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Abstract

This code computes the largest Lyapunov exponent and tests for the presence of a chaotic dynamics, as opposed to stochastic dynamics, in a
noisy scalar series. The program runs under MATLAB® programming language.
c⃝ 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
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1. Motivation and significance

In a scientific context, the word chaos has a different
meaning than it does in its general usage as a state of confusion
or a total disaster. Chaos, with reference to chaos theory, refers
to an apparent lack of order in a system that nevertheless
obeys particular laws or rules, a condition discovered by the
physicist Henri Poincaré in the early 20th century, which refers
to an inherent lack of predictability in some physical systems
known as dynamical instability. For example, chaos is observed
in the movement of a driven pendulum where it may behave
erratically and show irregular sequences of left and right turns,
streams in the ocean [2,3], and in meteorological science [4,5].
Hence, a chaotic system – no matter how complex it may be –
relies upon a precise order, and very small changes can cause
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very complex behaviors, known as sensitive dependence on ini-
tial conditions. This random-like and unpredictable behavior is
known as the butterfly effect.

The butterfly effect, first described by Edward Lorenz at the
December 1972 meeting of the American association for the
advancement of science in Washington D.C., vividly illustrates
the essential idea of chaos theory. In nonlinear dynamics theory,
a butterfly flapping its wings in Brazil can produce a tornado in
Texas due to nonlinearities in weather processes. The example
of such a small system, as a butterfly, being responsible for
creating such a large and distant outcome, as a tornado in Texas,
illustrates the impossibility of making predictions for complex
systems despite the fact that these are determined by underlying
conditions that can never be sufficiently articulated to allow
long-range predictions.

Chaotic dynamics are closely related in appearance to
stochastic dynamics, and the BDS test [6] cannot separate
them [7]. Hence, we need a practical test to detect chaos even
when the data are noisy.
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Theoretical basis of the code are available in [7,8], practi-
cal use of the test is performed by [9,10], among others. The
reminder of the article is as follows: in Section 2 we briefly de-
scribe the code; Section 3 presents some examples; in Section 4
we discuss the impact of the code; and finally, we conclude in
Section 5. Code metadata is given before Section 1.

2. Software description

Tests for chaos are scarce in the literature, and practical im-
plementation is far from evident [11]. Moreover, to test for
chaotic dynamics, we need to have pure data free from frictions
engendered by measurement errors, see [12] for detailed discus-
sion. The present code estimates the largest Lyapunov exponent
(Lyapunov exponent henceforth) in a noisy time series [7], and
decides whether the data are chaotic or stochastic based on a
confidence level α. The main advantage of this test is that it can
be conducted directly on experimental data without the need to
define the generating equations.

The Lyapunov exponent λ measures the average exponen-
tial divergence (positive exponent) or convergence (negative ex-
ponent) rate between nearby trajectories within a time horizon
that differ in initial conditions only by an infinitesimally small
amount. We distinguish 3 cases of λ:

• λ < 0: the orbit attracts to a stable fixed point. A negative
Lyapunov exponent is characteristic of dissipative or non-
conservative system. Such a system exhibits asymptotic
stability; the more negative the exponent, the greater the
stability. Super-stable fixed points and super-stable periodic
points have λ → −∞.

• λ = 0: the orbit is a neutral fixed point. A Lyapunov
exponent of zero indicates that the system is in a steady-state
mode or near the transition to chaos.

• λ > 0: the orbit is unstable and chaotic. Nearby points of
an orbit, no matter how close, will diverge to any arbitrary
separation. The larger the exponent, the more unstable the
system.

To compute the Lyapunov exponent and to conduct the test
given the hidden noise in the data, we need to define two
components:

1. The activation function ActiveFN of the neural network that
approximates the chaotic map [7].

2. The order (L , m, q) that defines the complexity of the neu-
ral network [7]. Choosing low parameters may prevent the
neural network from reasonably approximating the map that
generates the data. On the other hand, large parameters in-
crease computational time exponentially because the num-
ber of coefficients to estimate increases. [8] suggests any
triplet between (5, 6, 5) and (10, 12, 10).

2.1. Software architecture

The code is a single m-file that runs under MATLAB®

programming language [1], all subroutines are included in the
principal file chaostest.1

1 We are planning to write a version that runs under R, http://CRAN.R-
project.org.
2.2. Software functionalities

The code chaostest can detect the presence of chaotic
dynamics. It tests the positivity of the dominant (or largest)
Lyapunov exponent λ at a specified confidence level.

The test hypothesis H are: null hypothesis H0 : λ > 0, which
indicates the presence of chaos; and alternative hypothesis H1 :

λ < 0, which indicates the absence of chaos.
The syntax under MATLAB® command prompt is:

Required input
Series—a vector of observations to test. The minimum

allowed size is (m L + 1) observations.
Optional inputs
ActiveFN—string containing the activation function to use

in the neural network estimation. It can be:

'tanh', f (u) = tanh u, domain = (−1, 1), this is the
default;
'logistic', f (u) =

1
1+e−u , domain = (0, 1). The logistic

is not recommended due to the limited domain;

'sigmoid', f (u) = u
1+| u

2 |

2+|u|+
u2
2

, domain = (−1, 1).

maxOrders—the orders (L , m, q). This must be a vector
containing 3 elements, default = [5,6,5].

ALPHA—the significance level α of the test (default = 0.05).
Outputs
H = 0—accept the null hypothesis of chaos at significance

level α.
H = 1—reject the null hypothesis of chaos at significance

level α.
pVal—the p-value. Small values of pVal cast doubt on the

validity of the null hypothesis of chaos.
LAMBDA—the Lyapunov exponent λ.
Orders—gives the triplet (L , m, q) that maximizes the

Lyapunov exponent computed from all L × m × q estimations,
see [7] for further details.

CI—confidence interval for λ at significance level α.
The algorithm uses the Jacobian method [7], it needs the

optimization and the statistics toolboxes of MATLAB® [1].

3. Illustrative examples

In this section we perform three examples. The first one for
a noisy chaotic map, the second one for a stochastic random
variable, and the last one for a real-life data.

3.1. The logistic map

The logistic map xt = γ xt−1 (1 − xt−1) is known to exhibit
chaotic behavior when 3.57 6 γ 6 4 [11]. So, in our example
we set γ = 4 and a starting value x0 = 0.2. Next, to the
constructed pure chaotic map xt , we add some noise εt , with
εt ∼ N (0, σ 2

ε ) is an independently and normally distributed
random variable.

http://CRAN.R-project.org
http://CRAN.R-project.org
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We choose different values of σε and run the test in order to
study the evolution of the Lyapunov exponent. In the first case
we set σε = 0.01. Hence, under MATLAB® command prompt,
we type:

The result is H = 0, p = 1, lambda = 1.7158, and
Orders = [3,1,7].2 Hence, the null hypothesis H0 indicat-
ing the presence of chaos is accepted at 5% confidence level.

In the next case, we increase the variability of the noise εt

by setting σε = 0.12.

The result is H = 0, p = 0.9180, lambda = 0.1166,
and Orders = [1,1,6]. The data are still chaotic at 5%
confidence level. The estimated variance of the Lyapunov
exponent [7, equation 5] increases due to the added noise into
the data; consequently, the p-value of the exponent decreases
from nearly 1 in the first case with lower noise to 0.9180 in the
second case with larger noise.

Additionally, setting σε = 0.17 and using exactly the
same procedure yields H = 0, p = 0.1677 and lambda =
-0.0437. Although the Lyapunov exponent λ is negative, the
test still accepts chaos at 5% confidence level. Increasing the
amplitude of the noise further, will result in the rejection of the
null hypothesis. Indeed, as mentioned by [7, p. 91], when the
variance of the added noise increases, the data gradually tend to
a stochastic system and the Lyapunov exponent decreases until
it becomes negative. In this case, the noise envelops the chaotic
map and we can no longer detect chaos.3

Alternatively, we can test the presence of chaos in the pure
data xt without adding the noise. In this case, H = 0, p =
1, lambda = 1.8714, and Orders = [1,1,9] for the same
input maxOrders = [7,8,10]. The Lyapunov exponent of the
pure skeleton chaotic map – noted λ0 – is greater than the
exponents of the noisy chaotic maps—noted λσ . Indeed, [7]
shows that λσ tends to λ0 as the amplitude of the noise
decreases limσε→0 λσ = λ0.

2 Results may differ if we change the random generator state, due to the
presence of the noise εt . For presentation purpose, we report the p-value and λ

with four significant digits after the decimal point.
3 We suggest further theoretical development to compute the limiting σε

beyond which the test rejects chaos.
3.2. Random variable

In the second example, we test the dynamics of an
independently and normally distributed random variable εt with
standard deviation σε = 1. εt is expected to be stochastic.

The result is H = 1, p = 5.23e-11, and lambda =
-0.4850. Hence, the alternative hypothesis H1 indicating the
absence of chaos is accepted at 5% confidence level. The tested
data are therefore stochastic.

The Lyapunov exponent of a super-stable system, such as a
random variable, is expected, in theory, to tend toward minus in-
finity λ → −∞. Nevertheless, the computed λ from chaostest
is a finite number. In fact, as argued by [12], numbers gener-
ated by computers are called pseudorandom numbers based on
a specific algorithm (RNG), because computers are determinis-
tic machines and should not exhibit random behavior. The RNG
has a starting value defined by an initial state (or seed), each
time a pseudorandom number is generated, the state of the RNG
changes accordingly in a pre-specified way based on the previ-
ous number. The art of computer language makes the generated
pseudorandom numbers almost purely random. Therefore, the
finite negative Lyapunov exponent of εt is a direct consequence
of the art of generating pseudorandom numbers.4

3.3. Real data

The final example is an application to real data. We select
the daily Euro–dollar (EUR/USD) exchange rate returns –
logarithmic difference – collected from OANDA database,5 and
the daily rainfall in millimeter on Sydney, Australia collected
from the Australian government bureau of meteorology.6 Both
samples start from January 1, 2005 until April 30, 2015 and
plotted in Fig. 1. The file mmc1.mat in supplementary data
contains two variables eurusd and rainfall (see Appendix
A). Under MATLAB®, we type:

The result is H = 1, p = 0, lambda = -0.2671, and
Orders = [1,6,1]. Hence, the EUR/USD exchange rate
returns are stochastic. Next, to test the dynamics of the second
variable rainfall with the sigmoid activation function, we
type:

4 The default RNG of MATLAB ® is based on the Mersenne-Twister
algorithm [13] with an initial seed that equals zero.

5 http://www.oanda.com.
6 http://www.bom.gov.au/climate/data.

http://www.oanda.com
http://www.bom.gov.au/climate/data
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(a) Daily EUR/USD exchange rate returns. (b) Daily rainfall on Sydney, Australia.

Fig. 1. Real data example.
We obtain H = 0, p = 1, lambda = 1.4605, and Orders
= [3,5,1]. Hence, the dynamics of Sydney’s rainfall is
chaotic.

4. Impact

Recognizing and quantifying chaos in time series is the sub-
ject of many studies. In fact, several approaches are proposed,
including estimating fractal dimensions, nonlinear forecasting,
estimating entropy, and estimating Lyapunov exponents [12].

Among the methods proposed, fractal dimension estimation
is the simplest one. It provides a test about the finite dimension-
ality of a system. However, the dimension estimates is highly
sensitive to measurement error in the data and may get worse
with dynamical noise. Similar difficulty exists in the entropy
estimates. Nonlinear forecasting is a more general concept be-
cause it includes nonlinearity in both deterministic and stochas-
tic systems, and it can be detected by the BDS test [6]; yet,
it cannot distinguish between chaotic behavior and stochastic
behavior. The problem encountered in fractal dimension and
entropy estimations is avoided in the Lyapunov exponent ap-
proach.

Chaos tests currently available in the literature need noise-
free data, since any measurement error causes the systematic
rejection of chaos [11]. Moreover, practical implementation of
these tests is challenging. The chaostest code is powerful in
detecting chaotic dynamics, as opposed to stochastic dynamics,
even in presence of moderate noises. This feature makes it
appealing to physicists, meteorologist, financial analysts, and
other scientists who study nonlinear dynamics and complex
phenomena. The effectiveness of the test has been shown in a
previous study [7].

The chaostest code is applied on real life data. For exam-
ple, [7] tested the presence of chaotic dynamics in six daily ex-
change rates and six daily world indexes, and found that these
financial data are stochastic. [8] tested the dynamics of the intra-
daily American index S&P 500 over different frequencies, and
found no evidence of chaos. [14] tested the dynamics of the
inflation in the United States using long-range monthly and an-
nual data, they rejected the existence of chaos in both data. [10]
applied the test on high-frequency returns in order to detect
non-linearity in the Athens composite share price index. [9]
used the test to study the dynamics of intra-day S&P 500 using
a wavelet transform to improve the forecasting accuracy. Ap-
plications on physical, meteorological and oceanographic data
are still in progress, and the example on Sydney’s rainfall is an
incentive to study other data type.

Finally, the present code can be applied on any scalar exper-
imental data. It may be of interest to those who study nonlinear
dynamical systems to determine the nature of the data: stochas-
tic or chaotic.

5. Conclusion

The developed code can separate between stochastic and
chaotic dynamics even in presence of a moderate noise. It helps
researchers in physical, meteorological, financial and any other
field to test their data for the presence of chaos.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.softx.2015.08.002.
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