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The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in
patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that
rapamycin decreases hepatic LDL receptor (LDL-R) expression,which likely contributes to hypercholesterolemia.
Scavenger receptor, class B, type I (SR-BI) is themajor HDL receptor and consequently regulatingHDL-cholesterol
levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is
down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as
mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin
reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migra-
tion could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part respon-
sible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell
dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin
treatment.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Plasma concentrations of HDL cholesterol exhibit an inverse correla-
tion with the incidence of coronary artery disease [1]. HDL particles
possess anti-inflammatory, anti-oxidant, and anti-thrombotic proper-
ties and are capable of activating eNOS (reviewed in [2]). The cardio-
protective effect of HDL is further ascribed to its ability to transfer lipids
from peripheral cells, such as macrophage foam cells residing in the
arterial intima, back to the liver for excretion into the bile, a process
called reverse cholesterol transport (RCT) [3]. To achieve the removal
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of excess cholesterol deposited in the arterial intima, HDL must cross
the endothelial barrier to come into close proximity to macrophage
foam cells found in atherosclerotic plaques. The mechanisms necessary
for this transport are not fully understood (reviewed in [4]).

The mammalian target of rapamycin (mTOR) pathway is a central
regulator of cellular growth and metabolism in response to nutrients,
growth factors, or cellular energy levels (reviewed in [5]). The con-
served serine/threonine kinase mTOR forms two distinct complexes,
mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which
differ in their input signals and output functions. The mTORC1 sub-
strates S6 kinase 1 (S6K1) and eIF4E binding protein 1 are involved in
protein synthesis (reviewed in [6]). mTORC1 is also known to activate
gene transcription, e.g. via the sterol regulatory element binding protein
(SREBP) pathway, a key transcriptional regulator of cellular cholesterol
metabolism, or the peroxisome proliferator-activated receptor gamma
(PPARγ) [7–9]. mTORC2 is involved in cell survival and metabolism
and cytoskeletal organization via its substrates, the kinases Akt,
serum- and glucocorticoid-induced protein kinase 1 and protein kinase
C-α (reviewed in [5]).

Rapamycin (Sirolimus) in complex with FK506-binding-protein
binds to the FKBP12–rapamycin-binding domain of mTORC1, thereby
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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inhibiting its kinase activity. Rapamycinwas first approved as an immu-
nosuppressant agent to prevent allograft rejection; thus a plethora of
clinical data are available from kidney transplant patients. The majority
of these patients developed dyslipidemia [10], which contributes to
cardiovascular disease, the most common cause of death in kidney-
transplant recipients [11]. Although much effort has been made in un-
derstanding rapamycin-related dyslipidemia, for most mTOR inhibitors
the net effect on atherosclerosis remains elusive. The decrease in LDL re-
ceptor (LDL-R) expressionmay be a reason for hyperlipidemia observed
in rapamycin-treated patients [10,12]. Indeed, it was reported recently
that down-regulation of hepatic LDL-R expression is mediated via
mTORC1 and leads to increased LDL-cholesterol levels in mice [13]. In-
terestingly, HDL-cholesterol levels increased in rapamycin-treated
mice, indicating a complex mode of action of this drug. Several groups
found increased HDL-cholesterol levels upon rapamycin treatment in
different mouse models [13–15], and scavenger receptor, class B, type
I (SR-BI) loss of function in humans aswell as inmice leads to amalfunc-
tion of HDLmetabolism and abnormal HDL cholesterol levels (reviewed
in [16]).

Both the HDL receptor SR-BI and the ATP binding cassette transport-
er G1 (ABCG1) participate in endothelial HDL transport [17]. Besides
playing a role in lipoprotein uptake, SR-BI mediates signal transduction
of HDL (reviewed in [18]). This is of particular importance in endothelial
cells, where HDL was shown to induce cell migration and eNOS
activation, thereby stimulating NO production, which is essential for
maintaining vascular homeostasis [18–20]. Further studies identified
the involvement of eNOSphosphorylation at serin 1177 via Akt,mediat-
ed by Src kinases and PI3 kinase, in this process [21]. Defective NO
production causes impaired vasodilation, which together with a pro-
inflammatory and pro-thrombotic state of endothelial cells results in
endothelial dysfunction. The latter represents an early event in the
development of atherosclerosis.

In the present study, we have investigated the consequences
of mTOR inhibition on SR-BI expression and function in primary endo-
thelial cells. After rapamycin treatment, a time-dependent down-
regulation of SR-BI in human umbilical vein endothelial cells (HUVECs)
was found. Interestingly, HDL uptake was unaltered under these
conditions, while HDL-stimulated endothelial NO production and cell
migration were impaired. The contribution of SR-BI to these two hall-
marks of endothelial dysfunction was assessed by analyzing the effects
of SR-BI knockdown and overexpression. SR-BI knockdown alone
could not mimic the rapamycin induced effects on eNOS activation or
cell migration, whereas SR-BI overexpression in rapamycin-treated
cells could partly attenuate endothelial dysfunction.

2. Material and methods

2.1. Materials

Antibodies to SR-BI (CLA-1) and phospho-eNOS (S1177) were pur-
chased from BD Transduction Laboratories. Antibodies to total mTOR,
total TSC2, phospho-Akt (S473), total Akt, phospho-S6 ribosomal pro-
tein (S240, 244), total S6 ribosomal protein, GAPDH, and total eNOS
were obtained from Cell Signaling Technology. The antibody to ß-actin
was purchased fromAbcam. HUVECswere incubatedwith the following
inhibitors: 20 nM rapamycin (Calbiochem, Merck), 250 nM Torin 1
(Tocris Bioscience), 10 μM S6K1 inhibitor (PF4708671, Sigma) and
1 mM Akt inhibitor (MK-2206). We further applied 10 μM lovastatin
(Sigma) and two PPARγ agonists: 10 μM troglitazone (Merck) and
10 μM pioglitazone (Sigma).

2.2. Cell culture

Human umbilical vein endothelial cells (HUVECs) and human coro-
nary artery endothelial cells (HCAECs) (PromoCell) were cultured in
flasks coated with 0.5% gelatin in Endothelial Cell Growth Medium
(PromoCell) containing endothelial cell growth supplement, epidermal
growth factor, basic fibroblast growth factor, heparin and hydrocorti-
sone, supplemented with 5% fetal calf serum. Passages from 4 to 7
were used for the experiments. HUVECs were maintained in serum-
free Endothelial Cell Growth Medium (PromoCell) containing the
endothelial cell growth supplement mix. HepG2 and Huh7 cells
(ATCC) were maintained in minimal essential medium (MEM; GE
Healthcare) supplemented with 1% penicillin/streptomycin, 10% FCS,
1% non-essential amino acids and 1% glutamine. For experiments, FCS
was reduced to 1%. HepG2 cells were incubated with 20 to 100 nM
rapamycin. Fluorescently labeled HDL uptake experiments were
performed as described for HUVECs.

2.3. Lipoprotein isolation and labeling with fluorescent dyes

Plasma was collected from healthy volunteers and HDL was pre-
pared by sequential ultracentrifugation (d = 1.21 g/ml) [22]. The
apolipoprotein part of HDL was covalently labeled with fluorescent
Alexa Fluor 488 (Molecular Probes) according to the manufacturer's in-
structions. Loading of HDL with Bodipy-cholesteryl oleate (BP-CE) or
Bodipy-cholesterol (BP-C) was performed as described previously [23].
Labeling of HDL with the fluorescent phospholipid DiI (1,1′-dioctadecyl-
3,3,3′,3′-tetramethylindocarbocyanine perchlorate) was carried out by
incubation of HDL in human lipoprotein deficient serum overnight at 37
°C followed by ultracentrifugation [24]. HUVECs were incubated with
50 μg/ml labeled HDL for 60 min. After the cells were fixed in 4% para-
formaldehyde for 30 min at 4 °C, samples were mounted and examined
using a fluorescence microscope (Axiovert 135, Zeiss).

2.4. [3H-CE-, 125I]-HDL labeling and uptake experiments

HDLwas double labeledwith [3H]-cholesteryl-oleate (Perkin Elmer)
and sodium [125] iodine (Hartmann Analytics) as previously described
[25]. For uptake experiments, HUVECs were seeded in 12-well plates.
To calculate unspecific binding, a 40-fold excess of unlabeled HDL was
added to every fourth well. [3H-CE-, 125I]-HDL was added to each well
at a concentration of 10 μg/ml. After 60 min cells were washed twice
with cold PBS + BSA (2 mg/ml) and twice with cold PBS. Cells were
then lysed with NaOH (0.1 M). [125I]-radioactivity in the lysates
was counted using a gamma-counter (COBRAII Auto-gamma; Perkin
Elmer). [3H] was analyzed using 15 ml Ready-Safe (Beckman Coulter)
and a beta-counter (Tri-Carb 2800TR; Perkin Elmer). Measurements
were normalized to protein content, determined by the Bradford
protein assay (Biorad).

2.5. Quantitative real-time PCR

RNA was isolated using the RNeasy Plus Kit (Qiagen) and cDNA was
synthesized with the High Capacity cDNA Reverse Transcription Kit (Ap-
plied Biosystems). For real-time PCR TaqMan®Assays (Life Technologies)
and a StepOne Real Time PCR System (Applied Biosystems)were utilized.
The following TaqMan® probes were used: GAPDH (Hs99999905_m1),
SCARB1 (Hs00969821_m1), HMGCR (Hs00168352_m1), LDLR
(Hs00181192_m1), FASN (Hs01005622_m1), ABCA1 (Hs00194045_m1)
and ABCG1 (Hs01555193). Results are shown as relative expression
normalized to GAPDH.

2.6. TSC2 knockdown using RNAi

siRNA mediated knockdown in HUVECs was performed using the
RNAiFect Transfection Reagent (Qiagen) according to the manufacturer's
instructions. HUVECs were transfected for 48 h with scrambled con-
trol or TSC2 targeting siRNA using a final siRNA concentration of 30
nM (ON-TARGETplus SMARTpool, Dharmacon, Thermo Scientific).
Knockdown efficiency was tested using Western Blot analysis.



Fig. 1. Analysis of SR-BI expression in HUVECs. A, HUVECs were incubated with 20 nM
rapamycin for 24 h, and then lysed and Western Blot analysis or quantitative real time
PCR was performed. SR-BI protein and mRNA expression upon rapamycin treatment
was quantified (n = 6). B, cells were incubated with 20 nM rapamycin and lysed at the
indicated time points. Afterwards Western Blot analysis or quantitative real time PCR
was performed. SR-BI protein (squares) and mRNA (circles) expression upon rapamycin
treatment was quantified (n = 2). A representative Western Blot is shown in A and B.
*p b 0.005.
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2.7. Western Blot analysis

Western Blot analysis was carried out according to standard proce-
dures. Densitometric quantification was performed using the TotalLab
Software (TotalLab Ltd).

2.8. SR-BI silencing and overexpression using lentiviral particles

HUVECs were seeded in 24-well plates, and the next day 250 μl of
Endothelial Cell Growth Medium was added containing 8 μg/ml of
Polypren and 2 ∗ 105 TU of shRNA lentiviral transduction particles
targeting SR-BI (SHCLNV, TRCN0000056963, MISSION ® Lentiviral
Transduction Particles, Sigma), scrambled control (SHC002V,MISSION®
pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles,
Sigma) or SCARB1 (LP-G0781-Lv105-0200-S, Gene Copoeia). Cells
were centrifuged for 90 min at 30 °C and 1300 g. Two days after trans-
duction cells were changed to selection medium containing 0.5 μg/ml
of Puromycin (Life Technologies). Knockdown and overexpression
efficiency were tested by Western Blot analysis.

2.9. Cell surface biotinylation

Cell surface biotinylation and cell fractionation were performed
using the Cell Surface Protein Isolation Kit (ThermoScientific) according
to the manufacturer's instructions. Cell surface and cytosolic fractions
obtained were analyzed by Western Blot. The total amount of a specific
protein in each fractionwas calculated according to the fraction volume.

2.10. NO quantification using 4,5-diaminofluorescein diacetate (DAF-2 DA)

For the quantification of intracellular NO concentrations, DAF-2 DA
(Sigma) was used [26]. HUVECs were seeded into clear-bottom 96-
well plates. After the cells were pretreated with or without 20 nM
rapamycin for 24 h and washed twice with PBS, we added PBS contain-
ing 1 μMDAF-2 DAwith or without 100 μg/ml HDL. DAF-2 fluorescence
intensity was measured at an excitation wavelength of 488 nm every
2 min for 60 min using a fluorometer (Zenyth 3100, Anthos). The
assay was performed at least in triplicate. DAF-2 fluorescence from
untreated cells was subtracted from HDL-treated cells.

2.11. Cell migration assay

HUVECs were seeded in 6-well plates. Cell monolayers were
scratched using a pipette tip and migration into the wounded area
was assessed after 6 and 24 h. Medium was changed immediately
after wounding and 20 nM rapamycin and/or 100 μg/ml HDL were
added. Cell migration at the 24 h time point was quantified by measur-
ing the scratch area. Results are calculated as % of the initial scratch area;
results are expressed as % of control treated cells.

2.12. Filipin staining

Free cholesterol distribution and the amount within the cells were
assessed using filipin staining. Cells were fixed in 4% para-formaldehyde
for 30 min at 4 °C, washed twice with PBS, and incubated with 1 mg/ml
filipin III (Sigma) for 2 h. Samples were washed twice with PBS,
mounted and imaged using a fluorescence microscope (Axiovert 135,
Zeiss).

2.13. Statistical analysis

Results were expressed as mean ± SD. Data were analyzed using a
two-tailed Student's t-test. p-Values below 0.005 were considered as
significant.
3. Results

3.1. SR-BI expression is decreased by rapamycin

Deregulation of the mTOR pathway provokes dyslipidemia but its
consequences on the interaction of HDL with endothelial cells are still
elusive. Therefore, we sought to analyze the effect of themTOR inhibitor
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rapamycin on SR-BI in HUVECs. Upon treatment with rapamycin
(20 nM) for 24 h SR-BI expressionwas reduced by about 50% in HUVECs
on the protein as well as on the mRNA level (Fig. 1A). As expected,
mTORC1 activity was inhibited upon rapamycin treatment as shown
by decreased S6 phosphorylation (Fig. 1A). Similar results were found
in human coronary artery endothelial cells (HCAECs) (Fig. S1) as well
as in the human hepatoma cell lines HepG2 (Fig. S2A) and Huh7 (data
not shown). Next, the time dependence of this regulation was analyzed
in HUVECs (Fig. 1B). Down-regulation of SR-BI occurred rather late,
resulting in a 30% reduction of SR-BI protein after 16 h. Rapamycin
strongly inhibited the phosphorylation of the mTORC1 downstream
target ribosomal protein S6 (S6) after 1 h, while Akt phosphorylation
at serine 473 decreased more slowly. Concomitantly to SR-BI protein,
SR-BI mRNA expression was decreased by about 30% after 16 h of incu-
bationwith rapamycin (Fig. 1B). These data show that the HDL receptor
SR-BI is down-regulated upon inhibition of mTOR by rapamycin, on the
protein as well as on the mRNA level.

3.2. SR-BI regulation is mediated via mTORC1

Having identified the involvement of mTOR in the regulation of
SR-BI, we next aimed to dissect themTOR signaling network using spe-
cific inhibitors and activators to identify mTOR downstream effectors
(illustrated in Fig. 2D). We investigated the effect of rapamycin, Torin,
S6K1 inhibitor (PF4708671), and Akt inhibitor (MK-2206) on SR-BI ex-
pression (Fig. 2A). Rapamycin and Torin blocked bothmTOR complexes
in HUVECs, as demonstrated by decreased pAkt and pS6 levels (Fig. 2A).
MK-2206 significantly blocked Akt phosphorylation, and PF4708671
decreased S6 phosphorylation. SR-BI protein expression was down-
regulated by about 50% after 24 h of incubation with rapamycin or
Fig. 2. Effect of mTOR pathwaymodulation on SR-BI expression. A and B, HUVECs were treated
Cells were lysed andWestern Blot analysis (A) or quantitative real time PCR (B) was performed
and Western Blot analysis was performed. D, simplified illustration of mTOR signaling and the
Torin, but not upon inhibition of S6K1 or Akt alone (Fig. 2A). A similar
expression pattern of SR-BI was seen on the mRNA level (Fig. 2B). This
indicates that Akt, a major downstream target of mTORC2, and S6K1
are not involved in the down-regulation of SR-BI.

We next activated mTORC1 signaling by knockdown of themTORC1
upstream inhibitor tuberous sclerosis 2 protein (TSC2) (Fig. 2C). This
knockdown led to an increase of SR-BI protein expression as well as
mTORC1 activity, as shown by increased S6 phosphorylation. Taken
together, these results suggest an involvement of mTORC1 in the regu-
lation of SR-BI, which seems to be independent of S6K1.

3.3. SR-BI regulation is independent of the SREBP-LDL-R axis

Regulation of cellular lipidmetabolism viamTOR ismainlymediated
by the transcription factors SREBPs and PPARγ (reviewed in [9,27]).
Thus we analyzed the expression of target genes of these transcription
factors after inhibition ofmTOR and in combinationwith specific activa-
tors (Fig. 3). After rapamycin treatment, the mRNA expression of the
LDL-R and hydroxymethylglutaryl-CoA-reductase (HMG-CoA-R), both
targets of SREBP-2, and of fatty acid synthase (FAS) which is a SREBP-
1 target, was reduced by about 50% (Fig. 3A). To assesswhether this reg-
ulation is mediated by an alteration of the cellular cholesterol content,
we used lovastatin, an inhibitor of HMG-CoA-R, the rate-limiting en-
zyme in the cholesterol biosynthetic pathway. Lovastatin decreased
the intracellular free cholesterol content, as demonstrated by filipin
staining (Fig. 3B). While LDL-R, HMG-CoA-R, and FAS mRNA expres-
sions increased after lovastatin treatment, SR-BI expression remained
unchanged. Rapamycin treatment with or without lovastatin resulted
in a decrease of SR-BI expression as well as LDL-R, HMG-CoA-R, and
FAS expressions (Fig. 3A). In contrast to lovastatin, rapamycin alone
for 24 h with either 20 nM rapamycin, 250 nM Torin, 10 μM PF4708671 or 1 μMMK-2206.
(n = 3). C, RNAi mediated TSC-2 knockdownwas performed in HUVECs, cells were lysed
influence of the specific inhibitors used in HUVECs. *p b 0.005.

image of Fig.�2


Fig. 3. Analysis of SR-BI down-regulation. A, HUVECs were incubated for 24 h with 20 nM rapamycin (R) and/or 10 μM lovastatin (L). Cells were lysed and quantitative real time PCR
was performed (n= 3). B, after preincubation with rapamycin and/or lovastatin, cells were fixed, filipin staining was performed, and cells were imaged using a fluorescence microscope.
C, HUVECs were incubated for 24 h with 20 nM rapamycin and/or 10 μM troglitazone or 10 μM pioglitazone. Cells were lysed and Western Blot analysis was performed. *p b 0.005.
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did not affect cellular cholesterol content, as demonstrated by filipin
staining, but a combination of both had the same effect as lovastatin
alone (Fig. 3B). Thus, while the cholesterol responsive genes were
reactivated by lovastatin, SR-BI regulation was only influenced by
rapamycin treatment.

In contrast to SREBP regulated genes ABCA1 and ABCG1, both liver
X receptor (LXR) targets, were decreased by lovastatin but not by
rapamycin treatment, arguing against an involvement of LXRs in
regulating SR-BI upon mTOR inhibition (Fig. 3A). We further analyzed
the role of PPARγ, another important transcription factor controlling
cellular lipid metabolism, in the regulation of SR-BI by mTOR. We
found that PPARγ mRNA was decreased upon rapamycin treatment
(data not shown). However, activation of PPARγ using two different
ligands, troglitazone and pioglitazone, did not alter basal SR-BI expres-
sion and did not interfere with the rapamycin-mediated down-
regulation of SR-BI (Fig. 3C). Our results indicate that these classical
transcription factors regulating cellular lipid metabolism are not
involved in the down-regulation of SR-BI upon rapamycin treatment.

3.4. Rapamycin treatment does not alter HDL uptake

Next, we investigated functional consequences emerging from
the alteration in SR-BI expression levels in HUVECs upon rapamycin
treatment. We first analyzed the uptake of fluorescently labeled HDL
(Fig. 4A). Reconstituted HDL particles containing the fluorescent
cholesterol analogs Bodipy-cholesterol (BP-C) and Bodipy-cholesteryl
oleate (BP-CE)were used to follow theuptake of HDL-associated sterols.
HDL-Alexa 488was used to visualize the HDL particle itself and HDL-DiI
to follow the fate of HDL-derived phospholipids. BP-C was distributed
throughout the cells, with enrichment in the perinuclear area. BP-CE
was also enriched in the perinuclear area. HDL-Alexa 488 and HDL-DiI
showed a more vesicular staining pattern. After treatment with
rapamycin, there was no alteration in the distribution or in the amount
of HDL or HDL-derived lipids taken up. Similar results were observed in
HepG2 cells (Fig. S2B) andHuh7 cells (data not shown). To quantify this,
we used double labeled [3H-CE-, 125I]-HDL (Fig. 4B). No difference was
found in specific HDL particle uptake, represented by the [125I]-HDL
fraction, or in specific [3H-CE] uptake from HDL particles in HUVECs.
To exclude the involvement of cellular redistribution of SR-BI, we ana-
lyzed SR-BI distribution by separating plasma membrane and cytosolic
proteins using cell surface biotinylation (Fig. 4C). No major shift upon
rapamycin treatmentwas seen. Thus, despite a reduction of SR-BI levels
by ~50% upon treatmentwith rapamycinwe found no difference in HDL
uptake, pointing to a compensatory mechanism.

3.5. Rapamycin treatment causes endothelial dysfunction

Since an essential function of HDL is to activate cellular signaling
pathways in endothelial cells, thereby stimulating NO production and
cell migration, we assessed whether rapamycin has any influence on

image of Fig.�3


Fig. 4. Investigation of HDL uptake and SR-BI cell surface expression. A, after treatment with 20 nM rapamycin for 24 h, cells were incubated with 50 μg/ml HDL-Alexa 488, HDL-BP-CE,
HDL-BP-C, or HDL-DiI for 1 h at 37 °C. Cells were then fixed and imaged using a fluorescence microscope. B, HUVECs were incubated with 20 nM rapamycin for 24 h. Cells were then in-
cubated with 10 μg/ml radioactively dual labeled [3H-CE-; 125I]-HDL. After 1 h at 37 °C cells were lysed, and the radioactivity was counted in the cell lysates and normalized to protein
content (n=3). C, cell surface biotinylationwas performed, and lysates from each fractionwere analyzedbyWesternBlot andprotein expressionwas quantified bydensitometric analysis
(n = 3). No significant changes were detected.
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these processes. Upon rapamycin pretreatment, HDL failed to stimulate
Akt phosphorylation to the same extent as in control cells (Fig. 5A). In
HCAECs a similar result was seen (Fig. S1). Consequently, eNOS phos-
phorylation at S1177, which reflects enzyme activity, was decreased
compared to control cells. To further test whether this results in
impaired eNOS activity, we assessed NO production in HUVECs using
DAF-2 DA (Fig. 5B). Indeed, following rapamycin pretreatment NO
production was not stimulated by HDL (Fig. 5B, gray regression line). In
contrast, in control cells addition of HDL increased the amount of intra-
cellular NO in a time-dependent manner (Fig. 5B, black regression line).
The underlying cause of decreased eNOS activity upon rapamycin treat-
ment is likely linked to impaired Akt phosphorylation, since treatment
with the Akt inhibitor MK-2206 had a similar effect on HDL-induced
eNOS phosphorylation as rapamycin treatment (Fig. S3). To further
analyze the functional consequences of impaired HDL-induced cellular
signaling, we carried out experiments on the stimulation of cell
migration by HDL. Rapamycin significantly blocked basal as well as
HDL-stimulated cell migration in HUVECs (Fig. 5C). These data indicate
that rapamycin causes endothelial dysfunction by impairingNOproduc-
tion and endothelial cell migration.
3.6. SR-BI knockdown does not mimic the rapamycin induced effects

Having discovered that rapamycin triggers endothelial dysfunction
in HUVECs, we aimed to investigate the significance of SR-BI in these
processes.We first performed a SR-BI knockdown using a lentiviral sys-
tem in HUVECs to assess the consequences of SR-BI down-regulation
separately, without the influence of rapamycin (Fig. 6). Upon incubation
with HDL, Akt aswell as eNOS phosphorylation increased in control and
to a similar extent in SR-BI knockdown cells (Fig. 6A). No difference in
basal or HDL-stimulated cell migration was seen upon SR-BI knock-
down compared to control cells (Fig. 6B). These results indicate that
the effects of rapamycin on endothelial cell migration and NO produc-
tion are not mediated by SR-BI alone.
3.7. SR-BI overexpression partly overcomes the rapamycin induced effects

Finally, we made use of SR-BI overexpression to assess whether
unimpaired SR-BI expression can counteract the effects mediated by
rapamycin. Therefore, HDL-stimulated signaling and cell migration

image of Fig.�4


Fig. 5. Analysis of HDL-stimulated eNOS activation and cellmigration. A, after 20 nM rapamycin pretreatment for 24 h, HUVECswere incubatedwith 100 μg/ml HDL for the indicated time.
Cells were then lysed andWestern Blot analysis was performed. B, HUVECs were preincubated with 20 nM rapamycin for 24 h. Cells were then incubated with 1 μMDAF-2 DA in PBS for
60min with or without 100 μg/ml HDL. Fluorescence intensity was measured every 2 min using a fluorometer. Linear regression of three independent experiments is shown; results are
expressed asmean±SEM.C, HUVECmonolayerswere scratched andmigration into thewounded areawas assessed after 6 and 24 h in the presence of 20 nMrapamycin and/or 100 μg/ml
HDL. Cellmigration after 24 hwasquantified. A representative image is shown. Results are calculated as % of the initial scratch area; results are expressed as % of control (n=3). *p b 0.005.
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were assessed inwildtype versus SR-BI overexpressing HUVECs (Fig. 7).
Akt and eNOS phosphorylation increased upon incubation with HDL in
wildtype as well as SR-BI overexpressing cells (Fig. 7A). This effect
was almost abolished upon rapamycin treatment. Even SR-BI overex-
pression could not attenuate defective stimulation of Akt and eNOS
phosphorylation by HDL. In addition, basal phospho-Akt and phospho-
S6 levels were similar in wildtype and SR-BI overexpressing HUVECs.
Again, we investigated endothelial cell migration upon stimulation
with HDL during rapamycin treatment (Fig. 7B). HDL-stimulated cell
migration was improved in SR-BI overexpressing cells compared with
wildtype cells under control as well as under rapamycin-treated condi-
tions. There was no difference in basal unstimulated cell migration.
Taken together, we found that SR-BI overexpression did not influence
HDL-stimulated Akt and eNOS phosphorylation but improved HDL-
stimulated cell migration, suggesting that SR-BI is in part involved in
the rapamycin induced effects contributing to endothelial dysfunction.

4. Discussion

Here we show that the mTOR inhibitor rapamycin, which is in clini-
cal use as an immunosuppressant, for anti-restenosis, and for the treat-
ment of various cancers, down-regulates SR-BI protein aswell as mRNA
levels in human endothelial cells and induces endothelial dysfunction.

Acute rapamycin treatment specifically inhibits mTORC1, while
long-term treatment was shown to impair the function of mTORC2 in
a cell type and tissue specific manner [28]. Rapamycin treatment
for 24 h in HUVECs efficiently inhibited the activity of both mTOR
complexes as downstream target phosphorylation decreased strongly.
HepG2 cells exhibited a similar response. Rapamycin and Torin, which
both inhibit mTORC1 and mTORC2, decreased SR-BI protein as well as
mRNA levels in HUVECs. Rapamycin also decreased SR-BI expression
in HepG2 cells, however a higher concentration of rapamycin was nec-
essary to induce the same effect as in HUVECs. Interestingly, neither in-
hibition of Akt, a main downstream target of mTORC2, nor inhibition of
S6K1, a classicalmTORC1 target, had a significant effect on SR-BI expres-
sion in HUVECs. Constitutive activation of mTORC1 by TSC2 knockdown
led to an increase of SR-BI protein, emphasizing the importance of
mTORC1 in this process. mTORC1 exerts its downstream effects by
various mechanisms and was previously shown to activate SREBPs in
different ways, the induction of SREBP mRNA being independent of
S6K1 [29].

Since rapamycin treatment affected SR-BI mRNA and protein levels
to the same extent, a regulation of transcription or RNA stability is
most likely involved in this regulation. Data on the regulation of endo-
thelial SR-BI expression are limited. Hepatic SR-BI expression is very
complex and regulated by multiple factors on the transcriptional as
well as on the post-transcriptional level (reviewed in [30]). The actions
of rapamycin are diverse and operate on several levels, on the transcrip-
tional, translational, and also post-translational levels, as shown recent-
ly for the LDL-R [13]. To assess which factors might be involved in the
regulation of SR-BI upon inhibition of mTOR, we analyzed the relevance
of transcription factors that are important in lipid and lipoprotein me-
tabolism and also regulate SR-BI expression, at least in the liver [30].
Our data do not suggest an involvement of SREBPs, LXRs, or PPARγ in
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Fig. 6. Influence of SR-BI knockdown onHDL-stimulated eNOS activation and cellmigration. A, after lentiviral knockdownof SR-BI HUVECswere incubatedwith orwithout 100 μg/ml HDL
for 30 min. Cells were lysed and analyzed byWestern Blot (n = 3). A representativeWestern Blot is shown. B, HUVEC monolayers were scratched and migration into the wounded area
was assessed after 6 and 24 h in the presence of 20 nM rapamycin and/or 100 μg/ml HDL. Cell migration after 24 h was quantified. A representative image is shown. Results are calculated
as % of the initial scratch area; results are expressed as % of control (n = 3). *p b 0.005.
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the regulation of SR-BI by rapamycin. It appears conceivable that a com-
bination of factors is regulating SR-BI transcription upon modulation of
mTOR activity. Furthermore, post-transcriptional mechanismsmay also
play a role in the regulation of SR-BI by rapamycin.

Unexpectedly, we found no change in HDL uptake upon rapamycin
treatment. Since SR-BI is not solely responsible for HDL uptake in endo-
thelial cells, this findingmay be explained by the contribution of several
other proteins. One possible candidate is ABCG1, which was shown to
be involved in HDL uptake and transport in bovine aortic endothelial
cells [17]. We found in our experiments slightly increased ABCG1
expression upon rapamycin treatment, which might compensate de-
creased SR-BI expression. The beta-chain of cell surface F(0)F(1) ATPase
was found to participate in HDL transcytosis in endothelial cells and
in hepatic HDL endocytosis [31,32]. The regulation of endothelial
cholesterol metabolism needs to be tightly controlled, emphasizing
the importance of the redundancy of these proteins involved in regulat-
ing HDL uptake.

Rapamycin pretreatment strongly impairedHDL-stimulated Akt and
eNOS phosphorylation, NO production, and endothelial cell migration.
These data are in agreement with previous work showing that
rapamycin blocks endothelial cell migration [33]. To test whether
these adverse effects leading to endothelial dysfunction are directly re-
lated to decreased SR-BI expression or rather evolve froma combination
of rapamycin dependent effects, we performed SR-BI knockdown in
HUVECs. Lentiviral SR-BI knockdown resulted in a 60 to 70% decrease
of SR-BI protein levels in HUVECs, whichwas considered to be appropri-
ate to mimic down-regulation of SR-BI by about 50% upon rapamycin
treatment. Despite this substantial reduction of SR-BI levels, we found
no difference in HDL-induced signaling or cell migration compared to
control cells. In contrast, in aortas of SR-BI knockoutmice HDL no longer
induced NO dependent vasorelaxation [19]. This emphasizes the signif-
icance of SR-BI in stimulating eNOS activity in vivo. Sphingosine-1-
phosphate (S1P)was shown to induceNOproduction via eNOS in endo-
thelial cells and might fill in for SR-BI [34,35]. Signaling via SR-BI is im-
portant for HDL-induced endothelial cell migration in vitro [36]. In vivo
evidence also demonstrates that SR-BI is an important player in this
process as re-endothelialization is decreased in SR-BI knockout mice
[36]. We did not observe decreased HUVEC migration after rapamycin
treatment in SR-BI knockdown cells, again indicating that this effect is
not mediated by SR-BI alone.

We finally could demonstrate that HDL-stimulated endothelial cell
migration was improved in cells overexpressing SR-BI compared to
wildtype cells. Thus, we conclude that decreased SR-BI expression can
only in part account for the effects caused by rapamycin in endothelial
cells.

Despite increasing clinical applications of mTOR inhibitors, one has
to consider their serious systemic side effects, especially alterations of
the lipid profile. Hyperlipidemia is observed frequently in rapamycin-
treated patients [10,12] and is presumably connected to decreased
LDL-R expression. Via mTORC1 rapamycin down-regulates hepatic
LDL-R expression in mice, leading to elevated LDL-cholesterol levels
[13]. This, together with our finding that SR-BI expression is decreased
in vitro and that rapamycin induces endothelial dysfunction, may con-
tribute to atherogenesis in rapamycin-treated patients. However, ath-
erogenesis is a complex process with multiple players and pro- as well
as anti-atherogenic factors and events. Thus, the net effect of rapamycin
in humans is not predictable. Several studies have identified rapamycin
as a positive aswell as a negative regulator of atherogenic events [14,37,
38]. Although the in vivo contribution of endothelial SR-BI to anti-
atherogenic processes is still not known (reviewed in [39]), decreased
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Fig. 7. Influence of SR-BI overexpression on HDL-stimulated eNOS activation and cell
migration. A, after lentiviral overexpression of SR-BI in HUVECs, wildtype (HUVECs wt)
or SR-BI overexpressing (HUVECs SR-BI) cells were preincubated with 20 nM rapamycin
for 24 h followed by a stimulation with 100 μg/ml HDL for 30 min. Cells were lysed and
analyzed by Western Blot (n = 2). A representative Western Blot is shown. B, HUVEC
monolayers were scratched and migration into the wounded area was assessed after 6
and 24 h in the presence of 20 nM rapamycin and/or 100 μg/ml HDL. Cell migration
after 24 h was quantified. Results are calculated as % of the initial scratch area; results
are expressed as % of control (n = 3). *p b 0.005.
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availability of the receptor due to rapamycin treatment may be consid-
ered as pro-atherogenic.

In summary, we reveal that themTOR inhibitor rapamycin regulates
SR-BI expression without affecting HDL uptake in endothelial cells.
Rapamycin impaired HDL-mediated endothelial cell migration and
eNOS activation, leading to endothelial dysfunction, a hallmark of
early atherogenesis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbalip.2014.03.014.
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