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Abstract

Verheul, E.R., Elementary proofs concerning results about functions on the n-sphere, Topology
and its Applications 40 (1991) 101-116.

A notion of sign map is introduced for functions on the n-sphere. There are three kinds of signs:
-, 0, +. It is shown that if two sign maps are homowopic then they have the same sign. From this
theorem many classical results on functions of the n-sphere can be derived in a fairly elementary
fashion.

Keywerds: Brouwc: fixed point theorem, fundamental theorem of algebra, hairy ball theorem,
homotopy, sign of a map, simplicial approximation.
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Introduction

In [3] Hirsch gave an elementary proof of the nonretractibility of the cell on its
boundary. In this proof he approximated an assumed retraction of the cell onto the
boundary by a simplicial retraction of the cell into its boundary, and he obtained
a contradicticn via the construction of an “arc” of simplices. The idea behind the
proof is beautifully simple and what is more, one can see geometricly what is going
on. Alas the existence of such a simplicial retraction is not quite an elementary
result, and so this proof involves even more preparation as, for example, a proof
using Sperners lemma.

In [2] Dugundji defines the degree of a map between n-spheres and proves that
homotopic maps have the same degree. This is very short and elementary, and
provides more information than Brouwer's fixed point thecsem or any of its re‘atrves
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Inspecting the proof of Dugundji one sees that the degree of a map occurs actually
as the degree of a “proper vertex map” depending on a triangulation of the sphere.
This triangulation may be different at the time of definition and at the time a
homotopy with some other function is considered. When Dugundji attempts to
prove that the degree does not depend on the simplicial presentation of the sphere,
he supposes things easier than they really are, and his argument is in error. By the
use of special “simplicial approximations™ it seems possible to repair this proof,
but the arguments become more elaborate and non-elementary.

Our aim is not to repair Dugundji’s proof. We shall restrict ourselves to consider
the sign of the degree (without referring to the notion of degree). We are then able
to derive many of the classical consequences. In our proofs we will develop a new
method which appeals to the same geometric intuition as Hirsch’s construction.
This self-contained method avoids the existence of special simplicial approxima-
tions, and is more widely of use than the original method of Hirsch.

On the class of (continuous) functions of the n-sphere into R"*'\{0} we will
introduce the notion sign map; we consider three kinds of sign, negative, zero and
positive. Roughly, a positive (respectively negative) sign map turns “small” n-
simplices into n-simplices without (respectively with) changing of the orientation.
A zero sign map sends n-simplices into something of lower dimension. This notion
behaves very well and it turns out that surprisingly many functions are sign maps.
For example a polynominal in C is a sign map, when restricted to a sufficiently
large sphere. All kinds of “normal” functions like linear maps and constant maps
are sign maps too. Our main theorem states that if sign maps are homotopic they
have the same sign. Among the corollaries are: the fixed point theorem of Brouwer,
the fundamental theorem of algebra and the “nonzero vectorfield” theorem. It
chould be noted that contrary to the Brouwer fixed point theorem, there are not
many “‘elementary” proofs of the *“‘nonzero vectorfield” theorem.

In [1] Dodson gave a proof of the fundamental theorem of algebra. Dodson
mentioned some other results that his method could give too, without actually
proving them. It turns out that these results can be easily proved with our methods.

1. Properties and examples of sign maps

For q>1let €% ':={xeR?|| x|l = R} be the (q ~ 1)-sphere of radius R. We usually
think of || - || as the standard norm, but occasionally we allow it to be another norm.

Definition. Let se{-1,0,+1}. A map h: 5% ' >R?\{0} is called a sign map (of sign
s) if there is a 6 > 0 with the following property:
If {xo,...,x,_,} is a linearly independent set of diameter less than 8, then

sign det(xo, Xy, ..., x,_,) - sign det(h(x,), h(x,),..., h(x,,)) =s.

Observe that for a nonzero sign map the explicit demand that the image set avoids
zero is superfluous.
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Let ||| be a norm on RY Let & be the radial projection,

. _ x-R
7 RI\{0} > SE', x>

1

We make a few simple observations which are stated here for later reference.

Example 1.1. Let R, be a positive number.

(@) If £:S%'>R\{0} is a sign map, then = o f is a sign map with the same sign
as f.

(b) Let |-, be another norm on R? Then the projection of the sphere {xe
R?|]lx]l; = R.} onto the sphere Sk, i.e., the restriction of 7 to {xeR?||| x|, = R}, is
a + sign map.

Exampie 1.2. Letg:S% '>R?and h:S% ' > S% ' be sign maps. If sign(h) is nonzero,
or if g is the restriction to Sk of a regular linear map, then the composition go h
is also a sign map, with sign sign(g) - sign(h).

In the remainder of this section we shall give some important examples of sign
maps.

Example 1.3. Let c € R? be different from the origin. Then the constant map c¢: S '~
R x -, is a sign map of sign 0.

Example 1.4. A nonsingular linear map A:R?-RY, restricted to a (g —1)-sphere,
is a sign map with sign equal to sign det(A).

In what follows we see C as R?, the norm shali be the standard (Euclidean) norm.
Recall there is a continuous function arg: C\{0} >R mod 27 defined by
arg(z)=p © |z|-e* =z
We also have the following equality for all z,, z,€ C\{0},
det(z,, 2;) =Im(Z, - 2,) =|z)||2,| - sin(arg(z,) —arg(z,)).
Let a, beC, and let n be an integer.

Example 1.5. The power map C~C, z- z" restricted to Sk, for R> 0 fixed, is a sign
map with sign equal to sign(n).

Example 1.6. If |a| # |b|, then the map C - C, z > az" + bz" restricted to sk, for R>0
fixed, is a sign map with sign equal to sign(n(ja|—|b})).

Example 1.7. Let p(z)=a,z"+a, 2" '+ - -+a, be a polynomial in C of degree
n=1. Then the following hold.'
(a) The restriction of p to Sk is a + sign map, provided
Re[z- p'(z) - p(2)]>0 for every z€ Sk. T (1)

! The following conditions on R are of special interest, for instance in Theorem 3.8. If one is only
interested in the exisience of a R >0 such that p restricted to Sk is a + sign map, then one car iind a
much easier proof.
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(b) The lefthand side of (1) is minorized by

Osk<lsn

Y kla’R*- ¥ (k+D]aa|- R*. (2)
k=1

(c) Suppose R >0 is such that formula (2) takes a positive value. Then the restriction
i

of p to Sk is a+ sign map.

Proofs. For a proof of the statements in Examples 1.5, 1.6 and 1.7, we first make
the following observation. Let f: Sk - C be a continuous function, and let s € {—1, 1}.
Clearly, f is a sign map of sign s if there is a §> 0 such that for z, we S& with

|z—w|< 8 and z # w the following equality holds,

Now put w=z-¢* with ue(—mu,n], which implies that Im(Z- w)= R? - sin(p).
Since the restriction of arg to Sk is a continuous open function this is equivalent
with the existence of a >0 such that

0<|u|<d = sign(Im(f(2) - f(z: €*)) -sin(p) ') =s for every ze Sk. (3)

First, we will show Example 1.6 (from which 1.5 trivially follows). Let f be such
as described in Example 1.6, and let R> 0. If n =0, then Example 1.6 follows from
Example 1.3. So we may assume that n # 0. Let z € S; and u € (—, 7). A straightfor-
ward calculation shows that Im(f(z) - f(z- €*)) equals R*"- (|a]>*~|b[?) - sin(n - p).
So if we take any 6 with 0< & <|2 - w/nj, then we are in the situation of property
(3), with s =sign(n(|a|—|b))).

Next, we will give a proof of 1.7. We will first show 1.7(b). To this end, let R> 0.
Direct verification yields the following equality for z € Sk,

Re[z- p'(z) - p(2)]= Z kla,’R*+ ¥ (k+!)Re[ad-z*-2']. (4)

k= Osk<l=n

From this the desired inequality

Reiz- p'(2) - p(2)]= P kla|*R** ~ Z_ (k+Dlaa] - R,
k=1 Osk<lIsn
easily follows.

For a proof of Example 1.7(a) (from which 1.7(c) trivially follows), let R>0 be
such that (1) holds. Compactness of the sphere Sk together with an continuity
argument shows the existence of a 6> 0 such that® Re[z- p'(z) - p(2)]1= 6 for all
z€ Sk. For ze Sk and 0<k, I<n we write

Tk’](Z) = ﬁkfka,z'.

2 If we are in the situation of (c), then we do not need to use the compactness of Sk, as fo.nula (2)
provides us with such a 6.
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Observe that T . (z) =|a.|* - R?*. Using this notation, formula (4) yields

Re[z-p'(z)-p(z)kélk-n,k(z)+ S (k+D)R[Tu()]. (5

O<sk<lI=sn

We aim at an application of formula (3). To this end, let u € (—m, «]. Consider the
following equalities, which can be deduced by direct computations:

Im[p(z) - p(z-€*)]= kzi:l Im(T(2) - €™)+ ) Im( Ty (z2) - €™)

O<kilsn;k#1

- él Tor(z) -sin(kp)+ T Im(Ti(z)

Osk<lsn;k=l

e+ T(z) - €*)

=é. Tou(2) -sin(kp)+ §  Im(To(z)

Osk<lsnk=l
e+ T (z) - ™). (6)
Now let 0=k <I=<n. One can easily verify the following equality.
Im( T (z) - ™)+ Im(T,(z) - €**)
= Re(Ti((2))(sin(lp) +sin(kp)) + Im( Ty ((2))(cos(ln) — cos(kp)).  (7)
The following formulae are standard:
lim sin(u) ™" * (sin(lp) +sin(kw)) = k+1,

©n—>0

lim sin(x) ™" - (cos(In) —cos(ku)) =0.

n-0
In view of these formulae and formula (7), we can uniformly (with respect to z)
approximate.the term (k+1)- Re(Ty(2)) of (5) by sin(u)™" - [Im(T,,(2) - e'’™™)+
Im(T,,(z) - e'**)] (observe that all T, are bounded). Similarly, we can uniformly
approximate k - Ty, (z) by sin(u) ™" - T; i (2) - sin(kw). Hence by (6) and (5) we can
uniformly approximate Re[z- p'(z) - p(z)] by sin(u)™" - Im[ p(z) - p(z- €'*}]. That
is, we can find a 6 >0 such that for ail 0<|u|< & and ze Sk

[Re[z- p'(z) - p(2)]-Im[ p(2) - p(z- €*)] - sin() "] <36.
So we conclude that for all 0<|u|<8 and zeSk the inequality

Im[p(z) - p(z- €*)] - sin(u) '] >0, holds. By formula (3) this implies that p restric-
ted to Sk is a sign map of sign +. [J

2. The main theorem and its proof

Our main result is:
Theorem 2.1. If two sign maps are homotopic, then they have the same sign.

This is a “strong” result as the corollaries in Section 3 will show.
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Prior to the proof of this theorem we shall show a crucial lemma. First we introduce
some notation. The (closed) simplex o spanned by an affinely independent set
{4, ..., a,} will be denoted by (ay, . .., a,). The interior o° of & is the set

{b

Note that such simplices are unordered. If the vertices are ordered by gqp<a, < - - <
a,, then the resulting ordered simplex will be denoted by (a, ..., a,).

b= Z widi, 1; >0, ¥ #n‘zl}-
i~0 i=0

Definition. Let E be a g-simplex in RY B be a (¢ —1)-face of £ and v the only
vertex of E not in B. The affine hull of B gives a hyperplane P in RY, so R? is the
disjoint union of this hyperplane P and two open halfspaces. Because v can not
be in P it is in one of the open halfspaces, say H. This halfspace will be called the
good side of B in E. Now take an (ordered) (g —1)-simplex (uy, u;, ..., ;) in B
and any y at the good side of B in E (for example v) and define the sign of
(to, Uy, . .., Uy—y) in E, denoted by sign((uy, u,, ..., 4,,), E), as the sign of det(u,—
VUi =Y, Uz= Y. Uy =) As {Uo— Y, uy—y, 2~Y, ..., U, -y} is a basis of R?
forevery y in H, that determinant is nonzero. Furthermore, as “taking a determinant”
is a continuous operation, and as H is connected, it is clear that the sign is
independent of the choice of y in H.

Lemma 2.2 (Key-lemma). Let A be a convex set with affine dimension q—1 in R, E
a g-simplex in R? and B a (q—1)-face of E. If f: E > A is an affine map such that
the affine dimension of f(B) equals q— 1, then the following are true.
(1) There is a function g: B®->3E\B such that if b B°, then g(b) is the unique
point c in 3E\ B with f(c) = f(b).
Let C be a (q—1)-face of E and let e c B°.
(2) If g(e)= C\C® and V is a neighborhood of e in B°, then there is a point e* in
V with g(e*)e C".
Let g(e)e C°.
(3) (a) There are convex open sets U (containing e¢) and V (cintaining g(e)) in
B respectively C° such that g|,: U~V is an affine isomorphism.
(b) If (up, uy,...,u,_y) is a (g~1)-simplex in U, then (g{ug), ..., gluy—))
is a (q—1)-simplex in V.
(c) sign((uo,...,u,,), E) and sign((g(uo),..., g(u,-,)), E) are opposite
signs.

Proof. Suppose E =(a,, ..., a,). Without loss of generaliiy, B =(a,...,@,_1), 2,€ C
and a,=0= f(a,) € A.

Let hull(A) denote the linear hull of A. We can consider f as a restriction of a
linear map F:R?- huii(A). Now let be B®, say, b=Y7_ wa, with u,>0if i<g,
p,=0and Y7 u;=1. Because A, B and f(B) have affine dimensicn (g —1) and
0< A, B, f(B) it follows that hull( A), hull(B3), F(hull{ B)) are (g —1)-dimensional
in RY Therefore F is a linear bijection of hull{ B) onto hull{ A) and the kernel of

F in R? is one-dimensional. Let k& be a nonsrivial element from the kernel, as
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k g hull(B) we can write k=3_, 6:a; with ¥7_ 6, =0 and 6, #0. We may assume
that 6,>0. An element of f~'(f(b)) N9E\B takes the form

q
Z (pitA6,)a;
i=0

where 1, +16,=0 for all i, u,+16,>0 and there is a i <gq such that u;+A6,=0.
It follows that

A =min{—u,/6;|6; <0},
existence and unicity therefore follow directly. This proves (1).

For a proof of (2) and (3)(a), (b), first note that if g(e) € C then k cannot be in
hull(C). Since k is parallel to g(e)—e and e B°. Consequently F restricted to
hull(C) is a iinear isomorphism. This yields an isomorphism G :hull(B)-> hull(C)

G = Flidicc)Flaune)s

extending gl,-'(c). In the situation of (2), we find that G(V) C is a neighborhood
of g(e) in C. Because the interier of C is dense in C one can find a ¢ in G(V) C°
and consequently there is a e* in V with

g(e*)=G(e*)=ce C"

In the situation of (3)(a), the set U:= G '(C° n B° is clearly convex open in B°
and contains e. Then V:= G(U)=g(U) is a convex open set in C° containing g(e)
and g restricted to U is an affine isomorphism. This proves (3)(a) which immediately
implies (3)(b).

As the contribution of a, to k, 6,, is positive and a,=0¢€ B C, it follows that k
is at the good side of hull(B) in E. We have already remarked that k is not in
hull(C), we have in fact:

Claim. k is at the good side of hull(C) in E.

Proof. Assume that —k is not at the good side of hull(C) in E, then k must be at
the good side of hull(C) in E. But as e is at the good side of hull(C) in E and as
a,=0€ C this would mean thai e+ Ak would be at the good side of hull(C) in E
for all A > 0 too, but this would mean that g(e) is not in hull(C) > C, a contradiction.

As uy€ hull(B) and g(u,) € hull(C) we find that u,+k and g(u,) — k are also at
the good side of hull(B) respectively hull(C). Now for all Ag, A;,...,A,_; =R we
have

det(ug—(ug+ k), u, —(ug+ k), uy—(uo+k), ..., uy_1—(up+k))
=det(—k, u,—(up+ k), u,—(up+k), ..., u,_y—(ug+k))
= —det(k, uy — (uo+ k), u,—(up+ k), ..., 41— (ug+k))
=~det(k, u; —(ug+ k)— (A, —2)k, u,— (ug+ k) —(A=2)k, ..., uy,
—(uptk)— (-, —2)k)
= ~det(uy+ Aok — (up+ Aok — k), u; — (up+ Ak — k), uy
—(ug+ Ak —k), ..., uy_ —(up+Ay_1k—k}).
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The way g was constructed gives that, for certain A, ..., A,_, the last determinant
equals

—det(g(uo) — (g(uo) — k), g(u,) — (g(uo) — k), g(u2)
—(g(uo)—k), ..., g(u,_1)—(g(uo) — k)).
This proves (3)(c). O

For the sake of brevity we say that (f, B, A) has the key-property if it has the
properties of Lemma 2.2. So A has to be a convex set with affine dimension q—1
in RY E a g-simplex in R% B a (q—1)-face of E and f: E > A has to be an affine
map such that the affine dimension of f(B) equals g —1.

Remark. If (f, B, A) has the key-property and C is as in part (3) of Lemma 2.2,
then (f, C, A) has the key-property too, as it follows directly from (3)(a).

Let M?:=[—-1,1]°\(—3,3)? a g-dimensional annulus in R? 3[-3, ]? and 3[ -1, 1]¢
are respectively called the inner and outer boundary of MY Denote the outer
boundary of M7 by S7°".

Proof of Theorem 2.1. In view of Examples 1.1 and 1.2 we only have to prove the
theorem for one particular norm and one sphere, and only for sign maps with an
image in that sphere. There is a norm on R? such that its unit sphere is the outer
boundary S?~' of M? So assume that f,g:S7'-> S?"! are homotopic sign maps
with different sign, say: f is not a 0 sign map. We may assume that £((1,0,...,0)) =
(1,0,...,0). To this end, let p denote the projection from S“~' onto the Euclidean
(g —1) sphere of radius one (cf. Example 1.1).- If H is a homotopy connecting f
and g then pe Hop™' is a homotopy connecting the sign mips pofep~' and
p e g o p~' with different signs and sign(p o f > p~') # 0. As a rotation on the Euclidean
sphere is a + sign function, we can use such a function to obtain the desired situation
(cf. Example 1.2).

Let 6,>0 (for f) and 8,> 0 (for g) be as in the definition of a sign map. Now
a homotopy connecting f and g induces a function F: M?- §?7!, which equals f
on the outer boundary and sends x in the inner boundary to g(2x).

Let A be the face {xeS?'|x,=1} of M b:=(1,0,...,0)e A® and a:=
d(b, S "\ A) (in which d is the Euclidean norr. on R?). Choose & >0 such that:
Vx,ye M%:d(x,y)<8->d(F(x), F(y))<3a. Take a triangulation D of M? with
mesh(D) < §, §,, 16, which has b as a vertex.

Let F* be the “affine approximation™ of F on D (i.e. F*(v)= F(v) for vertices
in D; extend affinely on simplices in D). Noie that F*(b)=b as b is a vertex of D
and that in general the image of F* is not in $97". It can be easily seen that F*
has the following property on the inner and outer boundary.
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(I) If B is a (g9 —1)-simplex of D contained in the outer boundary (respectively
inner boundary) and {x,, ..., x,_,} are independent (affine and linear dependence
are equivalent here) in B, then

sign det(xo, . . . , X,—) - sign det(F*(x,), ..., F*(x,-;))

=sign(f) (respectively sign(g)).

Let B be a (g —1)-simplex of D contained in the outer boundary with be B and
E the unique g-simplex in D which has B as a face. Note that B must be contained
in A

Now consider sequences ( B;, E;, ¢;)iZ¢' with B; a (g —1)-face of E;, E; a g-simplex
in D, B,= B, E,= E with the following properties (see Fig. 1):

(1) EEnE;,_,=B; Vi>0,

(2) Vi<m ¢, e BY: F*(e;) = F*(ep);

(3) all e; are different.

As D is finite and as such a sequence exists, at least for m =0 (take any e,€ BJ)
there is a sequence of maximal length (B;, E;, ¢;);Z5.

Now let e be a vertex of E;, we have:

d(F*(e), b)<d(F*(e), F*(e))+d(F*(e), b)
=d(F*(e), F*(e)) + d(F*(e,), F*(b))<z;a+3a=a.

Therefore F*(E;)< A. By (I) and as sign(f) # 0 we conclude that (F*|g,, B,, A)
has the key-property. As e, € B} the remark following the key-lemma gives that
(F¥|g,, B1, A) also has the key-property. Because F(E;)< A it then follows that
(F*|g,, By, A) has the key-property. As all ¢;€ B} and F(E;) = A we can repeat this
argument and we have:

(F*|g, Bi, A) has the key-property Vi<n.

Fig. 1.
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Now let g for i=0,1,...,n be the functions B}->dE\B; as described in the
key-lemma. According to (3)(a) of the key-lemma there are convex open sets U, < B}
containing e; for i=0,1,...,n such that for i<n g; restricted to U, is an affine
isomorphism on U,,,. Furthermore according to (1) of the key-lemma there is a
(g —1)-face B:= B,., in E, different from B, in which an element e = g.(e,) with
F*(e,) = F*(e). This e need not be in B;,,, but according to (2) of the key-lemma
combined with (3)(a) there are points e, e},, and convex open sets U}, Uf,,
with e¥e U*¥< U, and e*,, € U¥,, < B;, such that e}, = g,(e}) and g, restricted
to U* is an affine isomorphism onto U¥,,. For i <n define points e} and convex
open U# < U; by taking pre-images under the g; (so e}_,:=g.',(e}) and U}_,:=
2.1, (U¥) etc.). So we have convex open sets UF and points e¥e U¥c B; for
i=0,1,...,n+1 with e¥,, = g,(e¥) and such that the g; restricted to U are affine
isomorphisms onto U¥,,. Note that all ¢ remain different for all i <n and that at
least e*,,#ef. Take a (q—1)-simplex (ao,...,a,-,) in U{. Let o=
(go(ao), - - -, 8o(a,-,)) be the pointwise image. According to (3)(b) of the key-lemma
this is also an (ordered) (g —1)-simplex in B,. Define ;< U¥ fori=1,2,...,n+1
analogously. Denote a,,,, by (b, ..., b,_,). By construction we have that

(!l) (F*(a0)9 F*(al)"'-s F*(aq—l))=(F*(b0)9 F*(bl)a"'aF*(bq—l))

(equality as ordered simplices). (3)(c) of the key-lemma states that :igii(o,, E,) and
sign(o,, E,) are opposite. As E, and E, lie on opposite sides of B, we conclude
that sign(o,, E;) and sign(o,, E,) are equal. Using this argument repeatedly it
follows that for i=0,1,...,n sign(o,, E,) and sign(o;.,, E;) are opposite, in
particular

(II1) sign(o,, E,) and sign(o,,,, E,) are opposite.

Now we claim that B, ,,, and hence also o,,,, has to be in either the outer- or inner
boundary. This would finish the proof. Indeed, if o,,,, is in the outer boundary then
the origin is at the good side of o,., so (III) implies that det(a., a,, ..., a,-,) and
det(by, by, ..., b,_,) have different sign. This, together with (II) contradicts (I).

If o, is the inner boundary then the origin is not at the good side of o, so
(111) implies that det(ao, a,, ..., a,_,) and det(b,, b,, . .., b,_,) have the same sign.
This, together with (II), also contradicts (I), and the theorem is proven.

So let us prove the claim. If B, ., is not in the inner or outer boundary we can
define E, ., as the unique g-simplex in D different from E, such that E,NE, ;=
B,.,. We chow that the sequence (B;, E;, €¥);-¢.1...n+1, also has properties (1), (2),
(3) contradicting the maximality of the original sequence.

(1) and (2) follow by construction.

As for (3), we only have to show that ef,, = e} implies i=n+1. Assume i # n+1.
By the construction of e¥., it follows that i <n. Now e*e B~ B%,,soas Dis a
triangulation we have B; = B, .,. It turns out that E,, E;_, and E; have one (q—
1)-simplex as a common face, namely B, .,, we conclude from the fact that D is a
triangulation of an annulus in Euclidean space that E, = E,_,or E,=E;or E,=E,_,.
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The first case (1) of the key-lemma gives e}, = e}, a contradiction. The other cases
give similar contradictions. [J

3. Consequences of the main theorem

Most of the following corollaries are classical.
Corollary 3.1. A sign map S% ' >R‘\{0} of nonzero sign is not nullhomotopic.
Corollary 3.2 (Brouwer). The identity S% ' - S% ™" is not nullhomotopic.

Corollary 3.3. If the restrictions to S% ' of two nonsingular linear maps R >R to
S7°" are homotopic, then the determinants of these maps have the same sign.

Corollary 3.4. In an even-dimeasional sphere the identity and the antipodal map
(x - —x) are not homotopic.

Corollary 3.5. The nth power map Si > Sk, z- z" is not nullhomotopic for n # 0.

Corollary 3.6. The map S - C\{0}, z—> az" + bz" is not nullhomotopic if |a| # |b| and
n#0.

Corollary 3.7. A polynomial p(z)=a,z"+a,_,z" '+ -+a, in C of degree n=1
has a root in C.

Proofs. Corollaries 3.1 to 3.6 directly follow from the main theorem and the examples
in Section 1.
For a proof of Corollary 3.7: According to Example 1.7 there is a R >0 such that
p restricted to Sk is a + sign map. That restriction can therefore not be nuilhomotopic
by Corollary 3.2(1). Then p must have roots in {z€ C||z| < R}. If not then H(x, t):=
p(t- x) would define a nullhomotopy, a contradiction. [J

Note that formula (2) gives a way to effectively find a radius for a circle inside
of which must be a zero. In general the estimated circle need not coniain all zeros
of £ For example one can easily deduce that for (2z —1)(z+9) the radius 2 satisfies
the condition 1.7(c), whereas —9 is a zero outside this circle. This yields an important
difference with the work of Dodson in [1], who proved that a polynomial as in
Corollary 3.7 must have a zero within the circle with radius R=
max{1, |a,| " (@—1|+|@s_sl + - * - +|ao])}. This bound can be obtained directly. Indeed
as

n—1

n—1 ) 3
=la,z"| - X lai2’|=l2l""(lanllzl—_Z la]|z|! ”“)

j=0 j=0

n )
Z:(yz’
Jj=0
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and R=1 we have for |z|> R that first of all

|p(2)| > |a,,|(R —'.,Z_:o la"‘n+l|).

Furthermore as R=|a,| '(|a,_)|+|a,_o|+: - *+]ag]) the right side of the last
inequality is non-negative. Hence all zeros of f have to be within the circle with
radius R.

By Example 1.7 we obtain that a complea polynominal p restricted to Sk is a +
sign map if we take R > 0 large enough. The following theorem gives more specific
information.

Theorem 3.8. Let p be a polynominal of degree n=1 and d a zero of p of maximal
modulus |d|. Then the restriction of p to Sk is a + sign map for every R>|d|.

Proof. Without loss of generality, we may assume that the coefficient of the highest
power of p equals 1. By “the fundamental theorem of algebra™ (cf. Corollary 3.7)
we can write p as

p(z)=(z-d\)(z—d,) - - (z—-d,).

Where d,,...,d, are all zeros of p. We aim at the application of Example 1.7(a)
so we have to prove that for every R >|d| and z with |z|= R we have

Re[z- p'(2) - p(2)]>0.

Using the above form of p one can easily see that

Re[z:p'(2) - p(2)]= T Re[z-(z=d)]" [] |z-d;I". (*)
i=1 =i
Now for z with |z|= R one can easily show that Re(z- (z—d;))= R(R —|d;|)>0.
Applying this inequality to the right-hand side of (*) finishes the proof. O

Let p be a polynominal in C. The previous theorem shows that the sign of
Re[z: p'(z) - p(z)] gives information about the position of the zeros of p. In fact,
if one takes a “fine” collection of points in a large ball of the complex plane and
marks the points were Re[z- p'(z) - p(z)] is negative, then one gets a good idea of
the position of the zeros of p. I do not know whether one can construct an algorithm
with this procedure.

To obtain further corollaries to the results in Corollaries 3.1 to 3.6, we need the

following proposition.
Proposition 3.9. Let g:C\{0}>C\{0} and let f:C - C satisfy
lim f(z) - g(z)=c#0.

|zj»c0

Then the following are true.
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(a) There is a L>0 such that f(z) #0 for |z| = L.

(b) The restrictions of f and 1/g to S} are homotopic.
Suppose R >0 is such that g|s), is not nullhomotopic. Then,

(c) f must have a zero in {zeC||z|]<L}. Also

(d) if lim.|.. g(2) =0, then f is surjective.

Proof. Part (a) is clear. For part (b) we only have to prove that f;; - gs: is homotopic
with the constant function c. Indeed, multiplying this homotopy with (c- gs1)™
finishes the proof. Define H: S} x I » C\{0}

c, if t=0,

H(z1)= f(f) : g(f), ifo<r<l.

H is easily to be seen continuous at (z, 0), and is a homotopy as desired.

For part (c), first note that the fact that g|s) is not nullhomotopic easily implies
that g|s: is not nullhomotopic. Consequently, the function (1/g)|s: is not null-
homotopic either. Now by part (b) we conclude that fis; is not nuithomotopic. If
fhasnozerosin{zeC||z|] < L} then F(x, t) = f(tx) would be a homotopy connecting
fls: and the constant f(0).

(d) follows directly from (c) by looking at f(z)—a for any acC. [

A different formulation of the previous proposition is as follows.

Proposition 3.9'. Let g:C\{0}>C\{0} and let f:C - C satisfy
f(2)

|1|T:o gz) ¢ =0
Then the following are true.
(a) There is a L>0 such that f(z) #0 for |z|= L.
(b) fls: is homotopic to g|s; .
Suppose R >0 is such that g|s}, is not nullhomotopic. Then,
(c) f must have a zero in {ze C||z| < L}. Also
(d) if limy,.» 1/8(2) =0, then f is surjective.

Corollary 3.10 (to Proposition 3.9). If a polynominal p of degree n=1 has no zeros
on the circle with radius R, then p|s} is homotopic to z*|s1,, where k is the number of
zeros in the circle with radius R, counting multiplicities.

Proof. First assume that p has no roots in the circle with radius R. Then p|s}, is
clearly nullhomotopic and the corollary is clear. Secondly, let 4, d,,...,d; beall
zeros of norm less than R (counting multiplicities). Now define g by, g(z)=
!'[;‘:, (z—d;). By Proposition 3.9'(b) we conclude that g|s: is homotopic to z¥s1.
So we only have to prove that g|s; is homotopic to p|s:, which is equivalent with
(p/g)|s}, being nullhomotopic. This however, is trivial as the polynominal p - g has
no zeros in the circle with radius R. [
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points than zero as a centre. For Corollary 3.10 this yields: if there are k zeros in
the sphere around a point a, counting multiplicities, and no zeros on the sphere.
Then the polynominal restricted to the sphere is homotopic with (z - a)* restricted
to the sphere.

One can easily modify Proposition 3.9 and Corollary 3.10 to spheres with other

Then f is surjective if n <0 and f has a zero if n>0.
(b) Suppose,

. f(z;
lim —,——; exists and is nonzero.
izl @Z" + bZ

Then f is surjective if n>0 and f has a zero if n<0.

..... rjees

In [1] only part (b) for n>0 was mentioned. This corollary gives another proof
of the fundamental theorem of algebra. Using Corollary 3.11(b) one can deduce

cct

more theorems concerning polynominals. For exampie, a ““harmonic™ polynominal:
a;z"+:--+az'+ag+---+a '+ -+a_z"

with |a_,| # |a,| has a zero in C.

r.§° -8 !a r(xla X2yeey xn):= (xzr(lh xrr(2)’ LN ) xo‘(n),'
If o is an odd permutation, then
Vf:8" '->8"" AxeS" " flx)=x or f(x)=r(x).

Dennf Criimnmnca mat LFenme Nacallace 22 ¢ £Aallawura that ¢thha idaméiter nnement ha
1 EUVUI. JUpPpPUDSLY HuUL 11Ul Lvlvulialy J.J9 It 1UNlIUWY Lliatl ur IUCIIULy valiiutl ue
homotonic ta r owevar the functian Q1 5 Q"1 Jafined hy
llvlllv‘vylv VW Te AAVIVWYT Wi bilw L1 WBLIWARILUILE X4 « W) LA (%4 iwilllwiws VJ

€Crs4 ~oy - £7 Ny trae -~ ~L £ o Nt—1 s . 1

WI—2)x—21- J (X)) - {1 —=21)x—=2I" J{X])] NU=sI=3
H(x, t)=

75 YRR RN UL SR L, TN, PR Y SRS W VI PR R N SV SR T, PR Y oW by | el -4 -1

Wl — 1) X))~ \2e—2t) - JiX)) -\l = IX)—(c—2l) " J{X}| H3=si=i

is such a homotopy.

The following corollary is classical.

a1 4
T

€
]
sl
<
tal
-u

.13 (to Coroliary 3.4). Let (-, -) be the standard inner product in R

a
L ___ .1 _ 11
Then ihe following are equivalent.
{a) 2 ic onoze
\4) fiis even.
(WY The idontity and tho antinndal man of €7 4us mnt hamntanin
AV BFev slatiiic )y Witk AL wisnipulle miuwp Uy o 45T 1T nunmutupie.
(c) There is no continuous tangent vectorfield on S" with nonzero vectors.
(d) Vf:8"->S5"3xeS" j{x)=xor f(x)=—x
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Proof. (a)=>(b) This is Corollary 3.4.

(b)=>(c) If there were such a vectorfield then F(x, t):=x cos wt+ v(x) sin =t
would be a homotopy between the identity and the antipodal map.

(c)=(d) Suppose there is a map f not satisfying (d). Then

v(x) = (f(x) = (x, f(x))x) * | £(x) = {x, f(x))x]| ™

defines a continuous nonzero vectorfield.

(d)=(c) If vis a vectorfield as described in (c), then it cannot satisfy (d) because
(£x, x) is nonzero.

(c)=(a) If nis odd, say n=2m+1, then

. Qn n _
U-S —)S ’ v(xlast'-',x2m+2)—(_x2,xla—x4ax39"°’—x2m+2ax2m+l)

defines a map not satisfying (¢).

Part (c) of the above corollary is known as the “hairy ball theorem”.

From Corollary 3.13 it follows that the identity and the antipode map are
homotopic on a odd dimensional sphere. On the Euclidean unit circle we can take
for example the following homotopy:

t i t
H,:S'xI>RA\{0}, Hi(x:, %, z):=( cosmi  sinm ) : ("').
—sinmwt cos it X

For a general odd dimensional sphere the desired homotopy is given by
H,,. S x I>R>™2\{0},
Hop i (X1, X2, - oy Xom2), 1)
= (H\((x, X2), 1), Hi((X3, X4), 1), . . ., Hi((X2m+15 X2m+2), 1))

Notice that for a fixed t€ I, H>™"'(x, t) is the restriction to S>™*' of a linear map
R?™*?>R>™* This linear map is selfadjoint only if =0 or ¢t=1. This is not a
coincidence as the following theorem shows.

Theorem 3.14. There is no homotopy H :S97' x I >R\{0} between the identity and
the antipode map such that, for each t, H(-, t) is the restriction to S97! of a selfadjoini
linear map R? > R“.

Proof. We need the following: If A:R"->R" is a selfadjoint map and
supycs"-{A(x), x) =0, then A is singular. Indeed, as the above supremum is in fact
a maximum we can find a we "' such that (A(w), w)=0. If c:= A(w), then for
every A>0 we have (A(w+Ac),w+Aic)<0 and hence that (A(w), A(w)) =<
—1XA(A(c), ¢). This implies that A(w)=0. Now assume that H is a homotopy as in
the theorem, and that H,=id. Define

p:I->R, t- sup (H(x, 1), x)

reS"
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Now p is continuous and as p(0) =1 ana p(I)=—1, connectivity of f gives & s€ 1
for which p(s) =0. Now H; is a restriction to S"! of a selfadjoint map A but then
the above gives that A is singular so thereisa x€ § "1 such that A(x)= H(x, s)=0,
contradiction. [J

Note that the above theorem gives a proof that every selfadjoint map has an
eigenvalue. Indeed if not then

H:897'x[-1,1]1-R\{0}, H(x,t)=(1-|t))A+t-id

would give a selfadjoint homotopy connecting the identity and the antipodal map.
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