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Abstract. An example is provided of a sorting-type decision problem which can be solved in 
fewer steps by using comparisons between linear functions of the inputs, rather than comparisons 
between the inputs themselves. This disproves a conjecture of Yao [14] and Yap [16]. Several 
extensions are presented. 

1. Ilrtroduction 

The worst case behavior of decision algorithms using comparisons between inputs 

has been extensively studied for various sorting-type problems. When the inputs 

are numbers, one can consider the use of more general comparisons. Thus Rabin 
[lo] considered the use of comparisons between meromorphic functions of the 

inputs. Many other authors [l-5], [ 1 l-16] examined the use of comparisons between 
linear functions of the inputs. No unconstrained sorting-type problem was found 
which can be solved in fewer steps using linear comparisons, and it was conjectured 

by Yao [14] and Yap [16], and proved in a few special cases by the latter that 
linear comparisons cannot help. 

We exhibit a counter-example to this conjecture; this counter-example is then 
modified to refute weaker versions of the conjecture. It is shown false, even for 

Yes/No problems, and for problems defined by convex sets. In the process, several 
general results concerning decision algorithms using linear comparisons are 

obtained. 

Decision trees, as a model for decision algorithms, occur initially in RaXn’s paper 

[lo], and are used with minor modifications by all the authors menticned in the 
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introduction. Although we must settle, for the sake of definiteness, on a lparticular 
formulation, our results are valid for the different varie*ties of models used by these 
authors. 

Let n be the set of n-tuples of real numbers (tz-tuples of inputs). A decision 
proble in 08” is given by finite family (Di) of disjoint oplen sets such, that ucl Di = R”. 
If dz is a family of continuous functionals, then Pis of type f2 if the sets Di can be built 
from sets of the form [fl(x)>f ( )] 2 x , with fl, f2 E a, using the operations 
of (finite) union and intersection. In particular, P is of sorting-t!ype if 0 is the 
family of projections Zi!i(x) = Xi, P is linear if 0 is *the family of linear (affine) 
functionals. 

An @decisimt tree consists of a labelled binary tree T: each internal node of T 
abetled with a comparison of the fprm fl(x) : fz(x), where fl, f2 E 0, and the two 

s leaving this node are associated with different outcomes fi(x) < fz(x), f&x) > 
f*(x). In particular, in sorting type decision trees comparisons are between inputs, 
in a linear decision tree linear functions of the inputs are compared. 

The tree T encodes the decision procedure exe?utcd on inputs .x: E R” by moving 
down the tree beginning from the root, performing on x each comparison encoun- 
tered, and branching according to the result, until a leaf is realched, o!r equality 
occurs at some comparison. Thus, we say that x reaches node u of T if x satisfies 
all the inequalities associated with edges on the path leading from the root of T 
to u. 

T s&es the problem P if each leaf of T can be associated with one ‘of the sets 
defining P, such that x reaches a leaf associated with Di only if :r E cl D . For each 

e u of T let SU be the set of inputs reaching u ; T solves P iff the partition of 
Liven by (SU : u is a leaf of T} is a refinement of the partition defining P - ignoring 

a boundary set. 
We make two remarks cznczrning our model: 
G) The procedure encoded by T does not yield an answer on the boundary set 

of inputs for which equality obtains at some comparison. This can be remedied by 
associating with each comparison fi(x) : fi(x) complementary outcomes f i(x) > fz(x), 
fl!x) s fi(x). Indeed, T so ves P Iff the modified tree solves P and the latter yields 1 
a correct answer for any tuple of inputs. However, trees which are labelled only 
with strong inequalities are easier to deal with. 

(ii) There is mole than one correct answer for a tuple of inputs which belongs 
to the common boundary of two or morz sets Di; the decision procedure yields (at 
most) one of these answers. 

T;le fbcomplexitv sf a decision problem P is defined to be the minimal depth 
of a3 .&decision tlee solving P. 

A problem of type .C! can always be solved by an L&decision tree. ‘Use of a richer 
family J2 might however lead to a less complex solution. Yao and Yap conjectured 
that. this does not happen when the family of projections is augmented by the 
addition: of linear functions. 
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Consider the following 4 permutations on the numbers 0 . . .9: 

so: 045 1286739 
s1: 8145 2 3 6709 
s2: 8245 30 6719 
S3: 8345901 672 

Each sequence Si defines on 0 . . .9 an order relation <i and a contiguity 
relation 1 i : 

a <i b if a occurs before b in the sequence Si, and 
a Ii b if a arid b occur (in some order) in consecutive positions in Si. 
The four sequences above have the following properties: 
(i) a lib for at most one index ip with the following exceptions: 
(i.i) 4Ji 5 and 61i 7 for i = 0, . . . , 3; these pairs of numbers occur in the same 

order in each sequence; 
(i.ii) 2 Ii 8 for i =0,2andOli9fori= 1,3; these pairs of numbers occur in opposite 

order in the two sequences where they are contiguous. 
(ii) a <i b or b <i a for at least 3 indices i, with the exception of the pairs {O, 2) 

and {1,3}; the numbers 0, 1, 2, 3 are permuted cyclically in So, . , . , &, so that 
0 Ci 2 for i =0,3, 2 <i 0 for i = 1,2 and similarly, 1 <i 3 for i ~0, 1 and 3 <i 1 for 
i = 2,3. 

Define the following 5 subsets of R”: 

Di=(X*a <ib+xa<Xb), i=O,...,3, 

D,=R”‘\(k cl Di). 
(1) 

The problem P defined by these 5 sets provides the required counter-example. 
It consists of deciding whether 10 inputs are ordered according to one of the 
permutations defined by So, . . . , S3, and if so, which one. 

Claim I. The problem P defined above can be solved by a linear decision trer of 
depth 10 but by no sorting-type dwision tree of depth less than 11. 

Proof. A linear decision tree of depth 10 solving P is illustrated in Fig. 1. -%‘e have 
put in brackets the information available after each comparison. The subtree ;II: 
checks that x E Di; it consists of 8 comparisons performed sequentially, one for 
each pair of contiguous numbers in Si, with the exception of the pair occurring at 
the node immediately above Ti. 
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Fig. 1. 

Row let T be a sorting-type decision tree solving P. If a, b are consecutive 
numbers in $,, and tr is a [eat’ of T associated with Di, then the inequality xa C xb 
Iabels some edge on the path leading from the root of T to u. Indeed, from the 
set of iaaqutilities labeiling this path we can infer that x0 <x6. It follows that this 
set contains 5 chain of inequalities 

. . . , Y “,‘k _ 1 < &k = x,!,p 

But no x E L& can satisfy both inequalities xa C xr C xb. Thws k = 1, and X, C xb labels 
an edgp on the path to u. 

Since all the n-tuples in Dj (0 < i s 3) are ordered according to the same permuta- 
tion, they f~.tlfil the same inequalities, and follow the same path pi in K On this 
path we have 9 comparisons xii. l xb, one for each pair of contiguous numbers in Si. 
The claim thus follows if we show that path pi contains two comparisons xa : xb, 

where a & b. Equivalently, we have to show that there exists a node u in T, and 
an index 0 < i s 3, such that the inequalities xa < xb labeiling the edges on the path 
to tc f&f% G <i b whereas a J’i b for at least TWO of them. 

Since the= comparisons x4: x5 and ~6: x7 occur on each path pi, we assume w.1.g. 
that they a:re performed first. Let x0 : xb $e the comparison at the node reached by 
the path la belled with x4 < x5 and ~6 c x7. We distinguish two cases: 

C&c I. a <i b for 3 indices il, i2, irJ. From (i) and (ii) we have that a )ib for at 
most one of these indices, say il, so that a $ i2 b and a 4’ is b. Let xc : xd be the 
comparison at the’ node reached by the kanch labelled with xxLI < ~6. If c k jz d or 
e Y i:, d we are done. Otherwise we have c Ii2 d and c Ii3 d, so that {c, d} = (2,s) and 
{iz, is]- = {0,2} or {c, d} == (0,9} and (i2, i3) = {I., 3). We shall discuss the first alterna- 
tive. the second one being symmetrkal. IVe have c $i, d and we assume w.1.g. that 
c c iI d. Also, either c <iz d or c <is d, so we can asTame w.1.g. that c <iz d. Let 
X, :x/ be the comparison at the node reached by the branch labelled with xc < xd. 
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If e $ilf or e J’,f we are done (since c $i,d and ok $,b). But il~{l. 3) and 
iz E {0,2} so that no pair of numbers (different from (4,5} and {6,7}) fuifil both 
conditions e Ii1 f and e Ii, f 

Case 2. a Ci b for exactly two indices i. Thus either {a, b} = {0,2} or {a, b} = { 1,3}. 
Assume that {a, b} = {0,2}. We have 0 <i 2 but 0 $i 2 for i = 0, 3. We are done 
unless comparison c : d reached by the branch labelled with x0 < x2 Bulfils c Ii d for 
i = 0, 3. But no pair of numbers (different from {4,5} and {6,7}> fulfil these 
conditions. The case {a, b} = (1, 3) is handled similarly. 

4. Modified counter-examples 

Once the original hypothesis 
to mind: 

has been disproved, two questions come naturally 

(i) can the hypothesis be saved by not unduly restricting its field of application 
(the monster barring approach) and 

(ii) can the hypothesis be shown to be approximately true, by bounding the 
maximal gap between sorting type complexity and linear complexity. 

We shall partially vindicate in this section a negative answer to the first question 
by refuting two plausible restricted conjectures, and proceed to explore the second 
question in the next section. 

The first restricted subclass of decision problems we consider consists of problems 
with two outcomes, that is Yes/No problems. 

It turns out that our original counter-example can be modified to belong to this 
class. This follows from the next theorem, which is interesting in its own right. The 
terminology used is taken from [6]. 

Theorem 1. Let P be the decision problem defined in R” by the sets 

(E I,. . . J%FI,. . .y F,), and let P’ be the problem defined by the sets 

iu:_l Eit FI, . . . , F,). Assume that the (afine) dimension of cl Ei A cll Ei is less than 
n-l forevery ISi<l ’ G r. Then a linear decision tree solves P’ iff it solves P. 

Theorem 1 asserts that we cannot isolate, using hyperplanes, a set which is the 
union of “essentially disjoint” components, without separating, these components. 

Lemma 1. Let B be an open convex set and let Bi be a finite family of closed sets 
such that 

(i) Bc UBi; 
(ii) dim&nBj<n-1 foranyiZj. 
Then B c Bi for some i. 

roof. We can assume w.1.g. that for each i, B cl Bi $ Ui+ i Bj* Assume that B @ B B o 

Let y E (B P &)\& Bi and let S = Ui+ 1 (B 1 nBj). The set S is contained in the 
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union of finitely1 many n - 2 dimensional flats and y 16 5;, so that the cone yS, consisting 
of the rays originating from y and going through S, is contained in the union of 
finitely many n -- 1 dimensional flats, and has th(erefore an empty interior. If 

&, then the segment xy is contained in & and therefore in u Bb It follows 
that this segment intersects S. Thus B\Bl is contained in yS, and has an empty 
interior. It follows that B\Bl is empty, and B c B1. 

Proof of Thearem 1. Obviously, a decision tree solving P solves P’ as well. 
nversety, let T be a linear decision tree solving F’. For each leaf u of T the set 

S, of inputs reaching u is an open convex set contained in the closure of one of 
the sets defining P’. But if SU c Us= 1 cl Ei we have from the assumption on the 
set8 Ei, and from lemma 1, that Su c cl Ei for some i. Each leaf of T is reached by 
inputs belonging to the closure of a unique set out of the sets defining P, so that 
T solves P. 

Co~c&ry I. There exist a Yes/No soyting-type decision problem with linear 
compZexity =S IO and sorting complexity > 11. 

Prc~of. L+et P be the problem defined in R” by the sets Dig 0 G i s 4, of (1). The 
permutations defining the sets Dip i = 0,. . . ,3 differ ic the relative ordering of 
more than one pair of numbers, so that in each of the sets cl .Di n cl Dj, 0 s i <j G 3, 
there is more than one equality between inputs which is identically satisfied, and 
dim cl Di n cl Dj < 9. It follows, by Theorem 1, that a linear decision tree solves P 

iff it solves the problem P’ defined by the two sets {Uf=, Di, 04). P’ cannot therefore 
be solved by a sorting type decision tree of depth 10 but can be solved by a linear 
decision tree of this depth. 

Theorem 1 can be usecl to yield other similar equivalences, most of which are 
pretty obvious in the restricted case of sorting-type decision trees. We bring three 
examples: 

(i) A linear decision tree which finds the kth largest input out of a list of rt 
. 
I#+ I!+. finds also which k: - 1 inputs are greater than it, and which, n - k are less 
tl?# . :‘ (see 18, 5.3.3, ex. :!I). 

.-I A linear decision tree which che.cks whether n inpurr; are ordered according 
to an odd or an even permutation, finds also this permutation (see [8, $53.1, ex. 291). 

(iii) A linear &&ion tree which finds the maximal points out of a: set of n points 
in the plane (see [9]), finds these points in order (maximal points are ordered in 
inverse order according to the x coordinate and the y coordinate). This remark 
yields immediately the lower bound of n lg n proven in [4]. 

Theorem 1 can in fact be viewed as a tool for “normalizing” ilinear decisions 
problems by decomposing them into their “true” components. 

Another natur;al subclass of sorting-type decision problems consists of the prob- 
lems defined by convex sets. The convexity requirement, which occurs in Rabin’s 
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orgina1 definition of decision problems [l, p. 6451 is fulfilled by many interesting 
prtiblems, such AS sorting or finding the first k out of n elements. Many other 
problems are equivalent to convex problems, by Theorem 1. 

Once more, our counterexample can be modified to fall within this class. This 
is done by partitioning the set Dd into convex components, an,d refining the linear 
decision tree of Fig. 1 to yield a solution for the new problem. Thus we have 

Theorem 2. There exists a convex sorting-type decision problem vvith linear complexity 
G 10 and sorting complexity > 11. 

The reader is referred to [12] for the details of the straightforward, if tedious, 
construction of the problem. 

5. Composite problems 

The gain achieved by using linear comparisons is not limited to one step; greater 
gaps can be exhibited by composing the counter-example with itself. 

Definition. Let Pi, i = 1, . . . , k, be problems defined in Iwni by the sets {D$&. The 
Cartesian product PI x 9 l 9 x Pk of these problems is the problem defined in Iw”’ x 
l l 8 xIWnk =Rnlf"'c"k by the sets {Di’, X* l l XDL: 1 CjiSmi}; the rzth powerP” of a 
problem P is defined to be the n-fold Cartesian product of P. 

The problem P = Pr x l l l X Pk is the composition of k independent problems, 
defmed on disjoint sets of inputs. P can therefore be solved by solving separately 
each problem Pi. It follows that the 0 complexity of P is at most the sum of the 
a-complexities of its components PI, . . . , Pk (we have to dispose of the technical 
requirement that &! be closed under composition with projections, so that if f: IR” -) R 
is in 0, then g(xl, . . . , x,) =f(Xil, . . . , xi,) is also in f2). For sorting type problems 
this bound is tight, as shown by the following theorem. 

Theorem 3. The sorting complexity of PI :I< 0 l l x Pk is equal to the sum of the sorting 
comp1exities of PI, . . . ) Pk* 

Corollary 2. For every n thert* is a sorting-type problem of sorting complexity > 11 n, 
and I’inear CompleJcity G lb. 

Proof. By theorem 3 and the discussion preceding it, the nth power P” of the 
problem P defined in Section 3 has the required properties. 

Proof of Theorem 3. We shall prove the theorem for k = 2, the genera1 case 
following by induction. Let PI be defined on x1, . . . , xm and have sorting complexity 
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cl, and Pz be defined on yr, . . . , yn, and have sorting complexity ~2. Let T be a 
f,orting type: decision tree solving PI x P2. We can delete from % any comparjson 
of the form xi : y, (by assuming the outcome to be xi < yi), and the resulting decision 
tree still solves PI x P2. We assume therefore w.1.g. that T does not contain “mixed” 
comparisons. There is an adversary (oracle) J& that forces any decision procedure 
for Pr to perform cl comparisons and an adversary ,a42 forcing c2 comparisons for 
,Pz. The adversary that answers comparisons involving only xi’s according to the 
.& strategy and answers comparisons involving only yi’s according to the J& strategy 
,forces cl comparisons involving xi’s and c:! comparisons involving yj’s, in any decision 
procedure for PI x P2 not comaining “mixed” comparisons. The result now follows. 

The reader famihar with the theory of games will no doubt have recognized in 
the last proof the notion of the Cartesian product of games [7]. 

The crux of the above proof is that “mixed” comparisons, involving both xi’s 
and y+, do not help in solving PI x P2. This is not true of every class of comparisons. 
An example is given in 1123 of two problems defined by linear nonhomogent:ous 
inequalities, that can be solved concurrently with less linear comparisons thar: the 
sum Df the number of comparisons required to solve each one separately. 

The result of Corollary 2 can be easily extended to the two restricted subclasses 
of problems we have considered. 

Corollary 3. (i) For every n there exists a Yes/No sorting type problem of sorting 
compIexity > 11 n and linear compiexity c 1 On. 

(ii) For every n there exists a convex sorting type problem of sorting complexity 
7 11 n and linear complexity s 1 On. 

A problem satisfying the first claim can be built from P” by using the technique 
of Corollary 1; the second claim follows from the remark that the product of convex 
problems is a convex problem. 

We have shown that the use of linear comparisons can save an unbounded number 
of comparisons. Yet, the number of comparisons has been reduced only by a 
constam factor. As linear comparisons can be harder to perform, the overall 
computational complexity is not necessarily reduced. We believe that our methods 
can be used to exhibit larger ratios between the two complexity measures. However, 
lower bounds on sorting complexity that are nonlinear in the number of inputs 
seems to be achievable only through the use of information theoretical arguments, 
and are therefore valid, for linear complexity as well. Proving a nonlinear speedup 
seems therefore to require new techniques. 

6. Conchading remarks 

The results obtained ia previous sections are quite insensitive to variations in 
the decision problem/djecision tree models. We can allow the use of weak 
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inequalities ior defining the sets of a ;?roblem, allow the use of weak inequalities 

as labels in decision trees, or add tcl each comparison a third outcome, namely 

equality. The meaningful requirements are that the sets defining a pro&m have 
disjoint interiors, and that for internal points each comparison determines a unique 
outcome and the tree yields a correct answer. 

The conjecture that linear comparisons do not help in solving sorting-type 
problems was disproved using an ad-hoc problem. One would like to know how it 
stands with respect to “natural” sorting type problems, In partictu;ar, can linear 
comparisons help in sorting? We conjecture it is not so. 

As an interesting combinatorial question we mention the problem of finding 3 
minimal counter-example to the conjecture we disproved. Yap [17] has shown that 
the conjecture is valid for decisions trees of depth ~2. 

Our result can be viewed as a trade oti result in complexity theory: Using more 
complex comparisons, one can solve certain problem:3 with less comparisons. The 
same questions can be asked anew for other classes of comparisons. For example: 
Can a linear problem be solved in less comparisons if quadratic comparisons are 
allov?ed? For similar results see [1 11. 

Finally, this work contains several general results concerning linear decision 
problems; a more systematic treatment can be found in [ 131. We hope that the 
material presented here may convey to the reader some of the mathematical nicety 
of this topic, with its interaction of geometrical and combinatoria1 arguments. 
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