X) = C∗hX is an object in DMeff ,−

Nis (CorK ) and it is called
the motive of X .

Definition 2.2. ([16, Definition 14.17, Theorem 15.2]) Let X be a quasi-projective variety over a perfect field K . For any
integers p and q, define the motivic cohomology of X to be

H p,q(X) = Hom
DMeff ,−

Nis (CorK )

(
M(X), M

(
Pq/q−1)[p − 2q]).

Here M(Pq/q−1) is the cone of the obvious map M(Pq−1) −→ M(Pq) in DMeff ,−
Nis (CorK ).

Remark 2.3. Usually, the objects of CorK are defined to be all smooth Noetherian separated schemes of finite type over K .
Here we define CorK to contain only the smooth quasi-projective K -varieties. It is easy to show that this difference does not
affect the category DMeff ,−

Nis (CorK ). That is, the category DMeff ,−
Nis (CorK ) constructed here is naturally equivalent to the usual

one as defined, for example, in [16].

The motivic cohomology and the triangulated category of motives over a perfect field K with coefficients in a commu-
tative ring R , denoted as DMeff ,−

Nis (CorK , R), is defined in a similar way. For example, DMeff ,−
Nis (CorK ,Z/n) is defined to be a

full subcategory of D−(ShNis(CorK ),Z/n), the derived category of Nisnevich sheaves with transfers of Z/n-modules. Objects
in DMeff ,−

Nis (CorK ,Z/n) are A1-local objects in D−(ShNis(CorK ),Z/n). Please see [16] for details about the discussion in this
subsection.

2.2. The functor-on-curves topology

Let X and Y be quasi-projective complex varieties with X normal. Friedlander and Walker defined in [11] a topology
on the set of morphisms from X to Y . For convenience, we call this topology the functor-on-curves topology. We need this
topology to define the topological category structure on the category of finite correspondences over the complex numbers
in Section 4.

In general, for any schemes A and B over the complex numbers C, let Hom(A, B) denote the set of morphisms from A
to B over Spec(C). Let X and Y be quasi-projective complex varieties and hence complex schemes, there is a contravariant
functor of sets

Mor(X, Y ) : (Sm/C)�1 −→ (Sets),

C �→ Hom(X × C, Y ).

Here (Sm/C)�1 is a category whose objects are spectra of those C-algebras that have krull dimension at most one and can
be realized as the localization of a finitely generated smooth integral algebra over C. For example, the point Spec(C), the
affine line Spec(C[t]) and its open subscheme Spec(C[t]t) are in (Sm/C)�1 but the union of two points are not; the affine
plane X = Spec(C[t1, t2]) is not in (Sm/C)�1 but Spec(O X,{x1,...,xn}) is for any finite number of generic points x1, . . . , xn of
codimension one in X . Morphisms in (Sm/C)�1 are the usual morphisms of schemes over C. Please see [11, §1] for more
details and reasons for considering this category.

One useful property of the functor Mor(X, Y ) is that Mor(X, Y ) admits “proper, constructible presentation” which is
defined as follows.
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Definition 2.4. ([11, Definition 2.1]) Consider the data: Y = ∐∞
d=1 Yd , a disjoint union of complex projective varieties;

E = ∐∞
d=1 Ed , where each Ed is a constructible algebraic subset of Yd; a “proper, constructible presentation” R = R ∩ (E ×2),

where R ⊂ Y ×2 is a closed equivalence relation such that R = R ∩ (E × Y). Then we say that (Y, E , R) is a proper,
constructible presentation of a functor F : (Sm/C)�1 −→ (Sets) if F is the functor given by sending C ∈ (Sm/C)�1 to
Hom(C, E )/Hom(C, R). In general, if E is a constructible subset of a variety Y , we defined Hom(X, E) to be the set of
those morphisms from X to Y whose images land in E .

For any quasi-projective complex varieties X and Y , the proper, constructible presentation of the functor Mor(X, Y ) is
given in the following proposition.

Proposition 2.5. ([11, Proposition 2.2]) Let X and Y be quasi-projective complex varieties and let X w be the weak normalization
of X . Assume that X w ⊂ X w and Y ⊂ Y are their projective closures. Then Mor(X, Y ) : (Sm/C)�1 −→ (Sets) admits a proper,
constructible presentation (C(X w × Y ), E0,1(X w , Y ), R) defined as follows: C(X w × Y ) is the Chow variety of effective cycles in
X w × Y which have dimension equal to the dimension of X w (locally); E0,1(X w , Y ) ⊂ C(X w × Y ) is the constructible subset of those
cycles whose restriction to X w × Y are graphs of morphisms from X w to Y ; and R is the equivalence relation associated to the diagonal
action of C((X w − X w) × Y ), the subset of those cycles supported on (X w − X w) × Y , on (C(X w × Y ))×2 .

If F : (Sm/C)�1 −→ (Sets) admits a proper, constructible presentation (Y, E , R), we denote the set of C-points of E and
R by E (C) and R(C) respectively. Let E an and Ran denote the associated analytic space of E (C) and R(C), respectively. Ran

is still a closed equivalence relation on E an . Let (E /R)an denote the quotient topological space and we call its topology the
functor-on-curves topology. Since when the functor F is Mor(X, Y ) where X is normal, the underlying set of (E /R)an is
exactly the set of morphisms Hom(X, Y ), so we obtain the functor-on-curves topology on the set Hom(X, Y ). The resulting
topological space is denoted as Mor(X, Y ) as usual. The following theorem is useful when working with this topology. For
more details and constructions on this functor-on-curves topology, please see [11].

Theorem 2.6. ([11, Theorem 2.3]) Let F , F ′ : (Sm/C)�1 −→ (Sets) be contravariant functors provided with proper, constructible
presentations (Y, E , R) and (Y ′, E ′, R ′). Then a natural transformation ψ : F −→ F ′ induces a continuous map ψan : (E /R)an −→
(E ′/R ′)an.

2.3. Morphic cohomology

All varieties in this subsection are complex varieties. If X is a complex variety, let Xan denote the topological space
whose points are complex points of X and whose topology is the usual analytic topology.

Recall that if M is an abelian topological monoid, the naive topological group completion of M , denoted as M+ , is the
quotient space of M × M with respect to the following equivalence relation �:

(a1,b1) � (a2,b2) in M × M if a1 + b2 + c = b1 + a2 + c for some c ∈ M.

In general, M+ may not be a topological group. For the topological monoids considered in this paper, all their naive
topological group completions are compactly generated Hausdorff topological groups as explained in [4, Theorem 1.5] or
[14, Remark 2.2].

Let Y be a projective complex variety defined in some projective space Pn . For r � 0, the Chow monoid of r cycles on Y
is defined as the disjoint union Cr(Y ) = ∐

d�0 Cr,d(Y ), where Cr,d(Y ) is the Chow variety of r-cycles of degree d on Y . Let
X be a normal quasi-projective complex variety, then we have the functor-on-curves topology defined on Hom(X, Cr,d(Y ))

and the resulting topological space is denoted as Mor(X, Cr,d(Y )). By Theorem 2.6 one can check that Mor(X, Cr(Y )) =∐
d�0 Mor(X, Cr,d(Y )) is a topological monoid whose addition is induced by the addition of cycles. It follows from defini-

tion that, if Y ′ is a closed subvariety of Y , Mor(X, Cr(Y ′)) is a closed submonoid of Mor(X, Cr(Y )). Let Z t(X) denote the
naive topological group completion of the quotient topological monoid Mor(X, C0(P

t))/Mor(X, C0(P
t−1)). By [4, Proposi-

tion 2.2], one can equivalently define Z t(X) as the quotient topological group of the naive topological group completions of
Mor(X, C0(P

t)). That is

Z t(X) = (
Mor

(
X, C0

(
Pt))/Mor

(
X, C0

(
Pt−1)))+ = Mor

(
X, C0

(
Pt))+

/Mor
(

X, C0
(
Pt−1))+

.

Definition 2.7. ([4, Proposition 3.4]) The morphic cohomology of a normal quasi-projective complex variety X is defined as:

Lt H2t−i(X) = πi Z t(X), t � 0 and i � 0.

Remark 2.8. The topological group Z t(X) defined here is the same topological group Z t(X) defined in [4, Definition 2.4] by
[4, Proposition 1.9] and [11, Proposition 2.4]. So the above definition of morphic cohomology is consistent with the original
definition [4, Proposition 3.4, (3.4.1)].
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By [4, Proposition 6.3], morphic cohomology is homotopy invariant on smooth quasi-projective complex varieties. That is,

for a smooth quasi-projective complex variety X , the natural map Lq H p(X)
∼=−→ Lq H p(X × A1) is an isomorphism. Morphic

cohomology also satisfies the Mayer–Vietoris property for smooth quasi-projective complex varieties. That is, if X = U ∪ V
is an open covering of a smooth quasi-projective complex variety X , there is a natural long exact sequence

· · · −→ Lq H p(X) −→ Lq H p(U ) ⊕ Lq H p(V ) −→ Lq H p(U ∩ V ) −→ Lq H p+1(X) −→ · · · .
This fact is well known to experts. For lacking of a suitable reference, we sketch a proof as follows. We recall the defini-
tion of Lawson homology on quasi-projective complex varieties from [15]. The localization sequence of Lawson homology
[6,14] implies that Lawson homology satisfies the Mayer–Vietoris property. Now we apply the Duality Theorem [4] to get
the desired Mayer–Vietoris sequence for morphic cohomology from the corresponding Mayer–Vietoris sequence for Lawson
homology.

By [3, Proposition 3.4], there is a natural transformation Lq H p(X) −→ H p
Sing(Xan), where X is a normal quasi-

projective complex variety. If X is smooth projective and q � Dim(X), this natural transformation is an isomorphism by
[9, Theorems 5.6, 5.8]. When X is smooth quasi-projective and q � Dim(X), this map is still an isomorphism which follows
from the compatibility of the long exact sequence of [4, Corollary 6.2] and the similar long exact sequence of singular
cohomology.

Now we briefly review the construction of the s-operation on morphic cohomology, which is a dual version of
the s-operation on Lawson homology introduced by Friedlander and Mazur in [7]. Let [x] = [x0, x1, . . . , xn] and [y] =
[y0, y1, . . . , ym] be homogeneous coordinates in the projective space Pn and Pm , respectively. We use [x, y] as homoge-

neous coordinates for Pn+m+1. Let W ⊂ Pn be a closed subvariety defined by homogeneous polynomials f1(x), . . . , f s(x) and
V ⊂ Pm be a closed subvariety defined by homogeneous polynomials g1(y), . . . , gt(y), then the algebraic join of W and V ,

denoted as W # V , is the closed subvariety in Pn+m+1 defined by the polynomials

f1(x), f2(x), . . . , f s(x), g1(y), g2(y), . . . , gt(y).

For normal quasi-projective complex varieties X and Y , [7, Section 3.5] defines a biadditive continuous map

Mor
(

X, C0
(
Pn)) × Mor

(
Y , C0

(
Pm)) #−→ Mor

(
X × Y , C1

(
Pm+n+1)),

( f , g) �→ f # g,

where the map f # g sends (x × y) ∈ X × Y to
∑

nim j V i # W j if f (x) = ∑
ni V i and g(y) = ∑

m j W j . This further induces
a continuous biadditive map on their naive group completions. If Y is a point and m = 0, then Mor(pt, C0(P

0))+ = Z · P0

is the free abelian group on the point P0. In this case, the restriction of # to Mor(X, C0(P
n))+ × P0 is called the algebraic

suspension map and is denoted as

Σ/ : Mor
(

X, C0
(
Pn))+ −→ Mor

(
X, C1

(
Pn+1))+

.

The Algebraic Suspension Theorem for Cocycles [8, Theorem 3.3] implies that Σ/ is a homotopy equivalence.
Now we consider the following diagram of continuous maps of topological spaces

Mor
(

X, C0
(
Pn))+ × Mor

(
pt, C0

(
P1))+ #−→ Mor

(
X, C1

(
Pn+2))+ Σ/←− Mor

(
X, C0

(
Pn+1))+

.

Clearly, it induces a diagram on the quotient spaces

Z n(X) × Mor
(

pt, C0
(
P1))+ #−→ Mor

(
X, C1

(
Pn+2))+

/Mor
(

X, C1
(
Pn+1))+ Σ/←− Z n+1(X). (1)

The map Σ/ on the right-hand side of diagram (1) is still a homotopy equivalence. Since Mor(pt, C0(P
1))+ = C0(P

1)+ =
(
∐

d�0 Sd(P1)an)+ where Sd(−) is the d-fold symmetric product of a topological space, by the Dold–Thom Theorem [1] we

see that π2 Mor(pt, C0(P
1))+ is the singular homology group H2((P

1)an) which is the free abelian group Z. So by taking
homotopy groups of the spaces in (1), we obtain the following commutative diagram.

πi Z n(X) ⊗ π2 Mor(pt, C0(P
1))+ −−−−→ πi+2 Z n+1(X)⏐⏐	∼=

∥∥∥
Ln H2n−i(X)

s−−−−→ Ln+1 H2n−i(X)

The induced bottom map is by definition the s-operation. Please see [4,7,9] for more details.
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3. Strictly homotopy invariant pseudo-flasque presheaf with transfers

Let K be a perfect field and let Sm/K denote the category of smooth separated Noetherian scheme of finite type over K
as usual. As before, we also use the term “chain complex” to mean a cochain complex bounded from above. In particular, a
chain complex may have differential maps of degree +1.

Recall from [5] that a chain complex of presheaves P∗ is said to be pseudo-flasque if for any U ∈ Sm/K and open covering
U = U1 ∪ U2, we have a distinguished triangle of chain complexes of abelian groups

P∗(U ) −→ P∗(U1) ⊕ P∗(U2) −→ P∗(U1 ∩ U2).

We need the following theorem from [5] concerning the cohomology presheaves of a pseudo-flasque chain complex of
presheaves. For our purpose we only state it for a smooth scheme X .

Theorem 3.1. (Friedlander [5, Theorem 3.1]) Let X ∈ Sm/K . Let H P X denote the homotopy category of the category P X of chain
complexes of presheaves of abelian groups on the small Zariski site ZarX . Denote D X the localization of P X with respect to the thick
subcategory of those P ∈ P X with the property that every stalk of P is acyclic. Denote ZX the presheaf sending Y to the free abelian
group Z(Hom(Y , X)). For any P ∈ P X and i ∈ Z, we have

Hi
(

P (X)
) = HomHP X

(
ZX [i], P

)
.

If P is pseudo-flasque, then for any i ∈ Z, the natural map

HomHP X

(
ZX [i], P

) −→ HomD X

(
ZX [i], P

)
is an isomorphism.

Note that the chain complexes in [5] are bounded from below and the differential maps have degree −1. Such a chain
complex P∗ can be naturally identified with a bounded above cochain complex P∗ by setting P i = P−i and using the same
differential maps. It is obvious that Hi(P∗) = H−i(P∗). The following lemma follows easily from Theorem 3.1.

Lemma 3.2. Let X ∈ Sm/K . If P∗ is a pseudo-flasque chain complex of presheaves on Sm/K or ZarX which is bounded from above,
there is a natural isomorphism

Hi(P∗(X)
) = Hi(X, P∗

Zar

)
,

where P∗
Zar is the chain complex of Zariski sheaves associated to P∗ .

Proof. Let P∗ denote the corresponding chain complex which has differential maps of degree −1, then P∗ satisfies the
condition of Theorem 3.1. So we have

Hi(P∗(X)
) (1)= H−i

(
P∗(X)

) (2)= HomD X

(
ZX [−i], P∗

) (3)= HomD X

(
ZX , P∗[i]

) (4)= Hi(X, P∗
Zar

)
.

The isomorphisms at (1) and (3) are trivial. (2) is guaranteed by Theorem 3.1. Let I∗ be an injective resolution of the
associated complex of sheaves (P∗)Zar . Then I∗ is also an injective resolution of P∗

Zar . So we have the following computations.

HomD X

(
ZX , P∗[i]

) = H−i
(

I∗(X)
) = Hi(I∗(X)

) = Hi(X, P∗
Zar

)
.

This proves the isomorphism at (4). �
The following theorem of Voevodsky plays an important role to represent motivic cohomology in the category

DMeff ,−
Nis (CorK ) (see Section 2.1). Please see [16, Proposition 13.10] for details.

Theorem 3.3 (Voevodsky). Let P∗ be a bounded above chain complex of Nisnevich sheaves with transfers, whose cohomology sheaves
are homotopy invariant. Then the natural map Hn

Zar(X, P∗) −→ Hn
Nis(X, P∗) is an isomorphism for any X ∈ Sm/K where K is a perfect

field.

Since we are working with presheaves, we need the following generalized version of Theorem 3.3.

Lemma 3.4. Let P∗ be a bounded above chain complex of presheaves with transfers. If P∗ is strictly homotopy invariant, i.e., all
cohomology presheaves of P∗ are homotopy invariant, then the natural map

Hn
Zar

(
X, P∗

Zar

) −→ Hn
Nis

(
X, P∗

Nis

)
is an isomorphism for any X ∈ Sm/K , where P∗

Zar and P∗
Nis are the sheafifications of P∗ in the corresponding topology and K is a perfect

field.
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Proof. Let Dim(X) = d, then both the Zariski and the Nisnevich cohomology dimension of X are less than or equal to d, i.e.,
H>d

Zar(X, F ) ∼= H>d
Nis(X, G) = 0 for any Zariski sheaf F and Nisnevich sheaf G . So the following two hypercohomology spectral

sequences both converge.

E p,q
2 = H p

Zar

(
X,

(
Hq P∗)

Zar

) �⇒ H
p+q
Zar

(
X, P∗

Zar

)
,

E p,q
2 = H p

Nis

(
X,

(
Hq P∗)

Nis

) �⇒ H
p+q
Nis

(
X, P∗

Nis

)
.

Here we used the fact that (H p P∗)Zar = (H p(P∗
Zar))Zar and (H p P∗)Nis = (H p(P∗

Nis))Nis , which is true because sheafification in
Zariski topology and Nisnevich topology are exact functors.

There is a natural morphism from the first spectral sequence to the second one, which is induced by the Nis-
nevich sheafification functor. By assumption, the presheaf with transfers Hq P∗ is homotopy invariant, which implies
(Hq P∗)Zar = (Hq P∗)Nis as presheaves with transfers by [16, Theorems 22.1, 22.2]. So the natural map H p

Zar(X, (Hq P∗)Zar) −→
H p

Nis(X, (Hq P∗)Nis) is an isomorphism by Theorem 3.3. So the natural map Hn
Zar(X, P∗

Zar) −→ Hn
Nis(X, P∗

Nis) is also an isomor-
phism. �

We are now ready to prove the main result of this section.

Theorem 3.5. Let K be a perfect field. Let P ∗ be a chain complex of presheaves with transfers which is bounded from above, strictly
homotopy invariant and pseudo-flasque. For any smooth scheme X over K , there exist natural isomorphisms

Hn(P∗(X)
) (1)= Hn

Zar

(
X, P∗

Zar

) (2)= Hn
Nis

(
X, P∗

Nis

) (3)= Hn
Zar

(
X, P∗

Nis

)
(4)= HomD−

(
hX , P∗

Nis[n]) (5)= Hom
DMeff ,−

Nis (CorK )

(
M(X), P∗

Nis[n]).
Here D− = D−(ShNis(CorK )) denotes the derived category of bounded above chain complexes of Nisnevich sheaves with transfers.

Proof. (1) and (2) follow from Lemmas 3.2 and 3.4. Since P∗ is strictly homotopy invariant, all Nisnevich cohomology
sheaves of P∗

Nis are also homotopy invariant thanks to [16, Theorems 22.1, 22.2]. So P∗
Nis is A1-local and hence (3) follows

from [16, Proposition 13.10], (4) and (5) follow from [16, Proposition 14.16]. �
4. Topological category structure on CorCCC

All varieties in this section are defined over the complex numbers C. Let CorC denote the category of finite correspon-
dences over C. For any X, Y ∈ CorC , recall that morphisms from X to Y in CorC are called finite correspondences which are
formal sums of the elementary finite correspondences with integral coefficients. If all the coefficients are nonnegative, the
finite correspondence is called effective finite correspondence. Let Eff d(X, Y ) denote the set of effective finite correspondences
of degree d over X and let Eff (X, Y ) denote the monoid

∐
d�0 Eff d(X, Y ).

If X is irreducible, the “graph construction” of [3, Theorem 1.4] gives a natural identification between the set Eff d(X, Y )

and the set Hom(X, SdY ), where SdY is the d-fold symmetric product of Y . A cycle V ∈ Eff d(X, Y ) is identified with the
morphism sending x ∈ X to the cycle theoretic intersection (x × Y ) • V in X × Y . This identification defines a natural
isomorphism of discrete monoids

τX,Y : Eff (X, Y )
∼=−→ Hom

(
X,

∐
d�0

SdY

)
.

As recalled in Section 2.2, we have the functor-on-curves topology on Hom(X,
∐

d�0 SdY ) = ∐
d�0 Hom(X, SdY ) and the

resulting space is denoted as Mor(X,
∐

d�0 SdY ). We give Eff (X, Y ) the topology induced from the isomorphism τX,Y . It

is clear that Eff (X, Y ) and Mor(X,
∐

d�0 SdY ) are now topological monoids naturally identified with each other by the
homeomorphism τX,Y .

If X = X1 ∪ X2 where X1 and X2 are unions of irreducible components of X , then X1 ∩ X2 is empty because X is
smooth. So Eff (X, Y ) = Eff (X1, Y ) × Eff (X2, Y ) and we give Eff (X, Y ) the product topology. Finally, we define the topology
on Cor(X, Y ) to be the quotient topology with respect to the obvious surjective map

Eff (X, Y ) × Eff (X, Y ) −→ Cor(X, Y ); (V 1, V 2) �→ V 1 − V 2.

Now Cor(X, Y ) is the naive topological group completion of the topological monoid Eff (X, Y ). For convenience, we still call
the topologies on Eff (X, Y ) and Cor(X, Y ) the functor-on-curves topology.

If Y is projective,
∐

d�0 SdY = C0(Y ) is the Chow monoid of zero cycles on Y . So by the natural isomorphism τX,Y

we have Eff (X, Y )
∼=−→ Mor(X, C0(Y )) and hence Cor(X, Y )

∼=−→ Mor(X, C0(Y ))+ . Let Cor(X,Pr/r−1) denote the quotient
topological group Cor(X,Pr)/Cor(X,Pr−1). Obviously, we have
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Cor
(

X,Pr/r−1) = Cor
(

X,Pr)/Cor
(

X,Pr−1) ∼= Mor
(

X, C0
(
Pr))+

/Mor
(

X, C0
(
Pr−1))+ = Z r(X).

The topological group Z r(X) is recalled in Section 2.3 and its homotopy groups are the morphic cohomologies of X . So we
have the following formula.

Lr H2r−i(X) = πi Z r(X) = πiCor
(

X,Pr/r−1), r � 0 and i � 0.

With the functor-on-curves topology defined on the Hom-sets in CorC , we show in the remaining part of this section
that CorC is a topological category.

Lemma 4.1. For any quasi-projective complex varieties X and Y with X being normal, there exists a natural continuous map

Sd : Mor(X, Y ) −→ Mor
(

Sd X, SdY
)
,

f �→ Sd f : [x1, . . . , xd] �→ [
f (x1), . . . , f (xd)

]
,

where [x1, . . . , xd] ∈ Sd X denotes the image of (x1, . . . , xd) ∈ X×d.

Proof. Following [11], we identify Mor(X, Y ) and Mor(Sd X, SdY ) as functors of sets on the category (SmC)�1 of smooth
quasi-projective varieties with dimension not greater than 1, which send C ∈ (SmC)�1 to the sets Hom(X × C, Y ) and
Hom(Sd X × C, SdY ) respectively. Note that the value of these two functors on the point Spec(C) are exactly the underlying
sets of the spaces Mor(X, Y ) and Mor(Sd X, SdY ), because X is normal and hence Sd X is also normal. We need to construct
a natural transformation

τ : Mor(X, Y ) −→ Mor
(

Sd X, SdY
)
,

whose restriction to the point Spec C is the map Sd in the lemma. Once τ is constructed, the continuity of Sd follows from
[11, Theorem 2.3].

We construct a natural transformation τ in the following way. For any f ∈ Hom(X × C, Y ), there is a composition of
morphisms

Θ : C × X×d �C ×Id−−−−→ C×d × X×d f ×d−−→ Y ×d π−→ SdY ,

where �C is the diagonal morphism and π is the projection that sends (y1, . . . , yd) to [y1, . . . , yd]. Since Θ is invariant un-
der the action of Σd on X×d , it induces a natural map Θ̃ : C × Sd X −→ SdY by the universal property of symmetric product
and fiber product. Define τ ( f ) = Θ̃ . It is a routine calculation to check that τ is a required natural transformation. �

There is a morphism Tr : Sc Sd X −→ Scd X which sends the point [[x1,1, . . . , x1,d], . . . , [xc,1, . . . , xc,d]] ∈ Sc Sd X to the point
[x1,1, . . . , x1,d, . . . , xc,1, . . . , xc,d] ∈ Scd(X). Following [11], we call the morphism Tr the trace morphism.

Lemma 4.2. For any quasi-projective complex varieties Y and X with X being normal, the trace morphism induces a natural continuous
map

Tr : Mor
(

X, Sc SdY
) −→ Mor

(
X, ScdY

)
.

Proof. The proof is similar to the proof of Lemma 4.1. The natural transformation between the functors Mor(X, Sc SdY ) and
Mor(X, ScdY ) is defined as composition with the trace morphism Tr. �
Remark 4.3. If X and Y are projective so that we can talk about their Chow varieties, the above two lemmas are special
cases of [11, Propositions 1.4, 1.5].

Proposition 4.4. For any quasi-projective complex varieties X , Y and Z with X and Y being normal, the following map is continuous.

Mor

(
X,

∐
c�0

Sc Y

)
× Mor

(
Y ,

∐
d�0

Sd Z

)
Φ−→ Mor

(
X,

∐
e�0

Se Z

)
,

(
X

f−→ Sc Y , Y
g−→ Sd Z

) �→ (
Tr ◦ Sc g ◦ f : X −→ Scd Z

)
.

Proof. Without loss of generality, we can assume that both X and Y are connected. Obviously we have Mor(X,
∐

c�0 Sc Y )×
Mor(Y ,

∐
d�0 Sd Z) = ∐

c,d�0 Mor(X, Sc Y ) × Mor(Y , Sd Z), so it is enough to show that the restriction Φc,d =
Φ|Mor(X,Sc Y )×Mor(Y ,Sd Z) is continuous for any c,d � 0. One can check that Φc,d fits into the following commutative di-
agram.
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Mor(X, Sc Y ) × Mor(Y , Sd Z)
Φc,d−−−−→ Mor(X, Scd Z)⏐⏐	Id×Sc

�⏐⏐Tr

Mor(X, Sc Y ) × Mor(Sc Y , Sc Sd Z)
Comp.−−−−→ Mor(X, Sc Sd Z)

The left vertical map Id × Sc is continuous by Lemma 4.1. The bottom horizontal map Comp. is the composition map which
is continuous by [11, Proposition 1.7]. The right vertical map Tr is continuous by Lemma 4.2. So their composition, the top
horizontal map Φc,d , is also continuous. �
Remark 4.5. If Y and Z are projective varieties, the above proposition is a special case of [11, Proposition 1.7] where r = 0.

If we forget the topologies, the map Φ in Proposition 4.4 defines a biadditive morphism of the underlying discrete
monoids

Φ : Hom

(
X,

∐
c�0

Sc Y

)
× Hom

(
Y ,

∐
d�0

Sd Z

)
−→ Hom

(
X,

∐
e�0

Se Z

)
.

As we mentioned before, these monoids are naturally identified with the monoids of effective finite correspondences. We
next show that the map Φ is the composition map in the category CorC under these identifications. We need the following
fact.

Lemma 4.6. Let X , Y and Z be smooth quasi-projective varieties, let x ∈ X and y ∈ Y be two points. Assume that W ⊂ Y × Z is an
irreducible closed subvariety which intersects y × Z properly. Then

(x × y × Z) • (x × W ) = (x × y × Z) • (X × W ),

where the first intersection is in x × Y × Z and the second is in X × Y × Z . The resulting cycles are compared as cycles on X × Y × Z .

Proof. It is easy to see that the intersections are proper. If X is projective, the projection π from X × Y × Z to x × Y × Z is
proper. The Projection Formula implies

(x × y × Z) • (x × W ) = (
π(x × y × Z)

) • (x × W ) = π
(
(x × y × Z) • (X × W )

) = (x × y × Z) • (X × W ).

The last equality is valid because the intersection are points defined over C, so the field extensions involved are trivial.
If X is quasi-projective, Hironaka’s resolution of singularities [13] implies that X admits a smooth projective closure X .

So we have the following calculations.

(x × y × Z) • (x × W ) = (x × y × Z) • (X × W ) = (x × y × Z) • (X × W ).

The first equality holds because X is projective. The second equality holds because the intersections equal set theoretically
and the corresponding multiplicities are the same since X is open in X and intersection multiplicities only depend on local
rings at the intersection. �
Lemma 4.7. Assume X and Y are smooth quasi-projective varieties and Y is a locally closed subvariety of Y . If V is a finite correspon-
dence from X to Y , V is also a finite correspondence from X to Y .

Proof. It is enough to assume that V is an elementary finite correspondence. Let f denote the composition V −→ X ×Y −→
X × Y , let g denote the finite map V −→ X and let h denote the projection X × Y −→ X . Because g = h ◦ f is finite and h
is separated, f is proper. This shows that V is also closed in X × Y . So V is a finite correspondence from X to Y . �
Proposition 4.8. For smooth quasi-projective varieties X , Y and Z , there is a commutative diagram of discrete monoids.

Eff (X, Y ) × Eff (Y , Z)
Comp.−−−−→ Eff (X, Z)

(τX,Y ,

⏐⏐	τY ,Z )

⏐⏐	τX,Z

Mor(X,
∐

c�0 Sc Y ) × Mor(Y ,
∐

d�0 Sd Z)
Φ−−−−→ Mor(X,

∐
e�0 Se Z)

Proof. To simplify notations, we regard an effective cycle also as the corresponding morphism. Without loss of generality,
we assume X , Y and Z are irreducible. It is enough to check that, for any V ⊂ X × Y being irreducible and finite surjective
over X of degree c and W ⊂ Y × Z being irreducible and finite surjective over Y of degree d, we have W ◦ V = Φ(V , W )
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as morphisms from X to Scd Z . Choose x ∈ X and denote V (x) = (x × Y ) • V = ∑
ni(x × yi). If we identify x × Y as Y , then

we also have V (x) = ∑
ni yi .

It is easy to calculate Φ(V , W )(x). By the definition of Φ in Proposition 4.4, we have

Φ(V , W )(x) = Tr ◦ Sc W ◦ V (x) = Tr ◦ Sc W
(∑

ni yi

)
=

∑
ni W (yi) =

∑
ni

(
(yi × Z) • W

)
.

Next we calculate (W ◦ V )(x). If Y is projective, intersection theory (see [11]) gives the following calculation. Here π
denotes the projection X × Y × Z −→ X × Z .

(W ◦ V )(x) = (x × Z) • π
(
(V × Z) • (X × W )

)
= π

(
(x × Y × Z • V × Z) • (X × W )

)
by the Projection Formula

= π
((

(x × Y • V ) × Z
) • (X × W )

)
= π

((∑
ni(x × yi) × Z

)
• (X × W )

)
since x × Y • V =

∑
ni(x × yi)

=
∑

niπ
(
(x × yi × Z) • (X × W )

)
=

∑
niπ

(
(x × yi × Z) • (x × W )

)
by Lemma 4.6

=
∑

niπ
(
x × (yi × Z • W )

)
=

∑
ni

(
(yi × Z) • W

)
since the intersection are C-points.

This shows (W ◦ V )(x) = Tr ◦ Sc W ◦ V (x) for any x ∈ X . So it completes the prove when Y is projective. If Y is only quasi-
projective, let Y be a smooth projective closure of Y as given by the resolution of singularities [13]. Lemma 4.7 implies that
V ⊂ X × Y ⊂ X × Y is also a finite correspondence from X to Y . Denote W the closure of W ⊂ Y × Z . W may not be a
finite correspondence, but we still have V × Z ∩ X × W = V × Z ∩ X × W for the same reason as in the proof of Lemma 4.7.
So V × Z • X × W is also a proper intersection and equal to V × Z • X × W since intersection multiplicity only depends on
local rings. Similarly, x × yi × Z • x × W = x × yi × Z • x × W . Now we have the following calculation, where π denotes the
projections from X × Y × Z or X × Y × Z to X × Z .

(W ◦ V )(x) = (x × Z) • π
(
(V × Z) • (X × W )

)
= (x × Z) • π

(
(V × Z) • (X × W )

)
=

∑
niπ

(
(x × yi × Z) • (x × W )

)
as calculated in the projective case

=
∑

niπ
(
(x × yi × Z) • (x × W )

)
=

∑
ni

(
(yi × Z) • W

)
.

This shows that (W ◦ V )(x) = Tr ◦ Sc W ◦ V (x) for any x ∈ X , when Y is quasi-projective. The proof is complete. �
Theorem 4.9. With the functor-on-curves topology, CorC is a topological category. That is, for any smooth quasi-projective varieties
X , Y and Z , the composition in CorC

Comp. : Cor(X, Y ) × Cor(Y , Z) −→ Cor(X, Z)

is a continuous biadditive map of topological groups.

Proof. In the commutative diagram of Proposition 4.8, both vertical maps are homeomorphisms. Φ is continuous by Propo-
sition 4.4. So the top horizontal map

Comp. : Eff (X, Y ) × Eff (Y , Z) −→ Eff (X, Z)

is also continuous. The map in the theorem is induced by this map. So it is continuous and biadditive. �
Corollary 4.10. Let q � 0 be an integer and let X be a smooth quasi-projective complex variety. Let Cor(X,Pq/q−1) denote the quotient
topological group Cor(X,Pq)/Cor(X,Pq−1). There is a presheaf with transfers of abelian topological groups

Cor
(−,Pq/q−1) : CorC −→ Abelian Topological Groups,

X �→ Cor
(

X,Pq/q−1) = Z q(X).
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5. Morphic cohomology of motives over CCC

We denote the triangulated category of motives over C by DM. By Corollary 4.10, we have a presheaf with transfers of
abelian topological groups sending any X ∈ CorC to the topological group Cor(X,Pq/q−1) for any q � 0. The topology on
Cor(X,Pq/q−1) is defined in Section 4 in such a way that we have

Lq H2q−i(X) = πiCor
(

X,Pq/q−1).
Let P∗(q) denote the chain complex of presheaves with transfers such that P i(q)(X) = Sing−iCor(X,Pq/q−1) for i � 0 and 0
for i > 0, where Singn(−) is the usual set of continuous maps from the usual topological n-simplex to a topological space.
The differential maps of P∗(q) are defined in the obvious manor. Let ℘mor(q) = P∗(q)Nis denote the Nisnevich sheafification
of P∗(q).

Theorem 5.1. ℘mor(q) is A1-local and there is a natural isomorphism

Lq H p(X) = HomDM
(
M(X),℘mor(q)[p − 2q])

for any smooth quasi-projective complex variety X and integers p and q with q and 2q − p nonnegative.

Proof. It follows from the definitions that Lq H p(X) = H p−2q(P∗(q)(X)). Since morphic cohomology is homotopy invariant
and satisfies the Mayer–Vietoris property, P∗(q) is strictly homotopy invariant and pseudo-flasque. By Theorem 3.5 and its
proof, ℘mor(q) is A1-local and we have

Lq H p(X) = H p−2q(P∗(X)
) = HomDM

(
M(X),℘mor(q)[p − 2q]). �

Definition 5.2. For any K ∗ ∈ DM and integers p and q with q nonnegative, define the (q, p)-th morphic cohomology of K ∗
with integral coefficients as

Lq H p(K ∗) = HomDM
(

K ∗,℘mor(q)[p − 2q]).
In particular, the (q, p)-th morphic cohomology of any quasi-projective complex variety X is defined as Lq H p(X) =
Lq H p(M(X)).

Remark 5.3. When X is smooth, Theorem 5.1 implies that the definition of morphic cohomology of X given by Definition 5.2
agrees with the usual definition as given in [4]. If X is singular but normal, we do not know whether or not these two
definitions give the same morphic cohomology of X .

The category DM admits several good properties. One can use the distinguished triangles as listed in [16, §14] to re-
obtain many properties about morphic cohomology. Moreover, as an advantage of Definition 5.2 of the morphic cohomology
on singular varieties, we can extend existing properties of morphic cohomology from smooth complex varieties to singular
varieties. For example, we prove a vanishing result of morphic cohomology on singular quasi-projective varieties, assuming
the Friedlander–Mazur Conjecture which claims that Lq H p(X) = 0 for any smooth quasi-projective variety X and negative
integer p.

Proposition 5.4. If the Friedlander–Mazur Conjecture is true, then Lq H p(X) = 0 for any quasi-projective complex variety X and
integers p < 0 and q � 0.

Proof. By the Friedlander–Mazur Conjecture, Hn(P∗(q)) = Lq Hn+2q = 0 as a presheaf with transfers when n < −2q. This
implies that (Hn(℘mor(q)))Nis = (Hn(P∗(q)))Nis = 0 where n < −2q. So the chain complex ℘mor(q) is exact at degrees less
than −2q. So, up to quasi-isomorphisms, ℘mor(q)[n] has non-zero terms only at positive degrees when n < −2q. The chain
complex hX (see Section 2.1) has non-zero terms only at degree zero. In this case, it is a standard fact about derived cate-
gories that HomD− (hX ,℘mor(q)[n]) = 0 for n < −2q, where D− is the derived category of bounded above chain complexes
of Nisnevich sheaves with transfers. So

Lq Hn+2q(X) = HomDM
(
M(X),℘mor(q)[n]) = HomD−

(
hX ,℘mor(q)[n]) = 0,

where n < −2q. The middle isomorphism is proved in [16, Proposition 14.16]. This proves that Lq H p(X) = 0 when p < 0. �
If Z is a closed smooth subvariety of X of codimension c, there is a Gysin triangle in DM (see [16, §14])

M(X − Z) −→ M(X) −→ M(Z)(c)[2c] −→ M(X − Z)[1].
To use this triangle to calculate morphic cohomology, we need to know the group Lq H p(M(Z)(c)[2c]).
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Proposition 5.5. Let Z be a smooth quasi-projective complex variety and c be a natural number, then there exists a natural isomor-
phism

Lq H p(
M(Z)(c)[2c]) ∼=−→ Lq−c H p−2c(Z).

Proof. One may prove this isomorphism by decoding the construction of Gysin map in motivic cohomology explained in
[16] and the Gysin map in morphic cohomology explained in [4]. Here we give a formal prove.

Let O denote the origin of the c-dimensional affine plane Ac . Let Ac,∗ denote the open subvariety Ac − O . Regard
Z = Z × O as a codimension c closed smooth subvariety of Z × Ac . Denote j : Ac,∗ −→ Ac the open embedding. By the
Gysin triangle we have the Gysin long exact sequence

· · · −→ Lq H p(
M(Z)(c)[2c]) −→ Lq H p(

Z × Ac) j∗−→ Lq H p(
Z × Ac,∗) −→ Lq H p+1(M(Z)(c)[2c]) −→ · · · .

Let P be a fixed point in Ac,∗ . We have the following diagram.

Z × P �� Z × Ac
i2

π

i1
�
�� �

��
j

Z × Ac,∗

where i1, i2 and j are obvious embeddings and π is induced by the projection from Ac to the point P . Taking morphic
cohomology we see that (π∗ ◦ i∗1) ◦ j∗ = π∗ ◦ ( j ◦ i1)

∗ = π∗ ◦ i∗2 which is an isomorphism since morphic cohomology is
A1-local on smooth varieties. So the map j∗ is splitting injective and the Gysin long exact sequence breaks into short exact
sequences

0 −→ Lq H p(
Z × Ac) j∗−→ Lq H p(

Z × Ac,∗) −→ Lq H p+1(M(Z)(c)[2c]) −→ 0.

Similarly, the Gysin long exact sequence of [4, Corollary 6.2] also breaks into short exact sequences

0 −→ Lq H p(
Z × Ac) j∗−→ Lq H p(

Z × Ac,∗) −→ Lq−c H p+1−2c(Z) −→ 0.

Being the quotient group of the same group homomorphism, Lq H p(M(Z)(c)[2c]) and Lq−c H p−2c(Z) are naturally isomor-
phic. �
6. Singular cohomology of motives over CCC

For any X ∈ CorC , it is well know that the usual singular cohomology (with integral coefficients) of the underlying
analytic space Xan can be defined as

H2q−i
Sing

(
Xan) = π0Cont

(
Xan, K (Z,2q − i)

) = πiCont
(

Xan, K (Z,2q)
)
,

where Cont(−,−) is the mapping space with the compact-open topology and K (Z,2q) is the Eilenberg–Maclane space. It
follows from the Dold–Thom Theorem [1] that Hi((P

q)an) = πi(
∐

d�0(SdPq)an)+ . So we can choose a model of K (Z,2q) as

the quotient topological group (
∐

d�0(SdPq)an)+/(
∐

d�0(SdPq−1)an)+ .

Remark 6.1. With the compact-open topology, we do not know if

Cont
(
(−)an, K (Z,2q)

) : X �→ Cont
(

Xan, K (Z,2q)
)

is a functor from CorC to the category of abelian topological groups. The problem is that the compact-open topology does
not behave well with some constructions such as compositions of continuous maps.

Recall from [19] the definition of compactly generated topology, the category CG of compactly generated topological
spaces and the retraction functor k sending a Hausdorff space X to its associated compactly generated space k(X) ∈ CG and
a map f to itself. The functor k is right adjoin to the inclusion of CG into the category of Hausdorff spaces, which means

Cont(X, Y ) = Cont
(

X,k(Y )
)

as sets if X ∈ CG and Y is Hausdorff. In particular, k(X) and X have the same singular chain complexes. For any X and Y in
CG, let X ×CG Y denote the categorical product in CG. Note that in [19], X ×CG Y is denoted as X × Y , which we reserve
here for the usual product in the category of topological spaces.
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Definition 6.2. G is a topological group in CG means:

1. G is a group and also a compactly generated topological space;
2. The inverse map Inv : G −→ G and the multiplication map Mul : G ×CG G −→ G are continuous.

For example, if G is a Hausdorff topological group, then kG is a topological group in CG. The converse is not necessarily
true, because G ×CG G −→ G × G is not necessarily a homeomorphism. As explained in [14, Remark 2.2], the topological
group K (Z,2q) is compactly generated, so it is a topological group in CG. Let X be a space and G be a topological group,
the mapping space Cont(X, G) is not necessarily a topological group in CG because the space Cont(X, G) may not be an
object in CG.

Lemma 6.3. If X ∈ CG and G is a topological group in CG, kCont(X, G) is a topological group in CG.

Proof. By [19, Theorem 5.9], the map Inv : kCont(X, G) −→ kCont(X, G) is continuous because it is induced by the inverse
map of G . The multiplication map Mul : kCont(X, G) ×CG kCont(X, G) −→ kCont(X, G) is continuous because it can be de-
composed as

kCont(X, G) ×CG kCont(X, G) = kCont(X, G ×CG G) −→ kCont(X, G).

The first map is a natural homeomorphism by [19, Theorem 5.4]. The second map is continuous by [19, Theorem 5.9],
because it is induced by the multiplication map of G . �
Corollary 6.4. For any X ∈ CorC , kCont(Xan, K (Z,2q)) is a topological group in CG.

Corollary 6.5. If X ∈ CG and G is a topological group in CG, the set Cont(X, G) is a group.

Let G be a topological group in CG. G may not be a topological group, but the multiplication with a fixed element is
still a homeomorphism of G according to the following proposition.

Proposition 6.6. If G is a topological group in CG and g is an element in G, the map Mulg : G −→ G sending g′ ∈ G to g′g and the
map gMul : G −→ G sending g′ ∈ G to gg′ are continuous.

Proof. Let (Id, g) : G −→ G ×CG G be the unique continuous map defined by the pair of continuous maps (G
Id−→ G, G

g−→ g)

in CG. We see that Mulg = Mul ◦ (Id, g) is continuous. Similarly gMul is also continuous. �
Lemma 6.7. Let G be an abelian topological group whose topology is compactly generated. For any Y ∈ CG, there exists a continuous
map

Sd : kCont(Y , G) −→ kCont
(

SdY , G
)
,

f �→
(

Sd f : [y1, . . . , yd] �→
d∑

i=1

f (xi)

)
.

Proof. By [19, 2.6], Y is in CG implies SdY (with the quotient topology) is also in CG. The map Sd in the lemma is
obviously well defined. We first show that Sd : kCont(Y , G) −→ Cont(SdY , G) is continuous.

Let K be a compact subset of SdY and U be an open subset of G . Let V (K , U ) be the set of maps g ∈ Cont(SdY , G) such
that g(K ) ⊂ U . Let f ∈ kCont(Y , G) be an arbitrary element in (Sd)−1(V (K , U )), we must find an open neighborhood (in
the topology of kCont(Y , G)) of f which is included in (Sd)−1(V (K , U )).

Let π : Y ×d −→ SdY be the natural projection. By [18, Lemma 6.3], K is compact in Sd(Y ) implies that π−1(K ) is also
compact in Y ×d . Let K ′ = ⋃d

i=1 πi(π
−1 K ) where πi is the natural projection from Y ×d to the i-th copy of Y . It is easy to

see that K ′ is compact in Y and y ∈ K ′ if and only if y appears as a component of a point in K .
By our assumption, Sd f (K ) is compact and it is contained in the open subset U of G . For any point a ∈ Sd f (K ), there

exists an open neighborhood Ua of 0 of G such that a + Ua ⊂ U . It is well known that for this open set Ua , there exists an
open subset Va containing 0 of G such that Va + Va ⊂ Ua . So for any a′ ∈ Sd f (K )∩ (a+ Va), we have a′ + Va ⊂ a+ Va + Va ⊂
a + Ua ⊂ U . Since Sd f (K ) is compact, we can find finitely many such points a j and their corresponding neighborhoods Va j

of 0 in G such that

1.
⋃

(a j + Va j ) is an open covering of Sd f (K );

2. For any b ∈ Sd f (K ), if b ∈ a j + Va j then b + Va j ⊂ U .
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Let V be the intersection of these finitely many open sets Va j , then V is an open neighborhood of 0 in G and

Sd f (K ) + V ⊂ U . Let U ′ be an even smaller neighbor hood of 0 in G such that the summation of any d elements in
U ′ is in V . The existence of U ′ is a general fact about topological groups.

Let V (K ′, U ′) be the set of maps h ∈ Cont(Y , G) such that h(K ′) ⊂ U ′. By definition, V (K ′, U ′) is open in Cont(Y , G) and
hence in kCont(Y , G). G is obviously a topological group in CG, so kCont(Y , G) is a topological group in CG by Lemma 6.3.
In particular, addition by f is a homeomorphism of kCont(Y , G) by Proposition 6.6. So f + V (K ′, U ′) is an open subset of
kCont(Y , G) and f = f + 0 belongs to f + V (K ′, U ′) where 0 is the constant map with image 0 ∈ U ′ . If h ∈ f + V (K ′, U ′),
then h(x) − f (x) ∈ U ′ for any x ∈ K ′ . So, for any [x1, . . . , xd] ∈ K , we have Sdh([x1, . . . , xd]) = ∑d

i=1 h(xi) = ∑d
i=1 f (xi) +∑d

i=1(h(xi) − f (xi)) ⊂ Sd f (K ) + ∑d
i=1 U ′ ⊂ Sd f (K ) + V ⊂ U . This proves that the open set f + V (K ′, U ′) is a subset of

(Sd)−1(V (K , U )). So Sd : kCont(Y , G) −→ Cont(SdY , G) is continuous. Applying the functor k, we obtain the continuity of
the map in the lemma Sd : kCont(Y , G) = kkCont(Y , G) −→ kCont(SdY , G). �

When X is irreducible, an effective finite correspondence f ∈ Eff (X, Y ) can be identified with an algebraic map X −→
SdY for some integer d and hence a continuous map in the analytic topology. There is an induced map of sets

f ∗ : Cont
(
Y an, K (Z,2q)

) −→ Cont
(

Xan, K (Z,2q)
)
,

which sends a continuous map α : Y an −→ K (Z,2q) to the composition

f ∗(α) : Xan f−→ SdY an Sdα−→ Sd K (Z,2q)
Σd−→ K (Z,2q).

Note that f is continuous in the analytic topology; Sdα is continuous because the d-fold symmetric product Sd is a functor

from the category of topological spaces to itself; Σd is induced from the continuous map K (Z,2q)×d +−→ K (Z,2q) sending
(a1, . . . ,ad) to a1 + · · · + ad , so Σd is continuous. This shows that f ∗(α) is continuous. So f ∗ is well defined.

Theorem 6.8. The following functor is a presheaf with transfers of abelian topological groups in CG.

Cont
(
(−)an, K (Z,q)

) : CorC −→ Abelian Topological Groups in CG,

X �→ kCont
(

Xan, K (Z,q)
)
,

f �→ f ∗.

Proof. A straight forward calculation shows that, for any f ∈ Cor(X, Y ) and g ∈ Cor(Y , Z) in CorC , f ∗ and g∗ are mor-
phisms in the category of abelian groups and (g ◦ f )∗ = f ∗ ◦ g∗ . It only remains to show that f ∗ is continuous. Since for
any f ′ ∈ Cor(X, Y ) we have ( f + f ′)∗ = f ∗ + f ′∗ by definition and the set of continuous maps from kCont(Y an, K (Z,q))

to kCont(Xan, K (Z,q)) forms a group by Corollary 6.5, we can assume that f is an effective finite correspondence. If f
corresponds to a morphism X −→ SdY , then f ∗ decomposes as a composition

kCont
(
Y an, K (Z,q)

) −→ kCont
(

SdY an, K (Z,q)
) −→ kCont

(
Xan, K (Z,q)

)
.

The first map in the diagram is continuous by Lemma 6.7 and the second map is continuous by [19, 5.9], so f ∗ is continu-
ous. �

For any X ∈ CorC , we set

F i(q)(X) = Sing−iCont
(

Xan, K (Z,2q)
) = Sing−ikCont

(
Xan, K (Z,2q)

)
for i � 0 and we set F i(q)(X) = 0 for i > 0. Theorem 6.8 together with Corollary 6.5 implies that F ∗(q) is a chain complex
of presheaves with transfers under the obvious differential maps. Since H p(F ∗(q))(X) = H−p

Sing(Xan) for all integer p, F ∗(q)

is strictly homotopy invariant and pseudo-flasque. Denote ℘Sing(q) = F ∗(q)Nis , then ℘Sing(q) is A1-local. By Theorem 3.5 we
have

H p
Sing

(
Xan) = HomDM

(
M(X),℘Sing(q)[p − 2q])

for any X ∈ CorC . We next generalize this formula to singular varieties.
To continue we need to recall the notion of abstract blow-up which is defined on schemes over arbitrary base field. See,

for example, [16, Definition 12.21] for details. In our case, an abstract blow-up of a complex variety X is the following
diagram

Z ′ i−−−−→ X ′

p
⏐⏐	 ⏐⏐	p

i

Z −−−−→ X
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where p : X ′ −→ X is a proper map; Z is a proper closed subvariety of X and called the center of the blow-up; Z ′ =
p−1(Z) = Z ×X X ′; p induces an isomorphism from (X ′ − Z ′) to (X − Z).

Given an abstract blow-up p : X ′ −→ X with center Z and Z ′ = Z ×X X ′ , there is an abstract blow-up distinguished
triangle in DM (see [16, Theorem 13.26 and §14]):

M(Z ′) −→ M(X ′) ⊕ M(Z) −→ M(X) −→ M(Z ′)[1].
So there is an abstract blow-up sequence for the functor HomDM(M(−),℘Sing(q)[p − 2q]) on complex varieties. For singular
cohomology, the similar blow-up exact sequence is well known.

Theorem 6.9. For any quasi-projective complex variety X,

H p
Sing

(
Xan) = HomDM

(
M(X),℘Sing(q)[p − 2q]).

Proof. Both H p
Sing((−)an) and HomDM(M(−),℘Sing(q)[p − 2q]) admit abstract blow-up long exact sequences and there is

a natural transformation H p
Sing((−)an) −→ HomDM(M(−),℘Sing(q)[p − 2q]) which is an isomorphism on smooth quasi-

projective complex varieties. An induction on the dimension of X finishes the proof. Since we will use the same argument
in the following theorem, details are skipped. �
Definition 6.10. For any K ∗ ∈ DM and integers p and q with q nonnegative, define the p-th singular cohomology of K ∗ with
integral coefficients as

H p
Sing(K ∗) = HomDM

(
K ∗,℘Sing(q)[p − 2q]).

From the constructions we see that ℘Sing(q)[2] = ℘Sing(q + 1) in the category DM, so changing the parameter q does not
change the cohomology ring H∗

Sing(Xan). So the parameter q does not appear in the singular cohomology of motives just as
it should be.

Using the model (
∐

d�0(SdPq)an)+/(
∐

d�0(SdPq−1)an)+ for K (Z,2q), we recall from [4, Proposition 3.4] that there is a
continuous group homomorphism

τq : Cor
(

X,Pq/q−1) = Mor

(
X,

∐
d�0

SdPq
)+

/Mor

(
X,

∐
d�0

SdPq−1
)+

−→ Cont
(

Xan, K (Z,2q)
)
,

which is induced by identifying an algebraic map to the continuous map which it defines in the analytic topology. It is
easy to check that τq is compatible with the transfer maps defined for morphic cohomology and singular cohomology in
Proposition 4.4 and Theorem 6.8, respectively. So we obtain a natural map τq : ℘mor(q) −→ ℘Sing(q) and hence a natural
transformation of δ-functors

τq : Lq H∗(−) −→ H∗
Sing

(
(−)an),

where both Lq H p(−) and H p
Sing((−)an) are now defined on the triangulated category of motives DM.

Remark 6.11. To show that the chain complex Sing∗Cont(Xan, K (Z,2q)) is a chain complex of presheaves with transfers,
we identify it as Sing∗kCont(Xan, K (Z,2q)) because the associated compactly generated topology behaves better. The reason
why we still use Cont(Xan, K (Z,2q)), not kCont(Xan, K (Z,2q)), to define ℘Sing(q) is the convenience in the above definition
of the natural transformation τq.

We define the dimension of a quasi-projective variety X as

Dim(X) = Max
{

Dim(Xi)
∣∣ Xi is an irreducible component of X

}
.

As we mentioned in Section 2.3, when X is smooth of dimension d, there exists a natural isomorphism Lq H p(X)
∼=−→

H p
Sing(Xan) for q � d and for all p. This isomorphism is induced by the map ℘mor(q)

τq−→ ℘Sing(q) as one can see from the
natural isomorphisms in Theorem 3.5.

Theorem 6.12. Let X be a quasi-projective complex variety of dimension d. The natural map

τq : Lq H p(X) −→ H p
Sing

(
Xan)

is an isomorphism for all integers p and q with q � d.
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Proof. We proof by induction on d. The case d = 0 is trivial. Assume the statement is true for all quasi-projective varieties
of dimension less than or equal to d. Consider a quasi-projective variety X of dimension d + 1. By resolution of singulari-
ties [13], there is an abstract blow-up square

Z ′ i−−−−→ X ′⏐⏐	p
⏐⏐	p

Z
i−−−−→ X

where Z is the locus of singularities of X and X ′ is smooth of dimension Dim(X ′) = Dim(X) = d + 1. Note that Dim(Z) <

Dim(X).
If Z ′ contains an irreducible component, say Z ′′ , such that the dimension of Z ′′ is d + 1, then Z ′′ must also be an

irreducible component of X ′ . Since X ′ is smooth, Z ′′ is actually a connected component of X ′ . Since p(Z ′′) ⊂ Z , we can
throw away Z ′′ and the remaining pair (Z ′ − Z ′′, X ′ − Z ′′) is still an abstract blow-up of X with center Z . This shows that
we can require the dimension of Z ′ is less than or equal to d.

For q � d + 1, we have the following commutative diagram of abstract blow-up sequences.

· · · −−−−→ Lq H p(X) −−−−→ Lq H p(X ′) ⊕ Lq H p(Z) −−−−→ Lq H p(Z ′) −−−−→ · · ·⏐⏐	 ⏐⏐	 ⏐⏐	
· · · −−−−→ H p

Sing(Xan) −−−−→ H p
Sing(X ′an) ⊕ H p

Sing(Z an) −−−−→ H p
Sing(Z ′an) −−−−→ · · ·

The second and the third vertical arrows in the diagram are isomorphisms by the induction assumption and the smooth
case, so the first vertical arrow is also an isomorphism by the five-lemma. �

The morphic cohomology of the motive M(Z)(c)[2c] is calculated in Proposition 5.5. We have a similar result for the
singular cohomology of the motive M(Z)(c)[2c]. The proof is the same as in Proposition 5.5 and hence skipped.

Proposition 6.13. For any smooth complex variety Z and natural number c, there exists a natural isomorphism H p
Sing(M(Z)(c)[2c]) ∼=−→

H p−2c
Sing (Z an).

7. Natural transformations of morphic cohomology of motives

7.1. The s-operation on morphic cohomology of motives

By Definition 5.2, the morphic cohomology is defined and represented in the triangulated category of motives DM. By
the Yoneda Lemma, the group of natural transformations from Lq H p to Lq+i H p+ j is given by the group

HomDM
(
℘mor(q)[p − 2q],℘mor(q + i)

[
(p + j) − 2(q + i)

])
= HomDM

(
℘mor(q),℘mor(q + i)

[
(2q + j) − 2(q + i)

])
= Lq+i H2q+ j(℘mor(q)

)
.

If f ∈ Lq+i H2q+ j(℘mor(q)), we denote f∗ : Lq H p −→ Lq+i H p+ j for the induced natural transformation. We want to calculate
the group Lq+i H2q+ j(℘mor(q)) and hence understand the natural transformations of morphic cohomology of motives.

In this subsection, we show that the s-operation studied in [7,8] is natural with respect to the transfer maps, so the
composition si = s ◦ s ◦ · · · ◦ s (i terms) is an element in Lq+i H2q(℘mor(q)) for any i � 0. We recall from Section 2.3 the
topological monoid Mor(X, Cr(Y )) where X is a smooth quasi-projective complex variety and Y is a projective complex
variety.

Lemma 7.1. For any integer r � 0 and smooth projective variety Y , the presheaf

Mor
(−, Cr(Y )

)+ : CorC −→ Ab,

X �→ Mor
(

X, Cr(Y )
)+

is a presheaf with transfers of abelian topological groups.

Proof. Let X and Z be smooth quasi-projective complex varieties. We claim that there is a biadditive continuous map
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Mor

(
X,

∐
c�0

Sc Z

)
× Mor

(
Z , Cr(Y )

) Φ−→ Mor
(

X, Cr(Y )
)
,

( f , g) �→
(

x �→
∑

z∈ f (x)

g(z)

)
.

The continuity of Φ can be proved in the same way as the proof of Proposition 4.4. Notice that if Z is projective, this is
only a special case of [11, Proposition 1.7].

Taking naive group completion and restricting Φ to Mor(Z , Cr(Y ))+ ×{V } for any V ∈ Cor(X, Z) = Mor(X,
∐

c�0 Sc Z)+,

we obtain the continuous group homomorphism

V ∗ : Mor
(

Z , Cr(Y )
)+ −→ Mor

(
X, Cr(Y )

)+
.

Using the definition of Φ , a direct computation shows that V ∗ ◦ W ∗ = (W ◦ V )∗ for any W ∈ Cor(Z , Z ′) in CorC . �
Lemma 7.2. In the construction of the s-operation, the join map # is a biadditive natural transformation between presheaves with
transfers of topological groups for any nonnegative integer r,

Mor
(−, Cr(Y )

)+ × Mor
(

pt, C0
(
P1))+ #−→ Mor

(−, Cr+1
(
Y # P1))+;

the suspension map Σ/ is a natural transformation of presheaves with transfers of topological groups,

Mor
(−, C0(Y )

)+ Σ/−→ Mor
(−, C1(Σ/ Y )

)+
.

Proof. All functors here are presheaves with transfers of abelian topological groups by Lemma 7.1. As reviewed in Sec-
tion 2.3, everything is clear except the compatibility of # and Σ/ with transfer maps. Since Σ/ is the restriction of # in
a special case, we only need to show that # is compatible with transfer maps. It is enough to check that the following
diagram commutes for any elementary finite correspondence V ∈ Cor(X, Z).

Mor(Z , Cr(Y )) × Mor(pt, C0(P
1))

#−−−−→ Mor(Z , Cr+1(Y # P1))⏐⏐	V ∗×Id

⏐⏐	V ∗

Mor(X, Cr(Y )) × Mor(pt, C0(P
1))

#−−−−→ Mor(X, Cr+1(Y # P1))

For any ( f ,
∑

ni pi) ∈ Mor(Z , Cr(Y )) × Mor(pt, C0(P
1)), a straight forward calculation shows that both V ∗(#( f ,

∑
ni pi))

and #(V ∗ × Id( f ,
∑

ni pi)) are the same morphism sending x ∈ X to the element
∑

z∈V (x) f (z) # (
∑

ni pi) in Cr+1(Y # P1).

So # ◦ (V ∗ × Id) = V ∗ ◦ # and the proof is complete. �
We are now ready to prove the main result of this subsection.

Theorem 7.3. s ∈ Lq+1 H2q(℘mor(q)). That is, the usual s-operation is compatible with transfer maps.

Proof. The proof is to write down the construction of the s-operation and check that the natural transformation at each
step is compatible with transfer maps. By Lemma 7.2, the diagram (1) in Section 2.3 defines transformations of presheaves
with transfers of topological spaces

Z q(−) × Z0
(
P1) #−→ Mor

(−, C1
(
Pq+2))+

/Mor
(−, C1

(
Pq+1))+ Σ/←− Z q+1(−), (2)

where Z q(−) is the functor sending X ∈ CorC to the topological group Mor(X, C0(P
q))+/Mor(X, C0(P

q−1))+ and Z0(P
1)

denotes the topological group Mor(pt, C0(P
1))+ . Taking the singular chain complexes Sing∗(−), we obtain natural transfor-

mations between contravariant functors from CorC to the category of simplicial sets

Sing∗
(

Z q(−) × Z0
(
P1)) #−→ Sing∗

(
Mor

(−, C1
(
Pq+2))+

/Mor
(−, C1

(
Pq+1))+) Σ/←− Sing∗

(
Z q+1(−)

)
. (3)

The map Σ/ in (3) is a natural transformation of contravariant functors from CorC to Ch(Ab), the category of chain complexes
of abelian groups. The map # in (3) is not a group homomorphism, but it is biadditive and Z-balanced in the sense that
(a # nb) = (na # b) for any integer n and elements a and b. So the map # in (3) induces a natural transformation

d
(
Sing∗Z q(−) ⊗ Sing∗Z0

(
P1)) #−→ Sing∗

(
Mor

(−, C1
(
Pq+2))+

/Mor
(−, C1

(
Pq+1))+)

, (4)

where d(Sing∗Z q(−) ⊗ Sing∗Z0(P
1)) is the diagonal complex of the bisimplicial group
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(s, t) �→ Sings Z q(−) ⊗ Singt Z0
(
P1).

The map # in (4) is a natural transformation between contravariant functors from CorC to Ch(Ab) by the universal property
of tensor product. The generalized Eilenberg–Zilber Theorem [2] gives a natural quasi-isomorphism

d
(
Sing∗Z q(−) ⊗ Sing∗Z0

(
P1)) EZ−→ Tot

(
Sing∗Z q(−) ⊗ Sing∗Z 1(pt)

)
. (5)

Let s ∈ Sing2 Z0(P
1) be a generator of the group π2Sing∗Z0(P

1) = Z. The inclusion

Sing∗Z q(−) ∼= Sing∗Z q(−) ⊗ (Z · s) −→ Tot
(
Sing∗Z q(−) ⊗ Sing∗Z 1(pt)

)
gives a natural transformation of contravariant functors from CorC to Ch(Ab):

Sing∗Z q(−)[2] i−→ Tot
(
Sing∗Z q(−) ⊗ Sing∗Z 1(pt)

)
. (6)

Put (3), (4), (5) and (6) together and after sheafification, we obtain an element s ∈ Lq+1 H2q(℘mor(q)) in the derived
category of Nisnevich sheaves with transfers

s = (Σ/ )−1 ◦ # ◦ (EZ)−1 ◦ i : ℘mor(q)[2] −→ ℘mor(q + 1).

Since the construction described above is the same construction of the s-operation as described in Section 2.3, the induced
operation s∗ on smooth varieties is the same as the usual s-operation. �

It follows from the theorem that si is an element in Lq+i H2q(℘mor(q)) for any i � 0. We will need the following fact
about the element si in the next subsection. Recall that an element g in an abelian group G is called torsion if ng = 0 for
some natural number n and g is called n-divisible if g �= 0 and there exists some element g′ such that g = ng′ .

Lemma 7.4. For any i � 0, si ∈ Lq+i H2q(℘mor(q)) is not torsion or n-divisible for any natural number n.

Proof. It is shown in [8] that the morphic cohomology ring L∗H∗(Spec(C)) is the polynomial ring Z[s] and the operation si

acts as multiplication by si . So the operation si is not torsion or n-divisible for any n. �
Since τq = τq+1s (see [8, Theorem 5.2]), Theorem 6.12 immediately implies the following result.

Theorem 7.5. Let X be a quasi-projective complex variety and q be an integer such that all irreducible components of X have dimension
less than or equal to q, then the s-operation is an isomorphism for all p.

s : Lq H p(X)
∼=−→ Lq+1 H p(X).

7.2. Natural transformations of morphic cohomology of motives

We continue to calculate the group Lq+i H2q+ j(℘mor(q)) = HomDM(℘mor(q),℘mor(q + i)[ j − 2i]). In fact, the calculation is
much easier with finite coefficients.

By the Universal Coefficient Theorem from commutative algebra, it is easy to see that the complex ℘mor(q)/n = ℘mor(q)⊗
Z/n is A1-local and hence an object in the category DMeff ,−

Nis (CorC,Z/n). The category DMeff ,−
Nis (CorC,Z/n) is constructed

in a similar way as of DM in Section 2.1. Objects in DMeff ,−
Nis (CorC,Z/n) are bounded above A1-local chain complexes of

Nisnevich sheaves with transfers of Z/n-modules. Please see [16] for more details. The same argument in the proof of
Theorem 5.1 shows that ℘mor(q)[p − 2q]/n represents the (q, p)-th morphic cohomology with coefficients in Z/n on smooth
quasi-projective varieties.

Definition 7.6. For any K ∗ ∈ DMeff ,−
Nis (CorC,Z/n) and integers p and q with q � 0, the (q, p)-th morphic cohomology of K ∗

with coefficients in Z/n is defined as

Lq H p(K ∗,Z/n) = Hom
DMeff ,−

Nis (CorC,Z/n)

(
K ∗,

(
℘mor(q)/n

)[p − 2q]).
In particular, the (q, p)-th morphic cohomology of a quasi-projective complex variety X with coefficients in Z/n is defined
as Lq H p(X,Z/n) = Lq H p(M(X)/n,Z/n).

As usual, let M(Pq/q−1) denote the cone of the natural map M(Pq−1) −→ M(Pq) in the triangulated category DM. It
follows from [20, §9] that the motivic cohomology and morphic cohomology coincide on smooth quasi-projective varieties
X with finite coefficients, i.e., the natural map
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H p((
M

(
Pq/q−1)/n

)
(X)

)−→H p((
℘mor(q)/n

)
(X)

)
is an isomorphism for any integer p and nonnegative integer q. So the natural map M(Pq/q−1)/n

∼=−→ ℘mor(q)/n is an
isomorphism in DMeff ,−

Nis (CorC,Z/n).

Lemma 7.7.

Lq+i H2q+ j(℘mor(q)/n,Z/n
) =

{
Z/n if i � 0 and j = 0,

0 otherwise.

Proof. Since M(Pq/q−1)/n ∼= ℘mor(q)/n, we have

Lq+i H2q+ j(℘mor(q)/n,Z/n
) = Lq+i H2q+ j(M

(
Pq/q−1)/n,Z/n

)
.

To calculate the group on the right-hand side, we consider the following long exact sequence of morphic cohomology and
singular cohomology associated to the distinguished triangle M(Pq−1)/n −→ M(Pq)/n −→ M(Pq/q−1)/n −→ M(Pq−1)/n[1].

· · · −→ Ls Hn(M(Pq/q−1)/n,Z/n) −→ Ls Hn(Pq,Z/n) −→ Ls Hn(Pq−1,Z/n) −→ · · ·
↓ ↓ ↓

· · · −→ Hn
Sing(M(Pq/q−1)/n,Z/n) −→ Hn

Sing(P
q,Z/n) −→ Hn

Sing(P
q−1,Z/n) −→ · · ·

In the diagram, the vertical maps are given by the natural transformation τ∗ as discussed in Section 6. The horizontal maps
are induced by the standard embedding Pq−1 −→ Pq . If s = q + i � q, all vertical maps are isomorphisms and the result
follows easily. If s = q + i < q, the result follows from the fact that the vertical maps are isomorphisms for n � 2s and the
fact that Ls Hn(X) = 0 for any n > 2s on a smooth variety X . �

Since Z
×n−→ Z −→ Z/n is a resolution by representable Nisnevich sheaves in the category ShNis(CorC,Z), it follows from

the definition of the tensor structure
tr⊗

in DM (see [16, §8]) that we have a natural short exact sequence

0 −→ HomDM(M∗, N∗)/n −→ HomDM

(
M∗, N∗

tr⊗
Z/n

)
−→ Tor1

(
HomDM

(
M∗, N∗[1]),Z/n

) −→ 0.

To compute the middle term, we recall from [12, Lemma 4] the natural isomorphism

HomDM

(
M∗, N∗

tr⊗
Z/n

) ∼=−→ Hom
DMeff ,−

Nis (CorC,Z/n)
(M∗/n, N∗/n).

When applied to the case N∗ = ℘mor(q + i)[ j − 2i], these two results together give the following fact.

Lemma 7.8. For any M∗ ∈ DM, there is a natural short exact sequence

0 −→ Lq+i H2q+ j(M∗)/n −→ Lq+i H2q+ j(M∗,Z/n) −→ Tor1
(
Lq+i H2q+ j+1(M∗),Z/n

) −→ 0.

We are now ready to prove the main result of this section.

Theorem 7.9.

Lq+i H2q+ j(℘mor(q)
) =

{
Z ⊕ V i,q if i � 0 and j = 0,

W i, j,q otherwise.

Here V i,q and W i, j,q are some vector spaces over the rational numbers Q.

Proof. By Lemma 7.8 we have the following short exact sequence

0 −→ Lq+i H2q+ j(℘mor(q)
)
/n −→ Lq+i H2q+ j(℘mor(q),Z/n

) −→ Tor1
(
Lq+i H2q+ j+1(℘mor(q)

)
,Z/n

) −→ 0.

If i < 0 or j �= 0, we have Lq+i H2q+ j(℘mor(q),Z/n) = 0 by Lemma 7.7. So

Lq+i H2q+ j(℘mor(q)
)
/n = Tor1

(
Lq+i H2q+ j+1(℘mor(q)

)
,Z/n

) = 0.

If i � 0 and j = 0, we have Lq+i H2q(℘mor(q),Z/n) ∼= Z/n by Lemma 7.7. By Lemma 7.4, Lq+i H2q(℘mor(q)) contains an
element si which is not n-divisible for any n. So the group Lq+i H2q(℘mor(q))/n contains a copy of Z/n as a subgroup, which
enforces the second injective map in the short exact sequence to be an isomorphism. So we have
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Lq+i H2q(℘mor(q)
)
/n = Z/n and Tor1

(
Lq+i H2q+1(℘mor(q)

)
,Z/n

) = 0.

This calculation immediately implies that Lq+i H2q+ j(℘mor(q)) is a Q-vector space if i < 0 or j �= 0. For i � 0 and j = 0,
the group Lq+i H2q(℘mor(q))/n is isomorphic to Z/n for any natural number n and the group Lq+i H2q(℘mor(q)) is torsion
free. The obvious map λ : M(Pq/q−1) −→ ℘mor(q) induces a map λ∗ : Lq+i H2q(℘mor(q)) −→ Lq+i H2q(M(Pq/q−1)) ∼= Z and a
natural map between the short exact sequences of Lemma 7.8, for which the first 3 terms are written down in the following
diagram.

0 −−−−→ Lq+i H2q(℘mor(q))/n
∼=−−−−→ Lq+i H2q(℘mor(q),Z/n)⏐⏐	λ∗⊗1n

⏐⏐	∼=

0 −−−−→ Lq+i H2q(M(Pq/q−1))/n
∼=−−−−→ Lq+i H2q(M(Pq/q−1),Z/n)

The three isomorphisms in the diagram have already been explained. It follows that the left vertical map λ∗ ⊗ 1n is an
isomorphism for any n. So λ∗ : Lq+i H2q(℘mor(q)) −→ Z is onto. Denote the kernel of λ∗ as V i,q , then Lq+i H2q(℘mor(q)) =
Z ⊕ V i,q. Clearly V i,q is torsion free and divisible, so it is a Q-vector space. �
Remark 7.10. It follows from the proof that si is a generator of the direct summand Z of Lq+i H2q(℘mor(q)) where i � 0. An
element t in the vector spaces W i, j,q or V i,q has the following property: for any integer n, there exists a unique natural
transformation tn such that t = ntn . Conjecturally, there should be no such non-zero natural transformation t since we do
not see any Q-space in known morphic cohomology groups with integral coefficients.

The natural transformations of morphic cohomology of motives considered in this section are special (non-stable) mor-
phic cohomology operations. Namely, these natural transformations are those operations which are compatible with the
transfer maps.
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