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Abstract. An example is provided of a sorting-type decision problem which can be solved in
fewer steps by using comparisons between linear functions of the inputs, rather than comparisons
between the inputs themselves. This disproves a conjecture of Yao {14] and Yap [16]. Several
extensions are presented.

1. Introduction

The worst case behavior of decision algorithms using comparisons between inputs
has Leen extensively studied for various sorting-type problems. When the inputs
are numbers, one can consider the use of more general comparisons. Thus Rabin
[10] considered the use of comparisons between meromorphic functions of the
inputs. Many other authors [1-5],{11-16] examined the use of comparisons between
linear functions of the inputs. No unconstrained sorting-type problem was found
which can be solved in fewer steps using linear comparisons, and it was conjectured
by Yao [14] and Yap [16], and proved in a few special cases by the latter that
linear comparisons cannot help.

We exhibit a counter-example to this conjecture; this counter-example is then
modified to refute weaker versions of the conjecture. It is shown false, even for
Yes/No problems, and for problems defined by convex sets. In the process, several
general results concerning decision algorithms using linear comparisons are
obtained.

2. Terminology

Decision trees, as a model for decision algorithms, occur initially in Ra®in’s paper
[10], and are used with minor modifications by all the authers menticned in the
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introduction. Although we must settle, for the sake of definiteness, on a particular
formulation, our results are valid for the different varieties of mode!s used by these
authors.

Let R" be the set of n-tuples of real numbers {n-tuples of inputs). A decision
problem P inR" is given by finite family (D;) of disjoint opensetssuch that|_Jcl D; =R".
If 2 is a family of continuous functionals, then Pis of type (2 if the sets D; can be built
from sets of the form [fi(x)>fa(x)], with f;, f.e{2, using the operations
of (finite) union and intersection. In particular, P is of sorting-type if (2 is the
family of projections IT;(x)=x;, P is linear if (2 is the family of linear (affine)
functionals.

An £-decision tree consists of a labelled binary tree T': each internal node of T
is labelled with a comparison of the form fi(x): f2(x), where fi, f> € {2, and the two
edges leaving this node are associated with different outcomes f1(x) <fa(x), fi{x)>
f2(x). In particular, in sorting type decision trees comparisons are between inputs,
in a linear decision tree linear functions of the inputs are compared.

The tree T encodes the decision procedure executed on inputs x € R” by moving
down the tree beginning from the root, performing on x each comparison encoun-
tered, and branching according to the result, until a leaf is reached, or equality
occurs at some comparison. Thus, we say that x reaches node u of T if x satisfies
all the inequalities associated with edges on the path leading from the root of T
to u.

T solves the problem P if each leaf of T can be associated with one of the sets
defining P, such that x reaches a leaf associated with D; only if x ecl D. For each
node u of T let S, be the set of inputs reaching u; T solves P iff the partition of
R given by {S,, : u is a leaf of T} is a refinement of the partition defining F - ignoring
@ boundary set.

V/e make two remarks con<erning our model:

(i} The procedure encoded by T does not yield an answer on the boundary set
of inputs for which equality obtains at some comparison. This can be remedied by
associating with each comparison f1(x) : f2(x) complementary outcomes f1(x) > f2(x),
hitx}<f,(x). Indeed, T solves P iff the modified trec solves P and the latter yields
a correct answer for any tuple of inputs. However, trees which are labelled only
with strong inequalities are easier to deal with.

(i) There is moie than one correct answer for a tupie of inputs which belongs
to the common boundary of twc or more sets D;; the decision procedure yields (at
most) one of these answers.

The £2-complexitv of a decision problem P is defined to be the minimai depth
of aa Q-decision tiee solving P.

A problem of type 2 can always be solved by an {2-decision tree. Use of a richer
family {2 might however lead to a less complex solution. Yao and Yap conjectured
that this does not happen when the family of projections is augmented by the
addition: of linear functions.



Comparisons between linear functions can help 323

3. Counter-example

Consider the following 4 permutations on the numbers 0...9:

So: 045 1286739
S1: 8145 23 67009
S: 8245 30 6719
Ss3: 834569601 672

Each sequence S; defines on 0...9 an order relation <; and a contiguity
relation |;:

a <; b if a occurs before b in the sequence S;, and

a |; b if a ard b occur (in some order) in consecutive positions in .

The four sequences above have the following properties:

(i) al:b for at most one index i, with the following exceptions:

(i.i) 4);5 and 6[;7 for i=0,..., 3; these pairs of numbers occur in the same
order in each sequence;

(i.ii) 2|;8fori=0,2and0|;9fori =1, 3;these pairs of numbers occur in opposite
order in the two sequences where they are contiguous.

(il) a <;b or b <;a for at least 3 indices /, with the exception of the pairs {0, 2}
and {1, 3}; the numbers 0, 1, 2, 3 are permuted cyclically in S, ..., Ss, so that
0<;2fori=0,3, 2<;0fori=1,2andsimilarly, 1 <;3fori=0,1and3 <; 1 for
i=2,3.

Define the following 5 subsets of R'®:

D‘-={xta<,-b$xa<xb}, i=0,-'-135

3
D= R”’\( o D,-).
i=0

The problem P defined by these 5 sets provides the required counter-example.
It consists of deciding whkether 10 inputs are ordered according to one of the
permutations defined by Sy, . . . , 53, and if so, which one.

(1)

Claim 1. The problem P defined above can be solved by a linear decision tre: of
depth 10 but by ne sorting-type decision tree of depth less than 11.

Proof. A linear decision tree of depth 10 solving P is illustrated in Fig. 1. We have
put in brackets the inforination available after each comparison. The subtree T;
checks that x € D;; it consists of 8 comparisons performed sequentially, one for
each pair of contiguous numbers in S;, with the exception of the pair occurring at
the node immediately above T..
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Now let T be a sorting-type decision tree solving P. If a, b are consecutive
numbers in 5, and v is a leaf of T associated with D, then the inequality x, <x,
labels some edge on the path leading from the root of T to u. Indeed, from the
set of irequulities labeiling this path we can infer that x, <x,. It follows that this
set contains = chain of inequalities

xa = xfg<xr” xr; < xrz; LI x;'k_.: < xrk = xl)'

But no x € D, can satisfy both inequalities x, < x, < x. Thus k =1, and x, <x, labels
an edge on the path to u.

Sincz all the n-tuples in D; (0 </ = 3) are ordered according to the same permuta-
tion, they fulfil the same inequalities, and follow the same path p; in T. On this
path we have 9 comparisons x, : x5, one for each pair of contiguous numbers in S;.
The claim thus follows if we show that path p; contains two comparisons x, : X,
where a 4, b. Equivalently, we have to show that there exists a node u in 7, and
an index 0-<i =<3, such that the inequalities x, <x, labeiling the edges on the path
to u fulfil ¢ <; b whereas a X ;b for at least two of them.

Since the comparisons x4: x5 and x¢: x7 occur on each path p;, we assume w.l.g.
that they are performed first. Let x, : x, be the comparison at the node reached by
the path labelled with x4 <xs and xe <x7. We distinguish two cases:

Case 1. a <; b for 3 indices #,, i2, i3. From (i) and (ii) we have that a|;b for at
most one of tkese indices, say iy, so that a 4,6 and a 4, b. Let x.:xs be the
comparison at the node reached by the branch labelled with x, <x,. If ¢ ¥, d or
¢ X i, d we are done. Otherwise we have ¢ |,,d and ¢ |,, 4, so that {c, d}={2, 8} and
{i2, i3} =1{0, 2} or {c, d} = {0, 9} and {i>, iz} = {1, 3}. We shall discuss the first alterna-
tive. the second one being symmetrical. We have ¢ £, d and we assume w.l.g. that
¢ <; d. Also, either ¢ <, d or ¢ <; d, so we can assume w.lL.g. that ¢ <;, d. Let
x. : x; be the comparison at the node reached by the branch labelled with x. <x,.
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ifetx,foret,f we are done (since ¢ ¥, d and a t,,b). But i;€{1.3} and
i€ {0, 2} so that no pair of numbers (different from {4, 5} and {6, 7}) fuifil both
conditions e |;, fand e |;, f.

Case 2. a <;b for exactly two indices i. Thus either {a, b} ={0, 2} or {a, b} ={1, 3}.
Assume that {a, b}={0,2}. We have 0 <; 2 but 0 ;2 for i =0, 3. We are dcne
unless comparison ¢ : d reached by the branch labelled with xo<x, *Eu! ils ¢ };d for

i =0, 3. But no pair of numbers (different from {4, 5} and
conditions. The case {a, b} ={1, 3} is handled similarly.

4. Modified counier-exampies

Once the original hypothesis has been disproved, two questions come naturally
to mind:

(i) can the hypothesis be saved by not unduly restricting its field of application
(the monster barring approach) and

(ii) can the hypothesis be shown to be approximately true, by bounding the
maximal gap between sorting type complexity and linear complexity.

We shall partially vindicate in this section a negative answer to the first question
by refuting two plausible restricted conjectures, and proceed to explore the second
question in the next section.

The first restricted subclass of decision problzms we consider consists of problems
with two outcomes, that is Yes/No problems.

It turns out that our original counter-example can be modified to belong to this
class. This follows from the next theorem, which is interesting in its own right. The
terminology used is taken from [6].

Theorem 1. Let P be the decision problem defined in R" by the sets
{Es,...,E,Fy,...,F}, and let P' be the problem defined by the sets
{Ui-, Es Fi, ..., F.}. Assume that the (affine) dimension of cl E; ncl E; is less than
n—1 for every 1<i<j<r. Then a linear decision tree solves P' iff it solves P.

Theorem 1 asserts that we cannot isclate, using hyperplanes, a set which is the
union of “‘essentially disjoint” components, without separating these components.

Lemma 1, Let B be an open convex: set and let B; be a finite family of closed sets
such that

(i) B€ uB;

(ii) dim B;nB;<n—1 forany i #j.

Then B < B; for some i.

Proof. We can assume w.l.g. that for each i, B B2 \U,»; Bj. Assume that BZ B1.
Let ye (B B\, B; and let S =, (BinB;). The set S is contaired in the
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union of finitely many n — 2 dimensional flats and y £ §, so that the cone yS, consisting
of the rays originating from y and going through §, is contained in the union of

finitely many n -1 dimensional flats, and has therefore an empty interior. If
x e B\B;, then the segment xy is contained in B, and therefore in l ! B, 1t follows

i &S JAs fy TIEWEE vaiw Swimesswise A WAzt ARAW e sax Al SarwiwaNaW A ANsarw

that this segment intersects S. Thus B\B, is contained in yS, and has an empty
interior. It follows that B\B, is empty, and B < B;.

Proof of Thesrem 1. Obvicusly, a decision tree solVing P solves P' as well.
Conversely, let T be a linear decision tree sowmg P'. For each leaf u of T the set
S. of inputs reaching u is an open convex set contained in the closure of one of
the sets defining P'. But if §, <\ J;_, cl E; we have from the assumption on the
sets E, and from lemma 1, that S, ccl E; for some i. Each leaf of T is reached by
inputs belonging to the closure of a unique set out of the sets defining P, so that
T solves P.

Corollary i. There exist a Yes/No sorting-type decision problem with linear
coimplexity <10 and sorting complexity >11.

Proof. Let P be the problem defined in R' by the sets D, 0<i<4, of (1). The
pesmutations defining the sets D, i=0,...,3 differ in the relative ordering of
more than one pair of numbers, so that in each of the sets cl D; ncl D, 0<i<j=<3,
there is more than one equality between inputs which is identically satisfied, and
dim cl D; ncl D; <9. It foliows, by Theorem 1, that a linear decision tree solves P
iff it solves the problem P’ defined by the two sets {U,LO D;, D,}. P’ cannot therefore
be solved by a sorting type decision tree of depth 10 but can be soived by a linear
decision tree of this depth.

Theorem 1 can be used to yield other similar equivalences, most of which are
pretty cbvious in the restricted case of sorting-type decision trees. We bring three
exarrples:

(i) A linear decision tree which finds the kth largest input out of a list of #
iup 1% finds also which k —1 inputs are greater than it, and which n —k are less
the o (see [8, 5.3.3, ex. 2)).

-1 A linear decision tree which checks whether n input; are ordered according
to an odd or an even permutation, finds also this permutation (see [8, §5.3.1, ex. 29)).

(iii} A linear decision tree which finds the maximal points out of a set of n points
in the plane (see [9]), finds these points in order (maximal points are ordered in
inverse order according to the x coordinate and the y coordinate). This remark
yields immediately the lower bound of » 1g n proven in [4].

Theorem 1 can in fact be viewed as a tool for “normalizing” linear decisions
problems by decomposing then: into their “true’” components.

Another natural subclass of sorting-type decisicn problems consists of the prob-
lems defined by convex sets. The convexity requirement, which occurs in Rabin’s
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or.ginal definition of decision problems [1, p. 645] is fulfilled by many interesting
prublems, such as sorting or finding the first k out of » elements. Many other
problems are equivalent to convex problems, by Theorem 1.

Once more, our counterexample can be modified to fall within this class. This
is done by partitioning the set D, into convex componeats, and refining the linear
decision tree of Fig. 1 to yield a solution for the new problem. Thus we have

Theorem 2. There exists a convex sorting-type decision problem with linear complexity
<10 and sorting complexity >11,

The reader is referred to [12] for the details of the straightforward, if tedious,
construction of the problem.

5. Composite problems

The gain achieved by using linear comparisons is not limited to one step; greater
gaps can be exhibiied by composing the counter-example with itself.

Definition. Let P, i =1, ..., k, be problems defined in R™ by the sets {D}}/%;. The
Cartesian product Py X - - - X P of these problems is the problem defined in R"' x
c o X RM = RMTM ™ by the sets {D], X - - - X D} : 1 <j; <m}; the nth power P" of a
problem P is defitied to be the r-fold cartesian product of P.

The problem P=P; XX P, is the composition of k independent problems,
defined on disjoint sets of inputs. P can therefore be solved by solving separately
each problem P, It follows that the £ complexity of P is at most the sum of the
N-complexities of its components Py, ..., P, {we have to dispose of the technical
requirement that 2 be closed under compositicn with projections, so thatif f:R" - R
is in {2, then g(xy, ..., Xm) =f(xi, - - ., Xi,) is also in £2). For sorting type problems
this bound is tight, as shown by the following theorem.

Theorem 3. The sorting complexity of Py X+ - - X Py is equal to the sum of the sorting
complexities of P, . . ., Py

Corollary 2. For every n there is a sorting-type problem of sorting complexity >11n,
and linear complexity <10n.

Proof. By theorem 3 and the discussion preceding it, the nth power P" of the
problem P defined in Section 3 has the required properties.

Proof of Theorem 3. We shall prove the theorem for k =2, the general case
following by induction. Let P; be defined on x;, . . ., x» and have sorting complexity
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comparisons. There is an adversary (oracie) &, that forces any decision procedure
for P; to perform c; comparisons and an adversary &> forcing ¢, comparisons for
P,. The adversary that answers comparisons invoiving only x;’s according to the
of strategy and answers comparisons involving only y;’s according to the &, strategy
{orces c; comparisons involving x;’s and ¢, comparisons involving y;’s, in any decision
procedure for P; X P, not containing ‘“‘mixed’’ comparisons. The result now follows.

The reader familiar with the theory of games will no doubt have recognized in
the last proof the notion of the Cartesian product of games [7].

The crux of the above proof is that “mixed’” comparisons, involving both x;’s
and y;’s, do not help in solving P; X P,. This is not true of every class of comparisors.
An example is given in [12] of two problems defined by linear nonhomogensous
inequalities, that can be solved concurrently with less linear comparisons tha:n the
sum of the number of comparisons required to solve each one separately.

The result of Corollary 2 can be easily extended to the two restricted subclasses
of problems we have considered.
Corollary 3. (i) For every n there exists a Yes/No sorting type problem of sorting
complexity >11n and linear complexity <10n.

(it) For every n there exists a convex sorting type problem of sorting complexity
>11n and linear complexity <10n.

A problem satisfying the first claim can be buiit from P" by using the technique
of Corollary 1; the second claim follows from th.e remark that the product of convex
problems is a convex problem.

We have shown that the use of linear comparisons can save an unbounded number
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seems to be achievabie oniy through the use of information theoreticai arguments,
and are therefore valid for linear complexity as well. Proving a nonlinear speedup
seems therefore to require new techniques.

6. Concluding remarks

The results obtained in previous sections are quite insensitive to variations in
the decision problem/decision tree models. We can allow the use of weak
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inequalities :0r defining the sets of a problem, allow the use of weak inequalities
as labels in decision trees, or add tc each comparison a third outcome, namely
equality. The meaningful requirements are that the sets defining a prot.iem have
disjoint interiors, and that for internal points each comparison determines a unique
outcome and the tree yields a correct answer.

The conjecture that linear comparisons do not help in solving sorting-iype
problems was disproved using an ad-hoc problem. One would like to know how it
stands with respect to ‘“‘natural’ sorting type problems. In particuiar, can linear
comparisons help in sorting? We conjecture it is not so.

As an interesting combinarorial question we mention the probleni of finding =
minimal counter-example to the conjecture we disproved. Yap [17] has shown that
the conjecture is valid for decisions trees of depth <2.

Our result can be viewed as a trade off result in complexity theory: Using more
complex comparisons, one can solve certain problems with less comparisons. The
same questions can be asked anew for other classes of comparisons. For example:
Can a linear problem be solved in less comparisons if quadratic comparisons are
allowed? For similar results see [11].

Finally, this work contains several general results concerning linear decision
problems; a more systematic treatment can be found in [13]). We hope that the
material presented here may convey to the reader some of the mathematical nicety
of this topic, with its interaction of geometrical and combinatorial arguments.
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