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Abstract 

Verheul, E.R., Elementary proofs concerning results about functions on the n-sphere, Topology 
and its Applications 40 (1991) 101-116. 

A notion of sign map is introduced for functions on the n-sphere. There are three kinds of signs: 
-. 0, +. It is shown that if two sign maps are homotopic then they have the same sign. From this 
theorem many classical results on functions of the n-sphere can be derived in a fairly elementary 
fashion. 

Keywords: BrouUc; fixed point theorem, fundamental theorem of algebra, hairy ball theorem, 
homotopy, sign of a map, simplicial approximation. 
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In [3] Iiirsch gave an elementary proof of the nonretractibility of t 
boundary. In this proof he approximated an assumed retraction of the cell onto t 
boundary by a simplicial retraction of the cell into its boundary, and he obtaine 

a contradiction via the construction of an “arc” of simplices. The idea behind the 

proof is beautifully simple and what is more, one can see geometricly what is going 
on. Alas the existence of such a simplicial retraction is not cl 
result, and so this proof involves even more preparation as, for example, a proof 

using Sperners lemma. 
In [2] Dugundji 

homotopic maps have the sa 
rovides more infor 
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Inspecting the proof of Dugundji one sees that the degree of a map occurs actually 
as the degree of a “proper vertex map” depending on a triangulation of the sphere. 
This tfiangulation may be different at the time of definition and at the time a 
homotopy with some other function is considered. When Dugundji attempts to 
prove that the degree does not depend on the simplicial presentation of the sphere, 
he supposes things easier than they really are, and his argument is in error. By the 
use of special “simplicial approximations” it seems possible to repair this proof, 
but the arguments become more elaborate and non-elementary. 

Our aim is not to repair Dugundji’s proof. We shall restrict ourselves to consider 
the sign of the degree (without referring to the notion of degree). We are then able 
to derive many of the classical consequences. In our proofs we will develop a new 
method which appeals to the same geometric intuition as Hirsch’s construction. 
This self-contained method avoids the existence of special simplicial approxima- 
tions, and is more widely of use than the original method of Hirsch. 

On the class of (continuous) functions of the n-sphere into R”“\(O) we will 
introduce the notion sign map; we consider three kinds of sign, negative, zero and 
positive. Roughly, a positive (respectively negative) sign map turns “small” n- 

simplices into n-simplices without (respectively with) changing of the orientation. 
A zero sign map sends n-simplices into something of lower dimension. This notion 
behaves very well and it turns out that surprisingly many functions are sign maps. 
For example a polynominal in 63 is a sign map, when restricted to a sufficiently 
large sphere. All kinds of “normal” functions like linear maps and constant maps 
are sign maps too. Our main theorem states that if sign maps are homotopic they 
have the same sign. Among the corollaries are: the fixed point theorem of Brouwer, 
the fundamental theorem of algebra and the “nonzero vectorfield” theorem. It 
should be noted that contrary to the Brouwer fixed point theorem, there are not 
many “elementary” proofs of the “nonzero vectorfield” theorem. 

In [I] Dodson gave a proof of the fundamental theorem of algebra. Dodson 
mentioned some other results that his method could give too, without actually 
proving them. It turns out that these results can be easily proved with our methods. 

erties and examples of sign maps 

For q > I let Lcz-’ := {x E R4 1 llxll= R} be the (q - I)-sphere ofradius R. We usually 
think of 11 l II as the standard norm, but occasionally we allow it to be another norm. 

Let SE.{-l,O,+l}. Amap h:S&-’ + tlV\{O} is called a sign map (of sign 

s) if there is a 8 > 0 with the following property: 

If {x0, ’ l l 9 +,I is a linearly independent set of diameter less than 6, then 

sign det(x,, x,, . . l , x,_,) l sign det(h(x,), h(x,), . . . , h(x,_,)) = s. 

Observe that far a nonzero sign map the explicit demand that the image set avoids 
zero is superfluous. 
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Let 11 l 11 be a norm on Iw? Let n be the radial projection, 

103 

We make a few simple observations which are stated here for later reference. 

Let R, be a positive number. 
(a) If f: St+ + 1w9\{O} is a sign map, then T of is a sign map with the same 

as J 

(b) Let Nl1 b e another norm on Iwq. Then the projection of thz sphere 
lJ39 1 Ilxlll = R,} onto the sphere S’ R , i.e., the restriction of rr to {x E Iw9 1 llxll, = R,}, is 

a + sign map. 

Example 1.2. Let g l Sz-’ + fRq and h : Si*’ + Si-’ be sign maps. If sign{ h) is nonzero, 
or if g is the restriction to Sk of a regular linear map, then the composition g 0 h 
is also a sign map, with sign sign(g) l sign{ h). 

In the remainder of this section we shall give some important examples of sign 
maps. 

xample 1.3. Let c E Rq be different from the origin. Then the constant map c : Sz-’ + 

R9, x + c, is a sign map of sign 0. 

le 1.4. A nonsingular linear map A : Iw9 + rW9, restricted to a (q - 1)-sphere, 
n map with sign equal to sign det( A). 

In what follows we see @ as IIB’, the norm shall be the standard (Euclidean) norm. 
Recall there is a continuous function arg : C\(O) + IF8 mod 2~ defined by 

arg( 2) = fi H 121 . e’@ = 2. 

We also have the following equality for all zl, z2 E C\(O), 

det(z*, z,) = Im(Z, = z2)=lz,I*Iz2j . sin(arg(z,)-arg(z,)j. 

Let a, 6 E C, and let n be an integer. 

Exam S. The power map @ + C, z + zn restricted to Sk, for R > 0 fixed, is a sign 
map with sign equal to sign( n ). 

Example 1.6. Zf Ial # lbl, then the map @ a@:, z+az”fbZ” restricted tosL,forR>O 

jixed, is a sign map with sign equal to sign(n((al- 161)). 

xample 1.7. Let p(z) = a,z” + an_,zn-’ + l 
l l + a, be a polynomial in @ of degree 

n 2 1. Then the following hold.’ 

(a) 7% restriction of p to Sk is a + sign map, provided 

Re[z. p’(z) l p(z)]>0 for every ZE ’ (0 

’ The following conditions on R are of special interest, for instance in Theorem 3.8. If one is only 
interested in the exisfrnce of a R > 0 such that p restricted to Sk is a t sign map, then one ME frd a 

much easier proof. 

sign 

{ XE 
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(b) The lefthand side of ( 1) is minorized by 

f klak12R2’ - C (k+l)la,akl l Rk+‘. (2) 
k=l Osk<lsn 

(c) Suppose R > 0 is such that formula (2) takes a positive value. Then the restriction 
of p to Sk is a -I- sign map. 

For a proof of the statements in Examples 1.5, 1.6 and 1.7, we first make 
the foliowing observation. Let f: S’ R + C be a continuous function, and let s E { - 1, 1). 
Clearly, f is a sign map of sign s if there is a S > 0 such that for z, w E Sk with 
]z - w] c 6 and z # w the following equality holds, 

sign(Im(f(z) l f(w)) l Im(z‘o w)-‘) = S. 

Now put w=z*eiC’ with p E (-7c, ~1, which implies that Im( z’ l w) = R’ l sin(p). 
Since the restriction of arg to Sk is a continuous open function this is equivalent 
with the existence of a 6 > 0 such that 

O+] < 6 * sign(Im(S(z) l f(z= e”)) l sin(&‘) = s for every ZE Sk. (3) 

First, we will show Example I .6 (from which 1.5 trivially follows). Let f be such 
as described in Example 1.6, and let R > 0. If n = 0, then Example 1.6 follows from 
Example 1.3. So we may assume that n Z 0. Let z E Sk and p E (-~lt, rr]. A straightfor- 
ward calculation shows that Im( f(z) l f (z . e’@)) equals R*” l (1 al’- I bl*) l sin( n l cc). 
So if we take any 6 with O< 6 < 12 l n/ni, then we are in the situation of property 
(3), with s = sign( n(lal -lb!)). 

Next, we will give a proof of 1.7. We will first show 1.7(b). To this end, let R > 0. 
Direct verification yields the following equality for z E Sk, 

Re[z-p’(z) *p(z)]= i klak12RZk+ c (k+-!) Re[ak@ zk* Z’]. (4) 
k=l Osk<lsn 

From this the desired inequality 

ReEza p’(z) - p(z)]2 i klak12R2k - c (k+l)lalakl l Rk+‘, 
k=l Osktlsn 

easily follows. 
For a proof of Example 1.7(a) (from which 1.7(c) trivially follows), let R > 0 be 

such that (1) holds. Compactness of the sphere Sk together with an continuity 
argument shows the existence of a 8 > 0 such that* Re[ z l p’(z) l p(z)] 2 8 for all 
ZEST. For ZESL and Osk, Zen we write 

T,,(z) = a’kfkaIz’. 

’ If we are in the situakn of (c), then we do not need to use the compactness of SL, as fu.-l.uAa (2) 
provides us with such a 0. 
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Observe that Tkek( z) = 1~~1~ l it’&. Using this notation, formula (4) yields 

R_e[z l p’(z) l m] = t ke Tkk(z)+ C (k+l).Re[Tk,(z)]. (5) 
k=l Osktlsn 

We aim at an application of formula (3). To this end, let ~1 E (v, ~1. Consider the 
following equalities, which can be deduced by direct computations: 

Im[p(z)-p(z’e’“)]= i Im(Tkk(z)‘eikp)+ c 
k=l 

Im( Tkf(z) l eiC) 
OskJsn;k#l 

= i Tk,k(z) l sin( kp)+ c I@ Tk,/(d 

k=l Ockclsn;k#l 

- ei’p + I;,k (2) l eikcL ) 

= i Tkk(z) l sin(kp)+ c Im( TkAz) 
k=l 0skclsn;kitl 

- . 
l eic + Tkr(z) = elkp). (6) 

Now let 0 s k < I s n. One can easily verify the following equality. 

Im( TxsI(z) l ei’p) + Im( Tkr(z) . eikP) 

=Re(T~l(z))(sin(Z~)+sin(k~))+Im(T,l(z))(cos(Z~)-cos(k~~). (7) 

aThe following formulae are standard: 

lim sin(p)-’ l (sin(Z&+sin(k&) = k+Z, 
Cr+O 

lim sin(&’ 9 (cos(lp)-cos(kp)) =O. 
P-+0 

In view of these formulae and formula (7), we can uniformly (with respect to z) 
approximate the term (k + I) - Re( Tk,( z)) of (5) by sin( CL)-’ 0 [lm( TsI( z) l eib) + 
Im(m l eikP)] (observe that all Tk;* are bounded). Similarly, we can uniformly 
approximate k l &k(z) by sin(j$* l Tkk(z) 0 sin(kp). Hence by (6) and (5) we can 
uniformly approximate Re[z l p’(z) - p(z)] by sin(p)-’ l Im[p(z) l p(z* eip)]. That 
is, we can find a 6>0 such that for ail OCI&S and ZE§~ 

So we conclude that for all 0 < IpI< 6 and z E Sk the ine 

Im[ p(z) l p( z l eiP)] l sin(&‘l > 0, holds. By formula (3) this implies that p restric- 
ted to SL is a sign map of sign +. Cl 

2. 

Our main result is: 

This is a “strong” resul 
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prior to the proof of this theorem we shall show a crucial lemma. First we introduce 
some notation. The (closed) simplex u spanned by an a@inely independent set 

{q O,. . . , a,) will be denoted by (a,, . . . , a,). The interior a0 of u is the set 

(I 
b b= i piai,jti>O, i /L~=Z - 

i=O i=O I 

Note that such simplices are unordered. If the vertices are ordered by a0 < a, < - - - < 

(I,, then the resulting ordered simplex will be denoted by (a,, . . . , a,). 

Definition. Let E be a q-simplex in R’, B be a (q - I)-face of E and u the only 
vertex of E not in B. The affine hull of B gives a hyperplane P in IP, so IFV is the 
disjoint union of this hyperplane P and two open halfspaces. Because D can not 
be in P it is in one of the open halfspaces, say H. This halfspace will be called the 
goodside of B in E. Now take an (ordered) (q-l)-simplex (LQ,, ul,. -. , u,-~) in B 
and any y at the good side of B in E (for example V) and define the sign of 

(%I, u I7”‘¶ u,_,)in E,denotedbysign((uO, wl,. . ., I+,), E),asthesignofdet(u,- 

Y?~i-YY,~z-y9~**,~q-l -y). As {no-y, uI-y, u2-y ,..., u,_,-y) is a basis of R4 
for every y in Zf, that determinant is nonzero. Furthermore, as “taking a determinant” 
is a continuous operation, and as H is connected, it is clear that the sign is 
independent of the choice of y in H. 

Lemma 2.2 (Key-lemma). Let A be u contlex set with afine dimension q - 1 in Rq, E 
Q q-simplex in lRq and B a (q - l)-face of E. If f: E + A is an @me map such that 
the afine dimension off(B) equals q - 1, then the following are true. 

(1) There is u function g : B” + 8 E\B such that if 5 E B’, then g(b) is the unique 
point c in t?E\B with f(c) = f(b). 
LetCbeu (q-l)-fuceofEundleteEB’. 

(2) If g( e) E C\C” and V is a neighborhood of e in B’, then there is a point e* in 
V with g(e*) E C”. 
Let g(e) E Co. 

(3) (a) There cLre convex open sets U (containing e) and V (tlntuining g(e)) in 
B” respectively Co such that gl ,_, : U -, V is an u&e isomorphism. 

(W Lf (u,, ~1, - . - , u,_,) is u (q - l)-simplex in U, then (g(u,), . . . , g(u,-I)) 
is a (q - 1) -simplex in V 
(c) sign((u,, . . . , uq-J, El and sigdkbd, . . . , g(u,_,)), E) ure opposite 
signs. 

Proof. Suppose E = (a,, . . . , us>, Without loss of generality, B = (a,, . . . , aq_J, uoe C 

and u,=O=f(a,)~A. 
Let hull(A) denote the linear hul! of A. We can consider f as a restriction of a 

linear map F:R9+ huU(A). Now let 6 E B”, say, b =CT=‘=, piai with pi >O if i < q, 
prj =0 and C!_ r_O Pi = 1. Because A, B and f(B) have affine dimensicn (q - 1) and 

0~ 4 B,,f(B1 it ~WOWS that hull(A), hull(B), F(hull( B)) are (q - l)-dimensional 
in R4, ~--.-E _- P I- _ 1:_ l!~e~~loI~ p lb a Wear UfJCc;lIUlI v la:--*:-- c.f !p;j!(B) or,io hu];(A; and ;he kerlie; of 

F in IP is one-dimensional. Let k be a nontrivial element from the kernel, as 
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k E hull(B) we can write k = I:=, @ia, with X:=0 ei = 0 and 6$ # 0. We may assume 
that eq > 0. An element off -‘(f( b)) n eE\B takes the form 

f (Vi +Aeilai 
i=O 

where j2, +hei 2 0 for all i, p, + Aeq > 0 and there is a i < q such that pi +M$ = 0. 

It follows that 

A = min{ -Nil iYi 1 ei < 01, 

existence and unicity therefore follow directly. This proves (I). 
For a proof of (2) and (3)(a), (b), first note that if g(e)E C then k cannot be in 

huIl( C). Since k is parallel to g(e) - e and e E B”. Consequently F restricted to 
hull(C) is a linear isomorphism. This yields an isomorphism G : hull(B) + hull(C) 

G := %!,,~c&,,~B~, 

extending g(,-I(,, . In the situation of (2), we find that G( V) n C is a neighborhood 
of g(e) in C. Because the interior of C is dense in C one can find a c in G( V) A Co 

and consequently there is a e* in V with 

g(e*) = G(e*) = CE Co. 

In the situation of (3)(a), the set U:= G-‘( Co) n B” is clearly convex open in B” 
and contains e. Then V:= G( U) = g( U) is a convex open set in Co containing g(e) 
and g restricted to U is an affine isomorphism. This proves (3)(a) which immediately 
implies (3)(b). 

As the contribution of CI, to S eq, is positive and a0 = 0 E B n C, it follows that k 
is at the good side of hull(B) in E. We have already remarked that k is not in 
hull(C), we have in fact: 

laim. k is at the good side of hull(C) in E. 

Proof. Assume that -k is not at the good side of hull(C) in E, then k must be at 
the good side of hull(C) in E. But as e is at the good side of hull(C) in E and as 
a, = 0 E C this would mean that e+ Ak would be at the good side of hull(C) in E 
for all A > 0 too, but this would mean that g(e) is not in hull(C) 2 C, a contradiction. 

AS USE hull(B) and g( u,) E hull(C) we find that u,+ k and g( uo) - k are also at 
the good side of hull(B) respectively hull(C). Now for all Ao, Al 9 l l . , A,-, c R we 
have 

det(u,-(u,+k),u,-(u,+k),u,-(u,+k),...,u,_,-(u,+k)) 

=det(-k,u,-(u,+k),u,-(u,+k),...,u,_,-(uo+k)) 

=-det(k,u,-(u,+k),u,-(u,+k),...,~,_~--(u,+k)) 

=-det(k,u,-(uo+k)-(A,-2)k,u,-(uo+k)-(A,-2)k,...,u,-, 

-(u*+k)-(Aq_,-2)k) 

=-det(uo+Aok-(uo+A,k-k), ul-(uO+Alk-k), ~2 

-(uO+AZk-k),..., o+Aq-,k-k)). 
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The way g was constructed gives that, for certain ho, . . . , A,_1 the last determinant 

equals 

-Wg(uo) - (gbo) - k), g(uJ - k(uo) - k), g(uz) 

-Mu,)-Q..., gbq-1) - kbo) - w. 
This proves (Y)(c). 0 

For the sake of brevity we say that (f, B, A) has the key-property if it has the 
properties of Lemma 2.2. So A has to be a convex set with affine dimension q - 1 
in IV, E a q-simplex in R ‘$ B a (q- I)-face of E andf: E + A has to be an affine 
map such that the affine dimension of $( B) equals q - 1. 

. If (f, B, A) has the key-property and C is as in part (3) \rf Lemma 2.2, 
then (f, C, A) has the key-property too, as it follows directly from (3)(a). 

Let Mq := [ - 1,1)9\( - 4, i)’ a q-dimensional annulus in Rq. a[ -i, $1” and a[ -l,llq 
are respectively called the inner and outer boundary of Mq. Denote the outer 
boundary of Mq by Sq? 

Proof of Theorem 2.1. In view of Examples 1.1 and 1.2 we only have to prove the 
theorem for one particular norm and one sphere, and only for sign maps with an 
image in that sphere. There is a norm on Rq such that its unit sphere is the outer 
boundary Sq-’ of Mq. So assume that J g : Sq-’ + Sq-’ are homotopic sign maps 
with different sign, say: S is not a 0 sign map. We may assume that f( (1, 0, . . . , 0)) = 
(l,O,. . . , 0). To this end, let p denote the pro_iection from 9-l onto the Euclidean 
(q - 1) sphere of radius one (cf. Example 1.1): If H is a homotopy connecting f 
and g then poHop_’ is a homotopy connecting the sign mops p of@ and 
p 0 g 0 p-* with different signs and sign( p of0 p-‘) f 0. As a rotation on the Euclidean 
sphere is a + sign function, we can use such a function to obtain the desired situation 
(cf. Example 1.2). 

Let 6, > 0 (for f) and Sz > 0 (for g) be as in the definition of a sign map. Now 
a homotopy connecting f and g induces a function F: Mq + Sq-‘, which equals f 
on the outer boundary and sends x in the inner boundary to g(2x). 

Let A be the face {xeSq-‘1x,=1} of Mq, 6:=(1,0,...,O)~A’ and ar:= 
d(6, Sq-‘\A) (’ rn which d is the Euclidean nom, on Rq). Choose 00 such that: 
VX, y E Mq: d (x, y) < S + d (F(x), F(y)) < &. Take a triangulation D of Mq with 
mesh(D) c S, S ‘6 l, 2 2 which has b as a vertex. 

Let F* be the “affine approximation” of F on D (i.e. F*(u) = F(u) for vertices 
in D; extend affinely on simplices in D). Note that F*(6) = 6 as b is a vertex of D 
and that in general the image of F* is not in S‘? It can be easily seen that F* 
h~is the following property on the inner and outer boundary. 
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(I) If B is a (q - l)-simplex of D contained in the outer boundary (respectively 
inner boundary) and {x0, . . . , x,_,} are independent (afline and linear dependence 
are equivalent here) in B, then 

sign det&, . “. , x,_,) l sign det(F*(&, . . . , F*(.+,)) 

= sign( f ) (respectively sign( g ) ). 

Let B be a (q - I)-simplex of D contained in the outer boundary with 6 E B and 
E the unique q-simplex in D which has B as a face. Note that B must be contained 
in A. 

NOW consider sequences (Bi, Ei, ei)i%r with Bi a (9 - l)-face of Ei, Ei a q-simplex 
in 0, B0 = B, E0 = E with the following properties (see Fig. 1): 

(1) Ein Ei-l=Bi Wi>O; 

(2) Vi s m ei E BP: F*( ei) = F*( eO); 

(3) all ei are different. 
As D is finite and as such a sequence exists, at least for m = 0 (take any e. E Bg) 

there is a sequence of maximal length (Bi, Ei, ei) :I:. 

Now let e be a vertex of Ei, we have: 

d( F*(e), 6) s d( F”(e), F*(ei)) + d(F*W, b) 

=d(F*(e), F*(ei))+d(F*(eo), F*(b))<$+&=~. 

Therefore F”( Ei) c A. y (I) and as sign(f) #O we conclude that (F*(&, B,, A) 

has the key-property. As e, E 23: the remark following the key-lemma gives that 
(F*(,, B, , A) also has the key-property. Because F( E,) c A it then follows that 
(F*l, , B1, A) has the key-property. As all ei E By and F( Ei) c A we can repeat this 
argument and we have: 

(F*I., Bi, A) has the key-property Vi< n. 



110 E. R. Verheul 

Now let gi for i = 0, 1, . . . , n be the functions BP+ aEi\B, as described in the 
key-lemma. According to (3)(a) of the key-lemma there are convex open sets Ui c BT 
containing 4?i for i = 0, 1, l l . , n such that for i < n gi restricted to Ui is an affine 

isomorphism on Ui+l . Furthermore according to (1) of the key-lemma there is a 

(q-l)-face B.- .- B,,+* in E, different from B, in which an element e := g,(e,) with 
F*(e,,) = F*(e). This e need not be in B”,,, , but according to (2) of the key-lemma 

combined with (3)(a) there are points efi, ez,, and convex open sets Uz, UE+, 

with eX E Uz c Un and e:,, E UE+, c B:,, such that ez,, := g,(e:) and g, restricted 
to UE is an affine isomorphism onto Uz,,. For i c n define points e: and convex 
open UT c Ui by taking pre-images under the gi (so e$_l := g,!.,( e:) and r/z_, := 
g,!.,( Uz) etc.). So we have convex open sets UT and points e: E UT c Bi for 
i=O,l,..., n + 1 with eT+, = gi( e:) and such that the gi restricted to Us are affine 
isomorphisms onto UT+, . Note that all e* remain different for all i s n and that at 
least ez,, Z ez . Take a (q-l)-simplex (aO,. . . , a,_,) in U,“. Let c,:= 

(gda,),. l - $ go(Q,_,)) be the pointwise image. According to (3)(b) of the key-lemma 
this is also an (ordered) (q - I)-simplex in B, . Define oi c Us for i = 1,2, . . . , n + 1 
analogously. Denote c”+ 1 by ( bO, . . . , bq_,). By construction we have that 

(II) ( F*(Q,), F*(Q,), . . . 3 F*(Q,-1)) = U=*W, F”(h), . . . , F*(b,-1)) 

(equality as ordered simplices). (3)(c) of the key-lemma states that Ggn( a,,, &) and 
sign( cT, , Eo) are opposite. As E,, and E, lie on opposite sides of B, we conclude 
that sign( a,, EO) and sign(cz,, E,) are equal. Using this argument repeatedly it 
follows that for i = 0, 1, . . . , n sign( oO, E,,) and sign( ai+ 1, Ei) are opposite, in 
particular 

(III) sign(a,, E,) and sign@“+,, E,) are opposite. 

Now we claim that Bn+*, and hence also a,,, l 9 has to be in either the outer- or inner 
boundary. This would finish the proof. Indeed, if a,,1 is in the outer boundary then 
the origin is at the good side of un+] so (III) implies that det(a?, a,, . . .,Q,_,) and 
det( b,, b,, . . . , b,_,) have different sign. This, together with (II) contradicts (I). 

If UI?,l is the inner boundary then the origin is not at the good side of G,,+~ so 
(III) implies thst det(a,, Q,, . . . , a,_,) and det(b,, b,, . . . , b,_,) have the same sign. 
This, together with (II), also contradicts (I), and the theorem is proven. 

So let us prove the claim. If B,+I is not in the inner or outer boundary we can 
define E,,+ 1 as the unique q-simplex in D diflerent from E, such that E,, n E,,+, = 
B n+l. We show that the sequence (Bi, Ei, ef),i=o, I.....,,+l) also has properties (l), (2), 
(3) contradicting the maximality of the original sequence. 

( I) and (2) follow by construction. 
As for (3), we only have to show that ez+ I = e? implies i = n + 1. Assume i # n + 1. 

By the construction of ez,, it follows that i < n. Now e? E @‘n Bi,, so as Q is a 
triangulation we have Bi = B,,+, , It turns out that E,#, Ei_., and Ei have one (4 - 
1 )-simplex as a common face, namely B,,+, , we conclude from the fact that D is a 
triangulation of an annulus in Euclidean space f zt E,, = Ei_, or E,, = Ei or Ei = E,_l. 
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The first case (1) of the key-lemma gives e:, = ez , a contradiction. The other cases 
give similar contradictions. 0 

3. Consequences of the main theorem 

Most of the following corollaries are classical. 

3.1. A sign map SyR’ + W\(O) of nonzero sign is not nullhomotopic. 

.2 (Brouwer). The identity Si-’ + Si-’ is not nullhomotopic. 

Corollary 3.3. If the restrictions to Sz-’ of two nonsingular linear maps W + W to 

Sq-’ are homotopic, then the determinants of these maps have the same sign. 

Coroll . In an even-dimensional sphere the identity and the antipodal 

( x+- are not homotopic. 

orollary 3.5. The nth power map Sk + Sk, z + 2” is not nullhomotopic for n z 

map 

0. 

orollary 3.6. The map Sk + C\(O), z + azn + bz” is not nullhomotopic if Ial # 161 and 

n #O. 

Corollary 3.7. A polynomial p(z)=anzn+an_,zn-‘+. 9 *+a, in @ of degree nal 

has a root in C. 

roofs. Corollaries 3.1 to 3.6 directly follow from the main theorem and the examples 
in Section 1. 

For a proof of Corollary 3.7: According to Example 1.7 there is a R > 0 such that 
p restricted to Sk is a + sign map. That restriction can therefore not be nullhomotopic 
by Corollary 3.2( 1). Then p must have roots in {z E C 1 lzl d R}. If not then H(x, t) := 

p( t l x) would define a nullhomotopy, a contradiction. q 

Note that formula (2) gives a way to effectively find a radius for a circle inside 
of which must b’e a zero. In general the estimated circle need not contain all zeros 
off: For example one can easily deduce that for (22 - l)( z + 9) the radius i satisfies 
the condition 1.7(c), whereas -9 is a zero outside this circle. This yields an important 
difference with the work of Dodson in [l], who proved that 
Corollary 3.7 must have a zero within the circle 

max{l, l4J’GL~~ + la,-21 + - 9 l + laoI)}. This bound can be obtai 
as 

11 

I I 
n-l 

c ajZ' 2 la,z”l - 
j=O i 
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and R 3 1 we have for Izl> R that first of all 

, p(z), > ,a( R -“f’ ,d-“+‘I)= 
i=o 

Furthermore as R 3 la,l-‘(l~,-~~ + la,-21 + l l 0 + laoI) the right side of the last 
inequality is non-negative. Hence all zeros off have to be within the circle with 
radius R. 

By Example I.7 we obtain that a complex polynominal p restricted to Sk is a + 
sign map if we take R > 0 large enough. The following theorem gives more specific 
information. 

Let p be a polynominal of degree n 2 1 and d a zero of p of maximal 
modulus 1 d I. Then the restriction of p to Sk is Q + sign map for every R > 1 d I. 

f. Without loss of generality, we may assume that the coefficient of the highest 
power of p equals 1. By “the fundamental theorem of algebra” (cf. Corollary 3.7) 
we can write p as 

p(z):= (z-d,)(z-dz) l l l (z-d,). 

Where d,,... , d,, are all zeros of p, We aim at the application of Example 1.7(a) 
so we have to prove that for every R > IdI and z with lzl = R we have 

Re[ z l p’(z) . p(z)] > 0. 

Using the above form of p one can easily see that 

Re[z* p’(z) l p(z)]= i Ite[z- Ol l II IZ-diI’* 
i=l j#i 

(*) 

Now for z with Izl= R one can easily show that Re(z 9 (z-di)) 2 R( R - Idil)> 0. 

Applying this inequality to the right-hand side of (*) finishes the proof. Cl 

Let p be a polynominal in @. The previous theorem shows that the sign of 
Re[z l p’(z) 9 p(z)] gives information about the position of the zeros of p. In fact, 
if one takes a “fine” collection of points in a large ball of the complex plane and 
marks the points were Re[z l p’(z) l p(z)] is negative, then one gets a good idea of 
the position of the zeros of p. I do not know whether one can construct an algorithm 
with this procedure. 

To obtain further corollaries to the results in Corollaries 3.1 to 3.6, we need the 
following proposition. 

osi . Let g : C\(O) + C\(O) and let f: @ + C satisfy 

lim f(z) l g(z) = c#O. 
1+00 

Then the fo!loN’iplg are true. 
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(a) There is a L> 0 such that f(z) Z 0 for Izl a L. 

(b) The restrictions off and 1/g to Si are homotopic. 

Suppose R > 0 is such that gl,; is not nullhomotopic. Then, 

(c) f must have a zero in {z E C llzl< L}. Also 

(d) if limlrl+a, g(z) = 0, then f is surjective. 

roof. Part (a) is clear. For part (b) we only have to prove that fs; l gs; is homotopic 
with the constant function c. Indeed, multiplying this homotopy with (c . g&* 
finishes the proof. Define W : Sz x Z + C\(O) 

( c, if t = 0, 

H(z, t) = 
[f&g(f), ifOCtG1. 

H is easily to be seen continuous at (z, 0), and is a homotopy as desired. 
For part (c), first note that the fact that gl,; is not nullhomotopic easily implies 

that gls: is not nullhomotopic. Consequently, the function (l/g&; is not null- 
homotopic either. Now by part (b) we conclude that fist is not nullhomotopic. If 
f has no zeros in {z E Q: 1 lzl c L} then F( x, t) := f ( tx) would be a homotopy connecting 
f Is: and the constant f(0). 

(d) follows directly from (c) by looking at f(z) - a for any a E C. Cl 

A different formulation of the previous proposition is as follows. 

Let g : C\(O) + C\(O) and let f: @ + C satisfy 

lim ’ f( ) -=cco. 
ls1~4?(z) 

Then the following are true. 
(a) There is a L> 0 such that f(z) # 0 for 1~1% L. 
(b) f Is: is homotopic to gl,:. 

Suppose R > 0 is such that g& is not nullhomotopic. Then, 

(c) f must have a zeru in {z E @ 1 lzl c L}. Also 

(4 if liq,~+, I/g(z) = 0, then f is surjective. 

Corollary 3.10 (to Proposition 3.9). Zf a polynominal p of degree n 3 1 has no zeros 

on the circle with radius R, then pls:, is homotopic to zk&, where k is the number of 
zeros in the circle with radius R, counting multiplicities. 

roof. First assume that p has no roots in the circle with radius 
clearly nullhomotopic and the corollary is clear. Secon 
zeros of norm less than R (counting multiplicities). 
$=, (z - 4). By Proposition 3.9’(b) we c 
So we only have to prove that g& is 
(p/g&:, being nullhomotopic. This h 
no zeros in the circle wi Ll 



114 E. R. Verheul 

One can easily modify Proposition 3.9 and Corollary 3.10 to spheres with other 
points than zero as a centre. For Corollary 3.10 this yields: if there are k zeros in 
the sphere around a point a, counting multiplicities, and no zeros on the sphere. 
Then the polynominal restricted to the sphere is homotopic with (z - a)k restricted 
to the sphere. 

orollary 3.11 (to Corollary 3.6 and Propositions 3.9 and 3.9’). Let (a 
f:C+C. 

(a) Suppose, 

lim f(z) l (az” + b?‘) exists and is nonzero. 
jZl+Jc 

Then f is surjective if n < 0 and f has a zero if n > 0. 

(b) Suppose, 

#lb1 and 

f( \ “. lim ” 
I=I-+~ azn + b?’ 

exists and is nonzero. 

Then f is surjective if n > 0 and f has a zero if n < 0. 

In [I] only part (b) for n > 0 was mentioned. This corollary gives another proof 
of the fundamental theorem of algebra. Using Corollary 3.1 l(b) one can deduce 
more theorems concerning polynominals. For example, a “harmonic” polynominal: 

a,z” -I- 8 l l +a,z’+a,+= l +a__#+* l *+a_,? 

with la-,1 f la,,1 has a zero in @. 

Corollary 3.12 (to Corollary 3.3). Let o be a permutation af n elements and let 

r: S”-’ + Snel, rb,, x2, l l l , x,b= bcq,,, &r(2), l * l ,x,(n)). 

If u is an odd permutation, then 

vf:Sn-‘+S”--’ axes”-‘: f(x) =x or f(x) = r(x). 

roof. Suppose not. From Corollary 3.3 it follows that the identity cannot be 
homotopic to r. However the function H : S”-’ x I + S”-’ defined by 

H(x, I) = 
I 

((1-2r)x-2t*f(x)) l I(1 -2t)x-2r*f(x)[-’ ifOSfS$ 

((22-1)~r(x)-(2-2t)~f(x))~)(2t-l)r(x)-(2-21)~f(x)~~’ if+tSl 

is such a homotopy. Cl 

The following corollary is classical. 

rollary 3.13 (to Corollary 3.4). Let ( l , 0) be the standard inner product in IW”? 

en the following are equivalent. 

(a) n is even. 

(b) The identity and the antipodal map of S” are not homotopic. 

(c) There is no continuous tangent vectorjield on S” with nonzero vectors. 
(d) by-: S” --) 9’ xES”:j’(x)=x or_f(x)==-PI. 
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roof. (a)+(b) This is Corollary 3.4. 
(b)*(c) If there were such a vectorfield then F(x, t):= x cos ~t+u(x) sin-t 

would be a homotopy between the identity and the antipodal map. 
(c)+(d) Suppose there is a map f not satisfying (d). Then 

v(x):= (f(x)-kfW)x) l If(x) -kfWxl-' 

defines a continuous nonzero vectorfield. 
(d)*(c) If v is a vectorfield as described in (c), then it cannot satisfy (d) because 

(*x, x) is nonzero. 
(c)+(a) If n is odd, say n =2m+l, then 

0: S” + S”, a,, x2, l * l , x2m+2) = (-x2, x1, -x4, x3, l l l 9 -X2m+2, XZm+,) 

defines a map not satisfying (c). 17 

Part (c) of the above corollary is known as the “hairy ball theorem”. 
From Corollary 3.13 it follows that the identity and the antipode map are 

homotopic on a odd dimensional sphere. On the Euclidean unit circle we can take 
for example the following homotopy: 

H,:S’x I-4’\(0), H,(x,,x2, t):= 
cos7Ft ’ 

_sinnt -; x’ 
x2 

For a general odd dimensional sphere the desired homotopy is given by 

H l S 2m+’ 2m+l l 

x z * [W2m+2\{0}, 

H2m+l((XI 9 x29 l l . 9 XZm+2)9 ?) 

Notice that for a fixed l E Z, H 2m+‘(x, t) is the restriction to S2m+1 of a linear map 
R 2m+2+ RZrn+Z_ This linear map is selfadjoint only if l= 0 or t = 1. This is not a 
coincidence as the following theorem shows. 

Theore There is no homotopy H : Sq-’ x I + Rq\{O} between the 

the antipode ,ap such that, for each t, H(-, t) is the restriction to Sq-’ 

identity and 
of a selfadjoint 

linear map Rq + Rq. 

Proof. We need the following: If A%” + R” is a selfadjoint map and 
s~p,,~~t-~(A(x), x) = 0, then A is singular. Indeed, as the abov 
a maximum we can find a w E St’-’ such that (A(w), w) = 0. 
every h > 0 we have (A( w + AC), w + AC)< 0 and hence 
-$(A( c), c). This implies that ) = 0. Now assume t 

the theorem, and that Ho = id. 



116 E. R. Verheul 

Now p is continuous and as p(O) = 1 and p(l) = -I, connectivity of i gives a s e i 

for which p(s) = 0. Now H, is a restriction to S”-’ of a selfadjoint map A but then 
the above gives that A is singular so there is a x E S”-’ such that A(x) = H(x, s) = 0, 
contradiction. Cl 

Note that the above theorem gives a proof that every selfadjoint map has an 
eigenvalue. Indeed if not then 

H:S9-‘x[-l,1]+R9\{0}, H(x,t):=(l-]#A+tid l 

would give a selfadjoint homotopy connecting the identity and the antipodal map. 

nowkdgement 

I am grateful to Dr. M. van de Vel for his comments. 
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