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The study of wavelets that satisfy the advanced differential equation K ′(t) = K (qt) is
continued. The connections linking the theories of theta functions, wavelets, and advanced
differential equations are further explored. A direct algebraic–analytic estimate is given
for the maximal allowable translation parameter N (q) such that b < N (q) guarantees
Λ(0,q,b) ≡ {(qm/2/

√
c0 )K (qmt − nb) | m,n ∈ Z} is a wavelet frame for L2(R), where

√
c0

is the L2 norm of K . For any q > 1 and any b > 0 we find conditions guaranteeing that
Λ(p,q,b) ≡ {(qm/2/‖K (p)‖)K (p)(qmt − nb) | m,n ∈ Z} is a wavelet frame for L2(R) where
K (p) denotes the pth derivative/antiderivative of K . The frames Λ(p,q,b) become snug as
either p → −∞ or q → ∞, and their lower frame bounds A(p,q,b) → ∞ as q → ∞.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We continue the study of the mother wavelet K (t) defined for each q > 1 and t � 0 by

K (t) =
+∞∑

k=−∞
(−1)k e−qkt

qk(k+1)/2
, (1)

where K (t) in (1) satisfies the advanced differential equation

dK

dt
(t) = K (qt). (2)

Since K (0+) = K (∞) = 0, and since, by repeated use of the differential equation (2), it is clear that K (t) is flat at t = 0
from the right, we set K (t) = 0 for t < 0 to obtain a smooth function on all of the reals. We set

√
c0 to be the L2 norm of

K over R. We also observe that repeated applications of (2) yield

K (p)(t) ≡ dp K

dt p
(t) = qp(p−1)/2 K

(
qpt

) =
∞∑

k=−∞
(−1)k e−q(k+p)t

q(k+p)(k−p+1)/2
, (3)
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and that (3) holds when p < 0 in which case we interpret K (p) as the |p|th antiderivative of K . For each p ∈ Z and q > 1,
K (p) satisfies the advanced differential equation

dK (p)

dt
(t) = qp K (p)(qt). (4)

As we will see later, the K (p) will be shown to generate wavelet frames for L2(R).
Our study highlights the nexus between three seemingly distant areas of mathematics: theta functions, wavelets, and

advanced-delayed differential equations. The link between these areas occurs via the fact that certain algebraic relations
for theta functions correspond both to statements about advanced-delayed differential equations and to statements about
properties of wavelets. We will utilize this link to interpret a class of results connecting these three areas. We will also
exploit this link to provide direct algebraic–analytic estimates for translation parameters in obtaining frames.

In [7] we established the relation between K (t) and the Jacobi theta function θ(ω) which is defined for a given q > 1
by:

θ(ω) = θ(q;ω) ≡
∞∑

n=−∞

ωn

qn(n−1)/2
= μq

∞∏
n=0

(
1 + ω

qn

)(
1 + 1

ωqn+1

)
, (5)

where μq is taken to be

μq ≡
∞∏

n=0

(
1 − 1

qn+1

)
.

We note here that the minimum value of θ(q2;ω2) over ω ∈ R\{0} is

νq ≡ θ
(
q2;1/q

) =
∞∑

n=−∞

1

qn2 = μq2

∞∏
n=0

(
1 + 1

q2n+1

)2

,

which is justified in Section 2.
The relation between K (t) and θ(ω) occurs via the Fourier transform [7]:

K̂ (ω) ≡ 1√
2π

∞∫
−∞

e−iωt K (t)dt = i(μq)
3

√
2πωθ(iω)

. (6)

Eq. (6) establishes a foundation for linking a given algebraic identity on θ to its corresponding statement in the areas of
wavelets and differential equations. Two such important algebraic identities on θ that we emphasize are:

θ(qω) = qωθ(ω), (7)

and

θ(ω) = θ
(
1/(qω)

)
. (8)

We remark that the algebraic identity (7) is equivalent to the multiplicatively advanced differential equation (2) (under
the assumption that (6) holds), and this in turn implies the wavelet statement that K has vanishing moments of all orders
[7] through a repeated application of integration by parts. We point out that we do not pick arbitrary scale factors a in a
frame formed from K (amt − nb), for m,n ∈ Z, because by picking a scale factor a = q we have the natural identities (2), (7),
(8) along with the vanishing of all moments. We further obtain L2 inner product relations such as 〈K (t), K (q2n+1t)〉 = 0
which hold when a = q. Further inner product computations reveal that 〈K (p)(qmt − nb), tk〉 = 0 giving vanishing of all
moments for derivatives and antiderivatives of K . So in this sense q is the natural frequency associated to K (t), and hence
we only allow a frequency scale of a = q throughout this work. We further note that as q varies, so does K (t), in a non-linear
manner.

Both identities (7) and (8) are key in providing direct algebraic–analytic estimates in studying the following frame con-
dition for K ,

0 < inf
1�|ω|�q

∑
j∈Z

(∣∣K̂
(
q jω

)∣∣2 −
∑

k∈Z\{0}

∣∣K̂
(
q jω

)
K̂

(
q jω + 2πk/b

)∣∣), (9)

where the algebraic identity (8) on θ gives us the surprising wavelet result that the term we call the “diagonal” term

G0(ω) ≡
∑∣∣K̂

(
q jω

)∣∣2
j∈Z
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in (9) is a constant independent of ω. On the other hand, Eq. (7) under iterative application gives us direct algebraic–analytic
bounds on the term we call the “off-diagonal” term

G1(ω) ≡
∑
j∈Z

∑
k∈Z\{0}

∣∣K̂
(
q jω

)
K̂

(
q jω + 2πk/b

)∣∣
without resorting to more commonly utilized bounds obtained by establishing decay rates on K̂ (ω). In tandem, careful
deployment of the algebraic identities (7) and (8) allow us, in the wavelet arena, to generate wavelet frames with translation
parameters b in (9) that are many orders of magnitude greater than those obtainable via traditional decay-rate determination
on K̂ (ω) [3,4,7]. The spirit of these algebraic–analytic bounds is similar to the algebraic estimates used in [6].

Thus a first main result of this paper is to utilize properties of theta functions to establish an estimate for maximal
allowable shift parameters in wavelet frames in Theorem 1, and a second main result is to find a wide class of frequency
parameters q and translation parameters b for mother wavelets of form K (p)/‖K (p)‖ to generate a frame for L2(R) in
Theorem 4.

Theorem 1. Let 2π/
√

q > b > 0, and π
√

q > b > 0. Define

F (q) =
(

1 +
√

π ln q

2

)(
6

q
+ 5

q2

)
+

(
10

q
+ 6

q3/2
+ 2

q2

)

+
((

1 +
√

π ln q

2

)
5

2q2
+ 1

q
+ 3

2q3/2
+ 1

q2

)√
2π

ln q
. (10)

Then for

2πνq

F (q)
> b > 0

we have Λ(0,q,b) ≡ {(qm/2/
√

c0 )K (qmt − nb) | n,m ∈ Z} is a wavelet frame for L2(R).

Proof. Adding all the bounds in Propositions 5 and 6 in Section 3, and factoring out the common terms μ4
qμq2/(2π),

b/(2π), and 1/νq , along with q2, we have an upper bound for the off-diagonal term of

G1(ω) ≡
∑
j∈Z

∑
k∈Z\{0}

∣∣K̂
(
q jω

)
K̂

(
q jω + 2πk/b

)∣∣ �
μ4

qμq2

2π
q2 b

2π

1

νq
F (q). (11)

Utilizing Theorem 5 in Section 2, we explicitly compute the diagonal term as

G0(ω) ≡
∑
j∈Z

∣∣K̂
(
q jω

)∣∣2 = μ4
qμq2

2π
q2. (12)

Combining (11) and (12) we obtain

G0(ω) − G1(ω) �
μ4

qμq2

2π
q2

(
1 − b

2πνq
F (q)

)
> 0 ⇐⇒ 2πνq

F (q)
> b. � (13)

We remark that as q approaches infinity 2πνq/F (q) grows, and the condition 2π/
√

q > b becomes the governing bound
for large q > q0, where q0 ≈ 9.39033 is the value of q with 2πνq0/F (q0) = 2π/

√
q0. For 1 < q < q0 the bound 2πνq/F (q) is

the largest upper bound our methods can guarantee. Setting

N (q) ≡ min
{

2πνq/F (q),2π/
√

q
}

gives the bounding curve b = N (q) in the (q,b) plane below which the functions (qm/2/
√

c0 )K (qmt −nb) generate a wavelet
frame for L2(R), as is illustrated in Fig. 1. Fig. 1 exhibits an apparent local minimum for N at q1 ≈ 1.24667 with N (q1) ≈
0.44345. So any choice of translation parameter b less than 0.44345 will allow for the ability of K to generate wavelet
frames for L2(R) for an arbitrary choice of q in the interval (1,200.75). The horizontal line b = 1 crosses b = N (q) at
q ≈ 4.1374 and at q = (2π)2. Thus translation by integral multiples of b = 1 along with dilation by integral powers of q
will give wavelet frames generated by K for q throughout the interval (4.1374, (2π)2). Although (q,b) = (2,1) falls above
b = N (q) and Theorem 1 cannot guarantee that (2m/2/

√
c0 )K (2mt − n) generates a wavelet frame for L2(R), Theorem 4

and Corollary 1 will find a way around this to produce another wavelet, K (−1) , generating a wavelet frame for L2(R) when
(q,b) = (2,1).

A somewhat simpler, more algebraic version of Theorem 1 is obtained by estimating 2πνq/F (q) from below.
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Fig. 1. The dark curve b = N (q) represents the maximal translation shift parameter; the points (2,1) and (2,0.5) are plotted for reference; the gray region
represents the allowable (q,b) for which (qm/2/

√
c0 )K (qmt − nb) generate a wavelet frame for L2(R).

Theorem 2. Let 2π/
√

q > b > 0, π
√

q > b > 0, and

2π(q − 1 + √
1 + 2/ ln q )

11
√

π ln q/2 + 37 + 6
√

2π/ln q
> b > 0.

Then Λ(0,q,b) ≡ {(qm/2/
√

c0 )K (qmt − nb) | n,m ∈ Z} is a wavelet frame for L2(R).

Proof. In (10) of Theorem 1, replace each 1/qp term in F (q) by 1/q and estimate 29 + 5π/2 from above by 37 in order to
obtain a bound from above,

F (q) < (1/q)(11
√

π ln q/2 + 37 + 6
√

2π/ln q ), (14)

and replace each 1/qp term in F (q) by 1/q2 and estimate 29 + 5π/2 from below by 36 to obtain a bound from below,(
1/q2)(11

√
π ln q/2 + 36 + 6

√
2π/ln q ) < F (q). (15)

By (34) of Lemma 1 in Section 2, we have

1 + √
π/ ln q > νq > 1 + (1/q)(

√
1 + 2/ ln q − 1). (16)

By (14), (15), and (16) we have

2πq2(1 +
√

π
ln q )

11
√

π ln q
2 + 36 + 6

√
2π
ln q

>
2πνq

F (q)
>

2π(q − 1 +
√

1 + 2
ln q )

11
√

π ln q
2 + 37 + 6

√
2π
ln q

. (17)

From (13) of Theorem 1, we have a wavelet frame provided

2πνq

F (q)
> b > 0.

Thus if b > 0 is less than the rightmost expression in (17) we have a wavelet frame. This yields Theorem 2. �
Remark. The leftmost expression in (17) can easily be shown to be less than π

√
q for q ∈ [1,2], and, since 2π/

√
q < π

√
q

for q ∈ (2,∞), we have N (q) < π
√

q on [1,∞). So we only need assume 0 < b < N (q) in Theorems 1 and 2, and the
assumption that b < π

√
q is superfluous there (even though it arose in a natural way in Proposition 6 and its supporting
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propositions). On the other hand, the rightmost expression in (17) is clearly positive for all q in the interval (1,∞) and
has a limit of

√
π/3 as q → 1+ . We conclude that: 2πνq/F (q) is then positive on the interval (1,q0); that N (q) remains

positive on (1,∞); and that as q → 1+ we can take reasonably large translation parameters of order at least
√

π/3 while
still generating wavelet frames for L2(R).

We take the lower frame bound of our frame Λ(0,q,b) to be

A(0,q,b) ≡ inf

{
2π

bc0

(
G0(ω) − G1(ω)

) ∣∣∣ ω ∈ [1,q]
}
,

and the upper frame bound of our frame Λ(0,q,b) to be

B(0,q,b) ≡ sup

{
2π

bc0

(
G0(ω) + G1(ω)

) ∣∣∣ ω ∈ [1,q]
}
.

A consequence of the estimates obtained in proving the above results is the following:

Theorem 3. Assume 0 < b < N (q). Then the lower frame bound A(0,q,b) for Λ(0,q,b) and the upper frame bound B(0,q,b) for
Λ(0,q,b) satisfy

lim
q→∞

B(0,q,b)

A(0,q,b)
= 1.

Thus as q grows Λ(0,q,b) = {(qm/2/
√

c0 )K (qmt − nb) | n,m ∈ Z} becomes snug [5].

Proof. We have, by (11) and (12),

A(0,q,b) = inf|ω|∈[1,q]
2π

bc0

∑
j∈Z

(∣∣K̂
(
q jω

)∣∣2 −
∑

k∈Z\{0}

∣∣K̂
(
q jω

)
K̂

(
q jω + 2πk/b

)∣∣)

� 2π

bc0

μ4
qμq2

2π
q2

(
1 − b

2πνq
F (q)

)
� 2π

bc0

μ4
qμq2

2π
q2

(
1 −

√
q

2
F (q)

)
, (18)

and

B(0,q,b) = sup
|ω|∈[1,q]

2π

bc0

∑
j∈Z

(∣∣K̂
(
q jω

)∣∣2 +
∑

k∈Z\{0}

∣∣K̂
(
q jω

)
K̂

(
q jω + 2πk/b

)∣∣)

� 2π

bc0

μ4
qμq2

2π
q2

(
1 + b

2πνq
F (q)

)
� 2π

bc0

μ4
qμq2

2π
q2

(
1 +

√
q

2
F (q)

)
. (19)

Where (18) and (19) follow from the hypothesis that b < N (q) < π
√

q and the fact that 1/νq < 1. Thus

1 � B(0,q,b)

A(0,q,b)
� 1 + (

√
q/2)F (q)

1 − (
√

q/2)F (q)
,

and since (
√

q/2)F (q) → 0 as q → ∞, the ratio B(0,q,b)/A(0,q,b) → 1. �
We remark that as q varies, so does our mother-wavelet, K (t), which depends on q. A snug frame, as in [5], satisfies that

the ratio of frame bounds B/A is close to one, making invertibility efficient. The frames generated by K for large q are snug.
Also, since c0 grows with order at most q1 as q approaches ∞, then A(0,q,b) also approaches ∞. Thus there is increasing
clarity of signal representation with increasing q, as in [2,3].

We next harness Theorem 1 to obtain a wide versatility in choice of frequency coefficient and translation parameter.
Before proceeding, we have the first of a pair of preliminary observations.

Proposition 1. For all q > 1, for all b > 0, and for all p,m,n ∈ Z

qm/2

‖K (p)‖ K (p)
(
qmt − nb

) = q(m+p)/2

‖K (0)‖ K (0)
(
q(m+p)t − n

(
bqp))

, (20)

where K (p) is the pth derivative (or |p|th antiderivative when p < 0) of K , and the norm is the L2 norm.
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Proof. First notice that

∥∥K (p)
∥∥2 =

∞∫
−∞

(
K (p)(t)

)2
dt =

∞∫
−∞

(
qp(p−1)/2 K

(
tqp))2

dt

= qp(p−1)

∞∫
−∞

(
K (u)

)2
q−p du = qp(p−2)‖K‖2 = qp(p−2)c0, (21)

where (3) was utilized in (21). Now we have

qm/2

‖K (p)‖ K (p)
(
qmt − nb

) = qm/2

qp(p−2)/2‖K‖qp(p−1)/2 K
((

qmt − nb
)
qp)

= qm/2

‖K‖ qp/2 K
(
q(m+p)t − n

(
bqp))

, (22)

which gives the proposition upon noting that (21) and (3) were used to obtain (22). �
Next we observe

Proposition 2. The Fourier transform of K (p) is given by

K̂ (p)(ω) = qp(p−3)/2 K̂
(
q−pω

)
. (23)

Proof. By (3) we have

K̂ (p)(ω) = qp(p−1)/2

∞∫
−∞

e−itω K
(
qpt

)
dt

= qp(p−1)/2

∞∫
−∞

e−iuq−pω K (u)q−p du

= qp(p−3)/2

∞∫
−∞

e−iuq−pω K (u)du = qp(p−3)/2 K̂
(
q−pω

)
,

where we have relied on the change of variables u = qpt . �
We now can prove the second main result of the paper.

Theorem 4. Set N (q) = min{(2πνq)/F (q),2π/
√

q }. For any q > 1 and any b > 0

Λ(p,q,b) ≡
{

qm/2

‖K (p)‖ K (p)
(
qmt − nb

) ∣∣∣ m,n ∈ Z

}
is a wavelet frame for L2(R) ∀p � p0 ≡ p0(q,b) ≡ sup{p ∈ Z | bqp < N (q)}. Furthermore,

Λ(p,q,b) = Λ
(
0,q,bqp) ∀p ∈ Z.

For p � p0 , and letting A(p,q,b) and B(p,q,b) be the lower and upper frame bounds for Λ(p,q,b) as in (24) and (26) below, we
have

A(p,q,b) = A
(
0,q,bqp)

and B(p,q,b) = B
(
0,q,bqp)

.

For p � p0 the frames Λ(p,q,b) become snug as either p → −∞ or as q → ∞, that is

lim
p→−∞

B(p,q,b)

A(p,q,b)
= 1 = lim

q→∞
B(p,q,b)

A(p,q,b)
.
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Proof. By (20) in Proposition 1, we immediately obtain that Λ(p,q,b) = Λ(0,q,bqp), since the functions in these two
sets are equal. By Theorem 1 we know that Λ(0,q,bqp) is a wavelet frame for L2(R) if the translation term bqp satisfies
bqp < N (q), which by definition of p0 holds for all p � p0. Thus Λ(p,q,b) is a wavelet frame for L2(R) for all p � p0.
Since the functions in each frame are the same, their frame bounds are equal, as we next verify directly. We have,

A(p,q,b) (24)

≡ inf|ω|∈[1,q]
2π

b‖K (p)‖2

∑
j∈Z

(∣∣K̂ (p)
(
q jω

)∣∣2 −
∑
k �=0

∣∣∣∣K̂ (p)
(
q jω

)
K̂ (p)

(
q jω + 2πk

b

)∣∣∣∣)

= inf|ω|∈[1,q]
2πqp(p−3)

bqp(p−2)c0

∑
j∈Z

(∣∣K̂
(
q j−pω

)∣∣2 −
∑
k �=0

∣∣∣∣K̂
(
q j−pω

)
K̂

(
q j−pω + 2πkq−p

b

)∣∣∣∣)

= inf|ω|∈[1,q]
2π

bqpc0

∑
J∈Z

(∣∣K̂
(
q J ω

)∣∣2 −
∑
k �=0

∣∣K̂
(
q J ω

)
K̂

(
q J ω + 2πk/

(
bqp))∣∣)

≡ A
(
0,q,bqp)

� 2π

bqpc0

μ4
qμq2

2π
q2

(
1 − bqp

2πνq
F (q)

)

� 2π

bqpc0

μ4
qμq2

2π
q2

(
1 −

√
q

2
F (q)

)
, (25)

where (21) from Proposition 1, as well as (23) from Proposition 2, allow us to convert from K (p) to K , and from K̂ (p) to K̂ ,
respectively. A reindexing from j − p to J leads us to equality with A(0,q,bqp). At this point the estimates from Theorem 1
lead us to (25).

The computation for B(p,q,b) is similar, except for taking supremum and adding the off-diagonal term. It again leads to
equality of upper frame bounds,

B(p,q,b) (26)

≡ sup
|ω|∈[1,q]

2π

b‖K (p)‖2

∑
j∈Z

(∣∣K̂ (p)
(
q jω

)∣∣2 +
∑
k �=0

∣∣∣∣K̂ (p)
(
q jω

)
K̂ (p)

(
q jω + 2πk

b

)∣∣∣∣)

= sup
|ω|∈[1,q]

2π

bqpc0

∑
j∈Z

(∣∣K̂
(
q jω

)∣∣2 +
∑
k �=0

∣∣K̂
(
q jω

)
K̂

(
q jω + 2πk/

(
bqp))∣∣)

≡ B
(
0,q,bqp)

� 2π

bqpc0

μ4
qμq2

2π
q2

(
1 + bqp

2πνq
F (q)

)

� 2π

bqpc0

μ4
qμq2

2π
q2

(
1 +

√
q

2
F (q)

)
. (27)

Here (25) and (27) follow from the facts that bqp < N (q) < π
√

q for p � p0 and that 1/νq < 1. Thus

1 � B(p,q,b)

A(p,q,b)
� 1 + bqp F (q)/(2πνq)

1 − bqp F (q)/(2πνq)
� 1 + (

√
q/2)F (q)

1 − (
√

q/2)F (q)
,

and since (bqp F (q))/(2πνq) → 0 as p → −∞, and since (
√

q/2)F (q) → 0 as q → ∞, the ratio B(p,q,b)/A(p,q,b) → 1 in
either case.

Finally, since c0 grows with order at most q1 as q → ∞, then (25) gives that A(p,q,b) → ∞ for p � min{0, p0}. Thus
there is increasing clarity of signal representation with increasing q for all p � min{0, p0}, as per [2,3]. Similarly as p → −∞,
by (25) A(p,q,b) → ∞, and we have increasing clarity in this case as well. �
Corollary 1. We have that (q,b) = (2,1) are frequency and translation parameters for a wavelet frame generated by K (−1) . That is

Λ(−1,2,1) =
{

2m/2

(−1)
K (−1)

(
2mt − n

) ∣∣∣ m,n ∈ Z

}
= Λ

(
0,2,2−1)
‖K ‖
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is a wavelet frame for L2(R), where

K (−1)(t) =
∞∑

k=−∞
(−1)k e−q(k−1)t

q(k−1)(k+2)/2
and

dK (−1)

dt
(t) = q−1 K (−1)(qt). (28)

Proof. Since 2−1 < N (2) = (2πν2)/F (2) ≈ 0.55723, Theorem 4 gives the result, after noting that (28) follows from (3)
and (4). �
Remark. Each function in each frame Λ(p,q,b) has all moments vanishing, as can be seen by converting the function to a
multiple of K and changing variables when integrating against polynomials. Also there is an algebraic version of Theorem 4
that relies on the lower bound (17). If we set

L(q) ≡ 2π(q − 1 + √
1 + 2/ ln q )(11

√
π ln q/2 + 37 + 6

√
2π/ln q )−1,

Ñ (q) ≡ min{2π/
√

q, L(q)}, and p̃0 ≡ p̃0(q,b) ≡ sup{p ∈ Z | bqp < Ñ (q)}, then, for p � p̃0, the Λ(p,q,b) are wavelet frames
generating L2(R) with snugness properties as in Theorem 4.

2. Relevant properties of the Jacobi theta function

Our analysis depends on properties of the Jacobi theta function, as defined in (5). We first prove identity (8) on θ :

Proposition 3. θ(q;1/(qω)) = θ(q;ω).

Proof. We have

θ
(
q;1/(qω)

) = μq

∞∏
n=0

(
1 + {

1/(qω)
}
/qn)(1 + 1/

({
1/(qω)

}
qn+1))

= μq

∞∏
n=0

(
1 + 1/

(
qn+1ω

))(
1 + ω/

(
qn))

= θ(q;ω). �
Proposition 4. θ(q;qω) = qωθ(q;ω).

Proof. We have

θ(q;qω) = μq

∞∏
n=0

(
1 + (qω)/qn)(

1 + 1/
(
(qω)qn+1))

= μq

∞∏
n=0

(
1 + ω/qn−1)(1 + 1/

(
ωqn+2))

= (1 + qω)
(
1 + 1/(qω)

)−1
μq

∞∏
n=0

(
1 + ω/qn)(1 + 1/

(
ωqn+1))

= qωθ(q;ω). �
Successive iterations of Proposition 4 give that for n � 0

θ
(
q;qnω

) = qn(n+1)/2ωnθ(q;ω), (29)

whence θ(q;ω) = θ(q;q(ω/q)) = q(ω/q)θ(q;ω/q) gives ω−1θ(q;ω) = θ(q;ω/q) which under iterations gives that (29) holds
for all negative n and thus for all n ∈ Z.

An immediate consequence of Proposition 3 is the following key result in our study, the constancy of the diagonal term
in the frame condition (9):

Theorem 5. The diagonal is a constant independent of ω:

G0(ω) =
∑
j∈Z

∣∣K̂
(
q jω

)∣∣2 = μ4
qμq2 q2

2π
∀ω ∈ R\{0}.
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Proof. Eq. (6) gives, upon observing that the conjugate of θ(iω) is θ(−iω), the identity∣∣K̂ (ω)
∣∣2 = μ6

q

2πω2θ(−iω)θ(iω)
= μ4

qμq2

2πω2θ(q2;ω2)
, (30)

which follows from the fact that

μq2

μ2
q

θ(iω)θ(−iω) = μq2

∞∏
n=0

(
1 + ω2

q2n

)(
1 + 1

ω2q2n+2

)

= θ
(
q2;ω2) =

∞∑
n=−∞

q−n(n−1)ω2n. (31)

Thus, utilizing (30), letting κq ≡ (μ4
qμq2 )/(2π), and relying on (29) in the first row of (32) below we have∑

j∈Z

∣∣K̂
(
q jω

)∣∣2 =
∑
j∈Z

κq

q2 jω2θ(q2; (q2 jω2))
=

∑
j∈Z

κq

q2 jω2q j( j+1)ω2 jθ(q2;ω2)

= κq

ω2θ(q2;ω2)

∑
j∈Z

(q−2ω−2) j

q j( j+1)
= κqq2ω2

ω2θ(q2;ω2)

∑
J∈Z

(q−2ω−2) J

q( J−1)( J )

= κqq2

θ(q2;ω2)
θ
(
q2;1/

(
q2ω2)) = κqq2, (32)

where we have reindexed to J = j + 1 in the second row, then utilized the summation expression (31) for θ in proceeding
from the second to the third row, and finally relied on Proposition 3 for the last equality. This gives that the diagonal is a
constant independent of ω ∈ R\{0} and yields the theorem. �

Because of (30), it will be useful to find the minimum value of θ(q2;ω2), so we differentiate, to obtain after simplifica-
tion,

dθ(q2;ω2)

dω
= 2

ω

∞∑
k=1

k((qω2)2k − 1)

ω2kqk(k+1)
.

Thus, solving (qω2)2k − 1 = 0, we find that θ(q2;ω2) is increasing for ω > 1/
√

q, and it is decreasing in the range
0 < ω < 1/

√
q. The minimum value, by symmetry about the origin, occurs at ω = ±1/

√
q, and is

θ
(
q2;q−1) =

∑
n∈Z

1

qn2 ≡ νq � 1. (33)

We also observe that θ(q2;0) = θ(q2;±∞) = +∞.
We can more sharply estimate νq from above and below with the following lemma.

Lemma 1. νq is bounded above and below by

1 + √
π/ ln q � νq � 1 + (1/q)(

√
1 + 2/ ln q − 1). (34)

Proof. We bound from below by noting that

νq = θ
(
q2;1/q

) =
∑
k∈Z

1

qk2 = 1 + 2
∑
k�1

1

qk2 � 1 + 2

∞∫
1

e−(ln q)x2
dx (35)

= 1 + 2√
ln q

∞∫
√

ln q

e−u2
du � 1 + 2√

ln q

e−(
√

ln q )2√
ln q + √

ln q + 2
(36)

= 1 + 2

q
√

ln q

√
ln q + 2 − √

ln q

2
= 1 + 1

q
(
√

1 + 2/ ln q − 1), (37)

where we have: compared the sum with the corresponding integral in (35); changed variables and relied on the bound
(51) in (36); rationalized the rightmost denominator of (36) with the conjugate

√
ln q + 2 − √

ln q to obtain (37) and then
simplified.
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We bound from above with

νq = θ
(
q2;1/q

) =
∑
k∈Z

1

qk2 = 1 + 2
∑
k�1

1

qk2 � 1 + 2

∞∫
0

e−(ln q)x2
dx

= 1 + 1√
ln q

∞∫
−∞

e−u2
du = 1 + √

π/ ln q. �

We also record a very useful estimate:

Lemma 2. For 1 � ω � q,

ωp√
θ(q2;ω2)

�
{

qp−1/
√

νq if p > 1,

1/
√

νq if p � 1.
(38)

Proof. By relying first on (29) with n = −1, and then on (33) we have

ωp√
θ(q2;ω2)

= ωp−1√
(ω2)−1θ(q2;ω2)

= ωp−1√
θ(q2;ω2/q2)

� ωp−1√
θ(q2;1/q)

= ωp−1

√
νq

.

The result now follows after bounding from above by letting ω = q if p > 1 or ω = 1 if p � 1. �
Finally, we observe that the maximal value obtained by |K̂ (ω)| is (

√
κqq)/

√
νq , when ω = ±q−3/2. From (30) we have

∣∣K̂ (ω)
∣∣2 = μ4

qμq2

2πω2θ(q2;ω2)
= κq

q−2(q2ω2)θ(q2;ω2)

= κqq2

θ(q2;q2ω2)
� κqq2

θ(q2;1/q)
= κqq2

νq
, (39)

where we have relied on (29) with n = 1 to move the q2ω2 term inside the θ function, and then on (33) for the inequality.
We note, also by (33), that the maximal value is attained when q2ω2 = 1/q or when ω = ±q−3/2.

3. Bounding the off-diagonal term G1(ω)

Having explicitly determined the diagonal term to be (μ4
qμq2 q2)/(2π) in the frame condition (9), we turn our sights on

using theta function identities to obtain tight estimates for the off-diagonal term

G1(ω) =
∑

j

∑
k �=0

∣∣K̂
(
q jω

)∣∣∣∣K̂
(
q jω + 2πk/b

)∣∣
= μ4

qμq2

2π

∑
j

∑
k �=0

1

|q jω|√θ(q2; (q jω)2)

1

|q jω + 2πk/b|√θ(q2; (q jω + 2πk/b)2)
,

for 1 � |ω| � q, where we have relied on (30). By symmetry of |K̂ (ω)| about the origin, we restrict ourself without loss of
generality to estimates over 1 � ω � q. For conciseness we define:

κq ≡ μ4
qμq2

2π
.

We further define for each fixed j,q,ω, and b

k0 ≡ k0( j) ≡ k0( j,q,ω,b) ≡ inf
{
k < 0

∣∣ 1/
√

q < q jω + 2πk/b
}
,

k1 ≡ k1( j) ≡ k1( j,q,ω,b) ≡ sup
{
k < 0

∣∣ q jω + 2πk/b < −1/
√

q
}
,

where we take k0 = −1 in the case that {k < 0 | 1/
√

q < q jω + 2πk/b} = ∅, and where we write k0( j) and k1( j) when we
wish to emphasize dependence of k0 and k1 on j. The purpose of such a k1 and k0 is to mark the last translate of q jω by
a multiple of 2π/b before reaching ±1/

√
q (the optimal points for θ(q2;ω2)) in the second factor of the off-diagonal term.
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We will subdivide estimating the off-diagonal term, under appropriate restrictions on b, into four cases. To do so it will
be convenient to define a partial sum for G1 as:

G̃1(ω; j ∈ A;k ∈ B) ≡
∑
j∈A

∣∣K̂
(
q jω

)∣∣∑
k∈B

∣∣K̂
(
q jω + 2πk/b

)∣∣.
The first three cases are handled with:

Proposition 5. For 1 � ω � q, 0 < b < 2π/
√

q, and

Case 1. j ∈ Z and k > 0:

G̃1(ω; j ∈ Z;k > 0) =
∑
j∈Z

∣∣K̂
(
q jω

)∣∣∑
k>0

∣∣K̂
(
q jω + 2πk/b

)∣∣
� b

2π

κq

νq

(
3q + 2 +

√
2π

ln q

)(
1 +

√
π ln q

2

)
.

Case 2. j ∈ Z and k < k1( j):

G̃1
(
ω; j ∈ Z;k < k1( j)

) =
∑
j∈Z

∣∣K̂
(
q jω

)∣∣ ∑
k<k1( j)

∣∣K̂
(
q jω + 2πk/b

)∣∣
� b

2π

κq

νq

(
3q + 2 +

√
2π

ln q

)(
1 +

√
π ln q

2

)
.

Case 3. j ∈ Z and k0( j) < k < 0:

G̃1
(
ω; j ∈ Z;k0( j) < k < 0

) =
∑
j∈Z

∣∣K̂
(
q jω

)∣∣ ∑
k0( j)<k<0

∣∣K̂
(
q jω + 2πk/b

)∣∣
� b

2π

κq

νq

(
1 + 1

2

√
2π

ln q

)(
1 +

√
π ln q

2

)
.

Each of Cases 1, 2, 3 is a “tail” case bounded with similar methods. The final case is for special k values:

Proposition 6. For 1 � ω � q, 0 < b < 2π/
√

q, 0 < b < π
√

q, and

Case 4. j ∈ Z and k1( j) � k � k0( j):

G̃1
(
ω; j ∈ Z;k1( j) � k � k0( j)

)
=

∑
j∈Z

∣∣K̂
(
q jω

)∣∣ ∑
k1( j)�k�k0( j)

∣∣K̂
(
q jω + 2πk/b

)∣∣
� b

2π

κq

νq

(
10q + 6

√
q + 2 + {

q + (3/2)
√

q + 1
}√

2π/ln q
)
.

4. Bounding the tail Cases 1, 2, 3

4.1. Preliminaries

We denote the greatest integer function of a real number r by �r�, and let 0 � ε < 1 denote the difference between a
real number and its corresponding greatest integer r = �r� + ε . For E,k,b > 0 we have

E + 2πk/b = qlogq(E+2πk/b) = q−1/2+{1/2+logq(E+2πk/b)}

= q−1/2+�1/2+logq(E+2πk/b)�+ε = q−1/2+a+ε (40)

where for conciseness we take a ≡ �1/2 + logq(E + 2πk/b)� in (40) and throughout this section. This gives us
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θ
(
q2; (E + 2πk/b)2) = θ

(
q2;q2(a−1/2+ε)

) = θ
(
q2;q2aq(−1+2ε)

)
= qa(a+1)

(
q(−1+2ε)

)a
θ
(
q2;q−1+2ε

)
(41)

� qa2
θ
(
q2;q−1) = q�1/2+logq(E+2πk/b)�2

νq (42)

� νqq(−1/2+logq(E+2πk/b))2
(43)

= νqq1/4(E + 2πk/b){logq(E+2πk/b)−1} (44)

where we have used the algebraic identity (29) to obtain (41), the fact that θ(q2; w2) has the minimum value of
θ(q2;q−1) = νq to obtain (42), and the fact that (�r�)2 � (r − 1)2 for r − 1 > 0 to obtain (43) where we must now as-
sume the added constraint that −1/2 + logq(E + 2πk/b) > 0 which will always hold if 2π/

√
q > b. The point here is to

represent E +2πk/b as an integral power of q times a term q−1/2+ε that is as close as possible to the minimum point q−1/2

of θ(q2;ω2) and then harness the power of (29).

Proposition 7. For E > 0 and (2π/
√

q ) > b > 0 we have∑
k>0

∣∣K̂ (E + 2πk/b)
∣∣

�
√

κq√
νq

q−1/8
∑
k>0

(E + 2πk/b)−1/2{logq(E+2πk/b)+1} (45)

� b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)
. (46)

Proof. We have∣∣K̂ (E + 2πk/b)
∣∣ =

√
κq

|E + 2πk/b|√θ(q2; (E + 2πk/b)2)
(47)

�
√

κq√
νq

q−1/8(E + 2πk/b)−1/2{logq(E+2πk/b)+1}, (48)

where (30) gives (47), and the bound (44) implies (48) upon adding exponents. We then obtain (45) by summing over k > 0.
The bound (46) follows by first comparing the sum (45) to the corresponding integral. For conciseness below, we let

τ ≡ {ln(E + 2π/b) − ln
√

q}/(√2 ln q) in (50) through (52).∑
k>0

(E + 2πk/b)−1/2{logq(E+2πk/b)+1}

� (E + 2π/b)−1/2{logq(E+2π/b)+1} +
∞∫

1

(E + 2πx/b)−1/2{logq(E+2πx/b)+1} dx

= (E + 2π/b)−1/2{logq(E+2π/b)+1} + b

2π

∞∫
E+2π/b

(v)−1/2{logq(v)+1} dv (49)

= (E + 2π/b)−1/2{logq(E+2π/b)+1} + bq1/8
√

2 ln q

2π

∞∫
τ

e−u2
du, (50)

where we have made the change of variables v = E + 2πx/b in (49) and then u = (ln v − ln
√

q )/(
√

2 ln q) in (50). Then, by
applying the rightmost bound in (51) (see [1]) for x � 0

e−x2

x + √
x2 + 2

�
∞∫

x

e−u2
du � e−x2

x + √
x2 + 4/π

�
√

π

2
e−x2

(51)

to the integral in (50), we obtain
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∞∫
τ

e−u2
du �

√
π

2
e−τ 2

=
√

π

2

(
Eb + 2π

b
√

q

)−(1/2){logq((Eb+2π)/(b
√

q ))}

=
√

π

2

(
E + 2π

b

)−(1/2){logq(E+2π/b)−1/2}( 1√
q

)−(1/2){logq(E+2π/b)−1/2}

=
√

π

2

(
E + 2π

b

)−(1/2) logq(E+2π/b)+1/2

q−1/8. (52)

Applying (52) to (50) we obtain∑
k>0

(E + 2πk/b)−1/2{logq(E+2πk/b)+1}

�
(

E + 2π

b

)−1/2{logq(E+ 2π
b )+1}

+ b

2π

√
π ln q

2

(
E + 2π

b

)−(1/2) logq(E+ 2π
b )+1/2

=
(

E + 2π

b

)−(1/2) logq(E+ 2π
b )+1/2((

E + 2π

b

)−1

+ b

2π

√
π ln q

2

)

=
(

E + 2π

b

)−(1/2) logq(E+ 2π
b )+1/2 b

2π

((
Eb

2π
+ 1

)−1

+
√

π ln q

2

)

� b

2π

(
E + 2π

b

)−(1/2) logq(E+ 2π
b )+1/2(

1 +
√

π ln q

2

)
� b

2π
q1/8

(
1 +

√
π ln q

2

)
, (53)

with the last inequality in (53) holding by the fact that

f (x) = x−(1/2) logq(x)+1/2

attains a maximum value of q1/8 at x = √
q. Applying (53) to (45) gives (46) and the proposition. �

4.2. Further bounds

Proposition 8. For q > 1 and ω ∈ [1,q],
∑
j∈Z

∣∣K̂
(
q jω

)∣∣ =
√

κq√
θ(q2;ω2)

qθ(ω) �
√

κq√
νq

(
3q + 2 +

√
2π

ln q

)
.

Proof. We obtain the equality by observing∑
j∈Z

∣∣K̂
(
q jω

)∣∣ =
∑

j

√
κq

q jω
√

θ(q2; (q jω)2)
=

√
κq

ω
√

θ(q2;ω2)

∑
j

1

q jq j( j+1)/2ω j

=
√

κqq(qω)−1√
θ(q2;ω2)

∑
j

(qω)− j

q j( j+1)/2
=

√
κqq(qω)−1√
θ(q2;ω2)

θ(qω) =
√

κqqθ(ω)√
θ(q2;ω2)

,

where (29) with n = −1 was used to obtain the last equality. For the inequality we have
√

κq

ω
√

θ(q2;ω2)

∑
j

1

q jq j( j+1)/2ω j

=
√

κq

ω
√

θ(q2;ω2)

∑
e−(1/2) ln q{ j2+ j(3+2 logq(ω))}
j
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=
√

κqq9/8+(3/2) logq(ω)+(1/2)(logq(ω))2

ω
√

θ(q2;ω2)

∑
j

e−(1/2) ln q{ j+3/2+logq(ω)}2
(54)

=
√

κqq9/8+(1/2) logq(ω)+(1/2)(logq(ω))2√
θ(q2;ω2)

∑
j

e−(1/2) ln q{ j+3/2+logq(ω)}2
(55)

where (54) comes from a completion of squares, and (55) comes from canceling the ω in the denominator. We next split
the summation in (55) into three cases j � −4, −3 � j � −1, j � 0, and then rely on the following bound (56) for α � 0,

∑
j�0

e−(1/2) ln q( j+α)2 � q−(α2/2) 1

2

(
2 +

√
2π

ln q

)
, (56)

to obtain for the j � −4 case∑
j�−4

e−(1/2) ln q{ j+3/2+logq(ω)}2 =
∑
J�0

e−(1/2) ln q{ J−5/2+logq(ω)}2

=
∑
J�0

e−(1/2) ln q{ J−3/2+(−1+logq(ω))}2 =
∑
L�0

e−(1/2) ln q{L+3/2+(1−logq(ω))}2

� q−(1/2){1−logq(ω)}2 ∑
L�0

e−(1/2) ln q{L+3/2}2

= q−(1/2)+logq(ω)−(1/2){logq(ω)}2
q−9/8 1

2

(
2 +

√
2π

ln q

)
, (57)

where the reindexings J = j + 4 and L = − J were used. The j � 0 case yields∑
j�0

e−(1/2) ln q{ j+3/2+logq(ω)}2 �
∑
j�0

e−(1/2) ln q{ j+3/2}2−(1/2) ln q{logq ω}2

� q−(1/2){logq ω}2
q−9/8 1

2

(
2 +

√
2π

ln q

)
, (58)

where we have used (56) with α = 3/2 to obtain the last inequality. Finally the −3 � j � −1 case gives∑
−3� j�−1

e−(1/2) ln q{ j+3/2+logq(ω)}2

= q−9/8+(3/2) logq ω−(1/2)(logq ω)2 + q−1/8+(1/2) logq ω−(1/2)(logq ω)2

+ q−1/8−(1/2) logq ω−(1/2)(logq ω)2
. (59)

The results (57), (58), and (59) combine with (55) to give, after canceling the common (1/2)(logq ω)2 terms in the expo-
nents, ∑

j∈Z

∣∣K̂
(
q jω

)∣∣
�

√
κqq9/8+(1/2) logq(ω)√

θ(q2;ω2)

(
q−9/8(1 + q−(1/2)+logq(ω)

)1

2

(
2 +

√
2π

ln q

))

+
√

κqq9/8+(1/2) logq(ω)√
θ(q2;ω2)

(
q−9/8+(3/2) logq ω + q−1/8+(1/2) logq ω

)
+

√
κqq9/8+(1/2) logq(ω)√

θ(q2;ω2)
q−1/8−(1/2) logq ω (60)

= √
κq

(
q(1/2) logq(ω)√

θ(q2;ω2)
+ q−(1/2)+(3/2) logq(ω)√

θ(q2;ω2)

)(
1

2

(
2 +

√
2π

ln q

))

+
√

κqq2 logq(ω)√
2 2

+
√

κqq1+logq(ω)√
2 2

+
√

κqq1√
2 2

(61)

θ(q ;ω ) θ(q ;ω ) θ(q ;ω )
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�
√

κq√
νq

(
1 + q−(1/2)+(1/2)

)1

2

(
2 +

√
2π

ln q

)
+

√
κq√
νq

(
q1 + q1 + q1) (62)

=
√

κq√
νq

((
2 +

√
2π

ln q

)
+ 3q

)
,

which gives the proposition after noting that we have applied estimate (38) to each term in (61) to obtain (62). �
We will need the following corollary, similar to Proposition 8, when we do not sum j over all integers, but only over

j � 0.

Corollary 2. For q > 1 and ω ∈ [1,q]
∑
j�0

∣∣K̂
(
q jω

)∣∣ �
√

κq√
νq

1

2

(
2 +

√
2π

ln q

)
.

Proof. This is the j � 0 case in Proposition 8, where we use only (58) inserted into the first term of (60). �
4.3. Bounding the tail Cases 1, 2, 3

We next provide the proof of Proposition 5.

Proof of Proposition 5.

Case 1. The proof follows immediately by first applying Proposition 7 with E taken to be q jω, and then applying Proposi-
tion 8:∑

j∈Z

∣∣K̂
(
q jω

)∣∣∑
k>0

∣∣K̂
(
q jω + 2πk/b

)∣∣ = G̃1(ω; j ∈ Z;k > 0)

�
∑
j∈Z

∣∣K̂
(
q jω

)∣∣ b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)

�
√

κq√
νq

(
3q + 2 +

√
2π

ln q

)
b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)
.

Case 2. Here we rely on the symmetry about the origin of |K̂ (ω)| before an application of Proposition 7, with E taken to be
−q jω − 2πk1( j)/b, and then an application of Proposition 8 to obtain∑

j∈Z

∣∣K̂
(
q jω

)∣∣ ∑
k<k1( j)

∣∣K̂
(
q jω + 2πk/b

)∣∣ = G̃1
(
ω; j ∈ Z;k < k1( j)

)
=

∑
j∈Z

∣∣K̂
(
q jω

)∣∣ ∑
k<k1( j)

∣∣K̂
({−q jω − 2πk1( j)/b

} + 2π
{
k1( j) − k

}
/b

)∣∣
=

∑
j∈Z

∣∣K̂
(
q jω

)∣∣∑
0<L

∣∣K̂
({−q jω − 2πk1( j)/b

} + 2π{L}/b
)∣∣ (63)

�
∑
j∈Z

∣∣K̂
(
q jω

)∣∣ b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)

�
√

κq√
νq

(
3q + 2 +

√
2π

ln q

)
b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)
,

where the reindexing was taken to be L = k1( j) − k in (63) for each fixed j.

Case 3. To be non-vacuous, the condition that k0( j) < k < 0 implies that k0( j) < −1 and this in turn implies 1/
√

q <

q jω + 2πk0( j)/b < q jω − 2π/b which restricts j to
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j > − logq ω + logq

(−2πk0( j)/b + 1/
√

q
) ≡ N0

> − logq ω + logq(2π/b + 1/
√

q )

> − logq ω + logq(
√

q + 1/
√

q )

> − logq ω + 1/2 + logq(1 + 1/q) > −1/2,

or more simply j > N0 � 0. Thus instead of relying on a sum for j ∈ Z we now utilize a sum for j > N0, and later compare
it to the sum over j � 0 to obtain

G̃1
(
ω; j ∈ Z;k0( j) < k < 0

) = G̃1
(
ω; j > N0;k0( j) < k < 0

)
=

∑
j>N0

∣∣K̂
(
q jω

)∣∣ ∑
k0( j)<k<0

∣∣K̂
(
q jω + 2πk/b

)∣∣
�

∑
j>N0

∣∣K̂
(
q jω

)∣∣ ∑
k0( j)<k

∣∣K̂
({

q jω + 2πk0( j)/b
} + 2π

{
k − k0( j)

}
/b

)∣∣ (64)

=
∑
j>N0

∣∣K̂
(
q jω

)∣∣∑
0<L

∣∣K̂
({

q jω + 2πk0( j)/b
} + 2π L/b

)∣∣ (65)

�
∑
j>N0

∣∣K̂
(
q jω

)∣∣ b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)
(66)

�
∑
j�0

∣∣K̂
(
q jω

)∣∣ b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)
(67)

�
√

κq√
νq

1

2

(
2 +

√
2π

ln q

)
b

2π

√
κq√
νq

(
1 +

√
π ln q

2

)
, (68)

where we abandoned the restriction that k < 0 and re-expressed the argument in terms of k0( j) in (64), reindexed by
L = k − k0( j) for each fixed j to obtain (65), then Proposition 7 was applied to (65) with E = {q jω + 2πk0( j)/b} to obtain
(66), extended the summation to j � 0 in (67), and finally Corollary 2 was applied to (66) to obtain (68). �
5. Bounds for special k values: Case 4

Henceforth, we assume that 2π/b > 2/
√

q (or equivalently π
√

q > b), which is already implied by our assumption
2π/

√
q > b when q � 2. One purpose of this assumption is to ensure that q jω − 2πk/b ∈ [−1/

√
q,1/

√
q ] holds for at most

one value of k.
Now, Case 4, where j ∈ Z and k1( j) � k � k0( j), further divides into 4 subcases determined by the behavior of j:

Case (4a). k1( j) � k � k0( j) and 0 < q jω < 1/
√

q.
Case (4b). k1( j) � k � k0( j) and 1/

√
q � q jω < 2π/b − 1/

√
q.

Case (4c). k1( j) � k � k0( j) and 2π/b − 1/
√

q � q jω � 2π/b + 1/
√

q.
Case (4d). k1( j) � k � k0( j) and 2π/b + 1/

√
q < q jω.

Remark. The cases are expressed above as a partition of the positive reals. However they actually describe the behavior of
q jω − 2π/b relative to the interval [−1/

√
q,1/

√
q ], and they help describe k1( j) and k0( j). For instance, (4a) gives that

q jω − 2π/b < −1/
√

q and j tends to be negative; (4b) gives that q jω − 2π/b < −1/
√

q and j tends to be non-negative;
(4c) gives that −1/

√
q � q jω − 2π/b � 1/

√
q; and (4d) gives that 1/

√
q < q jω − 2π/b. These subcases impose conditions

on k1( j) and k0( j), and the statements about j, while collectively are comprehensive, individually impose restrictions on j
after taking logarithms. We repeat the cases from this perspective:

Case (4a). k1( j) = −1 � k � −1 = k0( j) and j < − logq ω − 1/2 ≡ N1.
Case (4b). k1( j) = −1 � k � −1 = k0( j) and N1 ≡ − logq ω − 1/2 � j < − logq ω + logq(2π/b − 1/

√
q ) ≡ N2.

Case (4c). k1( j) = −2 � k � −1 = k0( j) and N2 ≡ − logq ω + logq(
2π
b − 1√

q ) � j � − logq ω + logq(2π/b + 1/
√

q ) ≡ N3.

Case (4d). k1( j) � k � k0( j) and N3 ≡ − logq ω + logq(2π/b + 1/
√

q ) < j.
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Proposition 9. In Case (4a) we have for q > 1, ω ∈ [1,q], 2π/
√

q > b > 0, and π
√

q > b > 0

G̃1(ω; j < N1;k = −1) � b

2π

κq

νq

(
6q + 2 +

√
2π

ln q

)
.

Proof. The condition j < N1 gives that either (i) j � −2 or (ii) j = −1 and 1 � ω <
√

q. For (i) we obtain

q jωb

2π
� q jqb

2π
� q jq

√
q

2
� q−1/2

2
� 1

2
.

For (ii) we obtain

q jωb

2π
� q j√qb

2π
� q−1√q

√
q

2
= 1

2
,

which gives in either case that

1 − q jωb

2π
� 1 − 1/2 = 1/2 or

1

1 − q jωb/(2π)
� 2. (69)

Thus

G̃1(ω; j < N1;k = −1) =
∑
j<N1

∣∣K̂
(
q jω

)∣∣ ∑
k=−1

∣∣K̂
(
q jω + 2πk/b

)∣∣
=

∑
j<N1

∣∣K̂
(
q jω

)∣∣ √
κq

|q jω − 2π/b|√θ(q2; (q jω − 2π/b)2)

=
∑
j<N1

∣∣K̂
(
q jω

)∣∣ b

2π

√
κq

|q jωb/(2π) − 1|√θ(q2; (q jω − 2π/b)2)

�
∑
j<N1

∣∣K̂
(
q jω

)∣∣ b

2π

2
√

κq√
θ(q2;1/q)

(70)

�
∑

j�−1

∣∣K̂
(
q jω

)∣∣ b

2π

2
√

κq√
νq

� b

2π
2
κq

νq

(
3q + 1

2

(
2 +

√
2π

ln q

))
, (71)

where we have used (69) to obtain (70), along with Proposition 8 with the cases j � −4 and j = −3,−2,−1 to obtain
(71). �
Proposition 10. In Case (4b) we have for q > 1, ω ∈ [1,q], 2π/

√
q > b > 0, and π

√
q > b > 0

G̃1(ω; N1 � j < N2;k = −1) � b

2π

2
√

q κq√
νq

(
1√

θ(q2;ω2)

∑
N1� j<N2

1

q j( j+1)/2ω j

)
. (72)

Proof. The condition N1 � j < N2 gives that either (i) j = −1 and
√

q � ω � q or (ii) 0 � j < − logq ω+ logq(2π/b − 1/
√

q ).
These conditions on j imply

q jω − 2π

b
<

−1√
q

⇐⇒ b

2π
<

1

q jω + 1/
√

q
⇐⇒ q jωb

2π
<

q jω

q jω + 1/
√

q
. (73)

Whence,

1 − q jωb

2π
>

1/
√

q

q jω + 1/
√

q
= 1

q j+1/2ω + 1
, (74)

or

1
j

< q j+1/2ω + 1. (75)

1 − q ωb/(2π)
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We have reached a stage parallel to (69) in Case (4a), however, unlike that case, we do not obtain a bound corresponding to
the upper bound of 2 in Case (4a). Since j becomes positive, the right-hand side of (75) can be quite large for small values
of b. Thus we incorporate another factor from our summand in (72) to obtain the following bound:

1

q jω

1

(1 − q jωb/(2π))
<

q j+1/2ω + 1

q jω
= √

q + 1

q jω
� √

q + √
q, (76)

where the last inequality on 1/q jω is obtained in the maximal case (i) of (4b) with j = −1 and ω = √
q.

We are now set to obtain our bound (72):∑
N1� j<N2

∣∣K̂
(
q jω

)∣∣ ∑
k=−1

∣∣K̂
(
q jω + 2πk/b

)∣∣
�

∑
N1� j<N2

√
κq√

θ(q2; (q jω)2)

1

q jω 2π
b |q jωb/(2π) − 1|

√
κq√

θ(q2; (q jω − 2π
b )2)

� b

2π
κq

∑
N1� j<N2

1

q j( j+1)/2ω j
√

θ(q2;ω2)

2
√

q

1

1√
θ(q2;1/q)

(77)

= b

2π

2
√

qκq√
νq

(
1√

θ(q2;ω2)

∑
N1� j<N2

1

q j( j+1)/2ω j

)
,

where (77) was obtained from (76). �
Proposition 11. In Case (4c) we have for q > 1, ω ∈ [1,q], 2π/

√
q > b > 0, and π

√
q > b > 0

G̃1(ω; N2 � j � N3;k = −1,−2) � b

2π

κq√
νq

(2q + 2
√

q )

(
1√

θ(q2;ω2)

∑
N2� j�N3

1

q j( j+1)/2ω j

)
. (78)

Proof. The condition N2 � j � N3 gives that

1/
√

q < −1/
√

q + 2π/b < q jω < 1/
√

q + 2π/b

which yields the bound

1

q jω
<

1

−1/
√

q + 2π/b
= b

2π

1

1 − b/(2π
√

q )
<

b

2π
2, (79)

where the last inequality follows from the hypothesis b < π
√

q and the fact that

2√
q

<
2π

b
⇐⇒ b

2π
√

q
<

1

2
. (80)

Furthermore, we have that q jω − 4π/b < 1/
√

q − 2π/b < −1/
√

q whence

1

|q jω − 4π/b| <
1

−1/
√

q + 2π/b
= b

2π

1

(1 − b/(2π
√

q ))
<

b

2π
2. (81)

We now obtain the estimate∑
N2� j�N3

∣∣K̂
(
q jω

)∣∣ ∑
k=−1,−2

∣∣K̂
(
q jω + 2πk/b

)∣∣
=

∑
N2� j�N3

∣∣K̂
(
q jω

)∣∣(∣∣∣∣K̂

(
q jω − 2π

b

)∣∣∣∣ +
√

κq

|q jω − 4π
b |

√
θ(q2; (q jω − 4π

b )2)

)

�
∑

N2� j�N3

√
κq

q jω
√

θ(q2; (q jω)2)

( √
κqq√

θ(q2;1/q)
+ b

2π

2
√

κq√
θ(q2;1/q)

)
(82)

� κq√
νq

∑ 1

q jω

1

q j( j+1)/2ω j
√

θ(q2;ω2)

(
q + b

2π
2

)
(83)
N2� j�N3
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� κq√
νq

∑
N2� j�N3

b

2π
2

1

q j( j+1)/2ω j
√

θ(q2;ω2)
(q + √

q ) (84)

� b

2π

κq√
νq

(2q + 2
√

q )

(
1√

θ(q2;ω2)

∑
N2� j�N3

1

q j( j+1)/2ω j

)
,

where (39) and (81) were used to obtain (82), (29) was used to obtain (83), (79) and (80) were used to obtain (84). �
Proposition 12. In Case (4d) we have for q > 1, ω ∈ [1,q], 2π/

√
q > b > 0, and π

√
q > b > 0

G̃1
(
ω; N3 < j;k1( j) � k � k0( j)

)
� b

2π

κq√
νq

(2q + 3
√

q )

(
1√

θ(q2;ω2)

∑
N3< j

1

q j( j+1)/2ω j

)
. (85)

Proof. The condition N3 < j gives analogues of (73), (74), and (75) when k = k1( j),k0( j). For instance, when k = k1( j) we
have

q jω + 2πk1( j)

b
<

−1√
q

⇐⇒ −b

2πk1( j)
<

1

q jω + 1/
√

q

⇐⇒ −q jωb

2πk1( j)
<

q jω

q jω + 1/
√

q
.

Whence,

1 + q jωb

2πk1( j)
>

1/
√

q

q jω + 1/
√

q
= 1

q j+1/2ω + 1
,

or

1

1 + q jωb/(2πk1( j))
< q j+1/2ω + 1. (86)

Thus (86) gives

1

q jω

1

(1 + q jωb/(2πk1( j)))
<

q j+1/2ω + 1

q jω
= √

q + 1

q jω
<

√
q + √

q, (87)

where the last inequality on 1/(q jω) follows since 1/
√

q < q jω.
When k = k0( j) we have

q jω + 2πk0( j)

b
>

1√
q

⇐⇒ −b

2πk0( j)
>

1

q jω − 1/
√

q

⇐⇒ −q jωb

2πk0( j)
>

q jω

q jω − 1/
√

q
.

Whence,

1 + q jωb

2πk0( j)
<

−1/
√

q

q jω − 1/
√

q
= −1

q j+1/2ω − 1
,

or

1

|1 + q jωb/(2πk0( j))| < q j+1/2ω − 1. (88)

Thus (88) gives

1

q jω

1

|1 + q jωb/(2πk0( j))| <
q j+1/2ω − 1

q jω
= √

q − 1

q jω
<

√
q. (89)

So in the k = k1( j),k0( j) cases we have
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∑
N3< j

∣∣K̂
(
q jω

)∣∣ ∑
k=k1( j),k0( j)

∣∣K̂
(
q jω + 2πk/b

)∣∣
=

∑
j

∑
k=k1,k0

√
κq√

θ(q2; (q jω)2)

1

q jω|q jω + 2πk/b|
√

κq√
θ(q2; (q jω + 2πk/b)2)

�
∑

N3< j

√
κq√

θ(q2; (q jω)2)

b

2π
(2

√
q + √

q )

√
κq√

θ(q2;1/q)
(90)

� b

2π

κq√
νq

3
√

q
∑

N3< j

1

q j( j+1)/2ω j
√

θ(q2;ω2)
, (91)

where (87) and (89) yield (90), and (29) and (33) give (91).
Finally, we handle the case that k1( j) < k < k0( j), where

−1/
√

q < q jω + 2πk/b < 1/
√

q.

By (80), there is at most one such k for each j. Then by (39)

∣∣K̂
(
q jω + 2πk/b

)∣∣ � √
κqq/

√
θ
(
q2;1/q

) = √
κqq/

√
νq. (92)

Furthermore,

1

q jω
<

1

−2πk/b − 1/
√

q
= b

2π |k|
1

(1 + b/(2πk
√

q ))
<

b/(2π)

(1 + b/(2πk
√

q ))

and

0 <
−b

2π
√

qk
<

b

2π
√

q
<

1

2
�⇒ 1

1 + b/(2π
√

qk)
< 2

combine to give

1

q jω
<

b

2π
2. (93)

Hence ∑
N3< j

∣∣K̂
(
q jω

)∣∣ ∑
k1( j)<k<k0( j)

∣∣K̂
(
q jω + 2πk/b
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�
∑
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√
κq√

θ(q2; (q jω)2)

1
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κq√
νq

q
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(95)

�
∑

N3< j

√
κq√

θ(q2; (q jω)2)

b

2π
2
√

κq√
νq

q (96)

� b

2π

κq√
νq

2q
∑

N3< j

1

q j( j+1)/2ω j
√

θ(q2;ω2)
, (97)

where we have used (92) to bound the right factor of (94) to obtain (95), and then employed (93) to obtain (96). Adding
(91) and (97) gives the proposition. �
Lemma 3. For q > 1 and ω ∈ [1,q] we have

∑
−1� j

1

q j( j+1)/2ω j
√

θ(q2;ω2)
� 1√

νq

(
2 + 1

2

√
2π/ ln q

)
. (98)



154 D.W. Pravica et al. / Appl. Comput. Harmon. Anal. 29 (2010) 134–155
Proof. We have∑
−1� j

1

q j( j+1)/2ω j
√

θ(q2;ω2)

=
∑

−1� j

e−(1/2) ln q{ j2+ j(1+2 logq ω)}√
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e−(1/2) ln q{ j+1/2+logq ω}2
)

(99)

= q1/8+(1/2) logq ω+(1/2)(logq ω)2√
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(
q−1/8+(1/2) logq ω−(1/2)(logq ω)2)

+ q1/8+(1/2) logq ω+(1/2)(logq ω)2√
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e−(1/2) ln q{ j+1/2+logq ω}2
)

(100)

� qlogq ω√
θ(q2;ω2)

+ q1/8+(1/2) logq ω+(1/2)(logq ω)2√
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∑
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e−(1/2) ln q{( j+1/2)2+(logq ω)2} (101)

� 1√
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+ q1/8+(1/2) logq ω√
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e−(1/2) ln q( j+1/2)2
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� 1√
νq

+ q1/8+(1/2) logq ω√
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q−1/8 1

2
(2 + √

2π/ ln q ) (103)

= 1√
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1

2
(2 + √

2π/ ln q ) (104)

� 1√
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+ 1√
νq

1

2
(2 + √

2π/ ln q ), (105)

where we have: completed the squares and separated the j = −1 term from the j � 0 sum to obtain (99); re-expressed
terms with a base q in (100); canceled like terms in the exponents and dropped the − ln q( j + 1/2)(logq ω) from the
exponent in the j � 0 sum to obtain (101); applied the useful estimate (38) of Lemma 2 on the first term to obtain (102);
applied estimate (56) to bound the j � 0 sum in obtaining (103); canceled like terms in exponents to obtain (104); and
again applied (38) of Lemma 2 for (105), yielding the lemma. �
Proposition 13. For q > 1, ω ∈ [1,q], 2π/

√
q > b > 0, and π

√
q > b > 0 we have

G̃1
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Proof. Noticing that max{2
√

q,2q +2
√

q,2q +3
√

q } = 2q +3
√

q and then bounding 2
√

q by 2q +3
√

q in (72), and 2q +2
√

q
by 2q + 3

√
q in (78), and by adding the resulting analogues of (72) and (78) to (85), we obtain

∞∑
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√
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� b
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(2q + 3
√

q )
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−1� j

1

q j( j+1)/2ω j
√

θ(q2;ω2)

)
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� b

2π

κq√
νq

(2q + 3
√

q )
1√
νq

(
2 + 1

2

√
2π/ ln q

)
, (108)

where we have factored out a maximum 2q + 3
√

q and combined all sums for (106), proceeded from the sum over N1 � j
to the sum over the possibly slightly larger index −1 � j for (107), and used (98) in Lemma 3 to obtain (108) and hence
the proposition. �
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Proof of Proposition 6. Add the bounds in Propositions 9 and 13. �
In summary, we have been able to show the efficacy of larger translation parameters in the generation of wavelet frames

for L2(R). The driving force for this improvement is the use of theta function identities in obtaining an exact calculation of
G0 and in obtaining accurate estimates for G1. This allows us to establish a threshold b = N (q) below which the parameters
(q,b) allow K to generate wavelet frames. Similarly for bqp < N (q) the parameters (q,b) allow K (p) to generate wavelet
frames. Every function in our frames has many interesting properties, including the fact that each has all moments vanishing
and each satisfies an advanced differential equation. For large q and for very negative p our frames become snug which will
impact efficiency in invertibility.
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