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1. A F F I N E  S U B S P A C E S  

Most would agree that the central problem of linear algebra is the solving of systems of linear 
equations. A useful collection of mathematical theory (matrix theory, vector space theory, etc.) 
has been erected upon this problem which finds application in so many areas (statistics, differ- 
ential equations, tomography, coding theory, engineering, etc.). A gxeat deal of attention is paid 
in introductory linear algebra courses to subspaces of a vector space. A (linear) subspace of a 
vector space is a nonempty subset distinguished by a closure property. That  is, a subspace is a 
nonempty subset which is closed under the taking of linear combinations. In other words, U is 
a subspace if U is a nonempty subset of the vector space and if x, y E U implies a x  + fly E U 

for arbitrary choice of (appropriate) scalars a and ft. By induction, this condition is equivalent 
to being closed under arbitrary finite linear combinations. That  is, given Xl, x 2 , . . . ,  xk in U and 
any scalars a l ,  a 2 , . . . ,  ~k, then alXl  + a2x2 + . . .  + ~kxk C U. In particular then, a subspace is 
never empty though it could have just the zero vector 0 in it or it could even be the whole space. 
For real or complex vector spaces, there will be infinitely many vectors in any subspace as soon a~ 
there is one that  is not zero. Given two subspaces U1 and U2, there are two natural constructions 
that lead to potentially new subspaces. Namely, the intersection U1 N U2 is always a subspace 
as is the linear sum U1 + U2 = {x + y [ x e U1, y e U2}. These subspaces can be characterized 
abstractly. The intersection U1 A U2 is the largest subspace contained within both U1 and U2 and 
the sum U1 + U2 is the smallest subspace that contains both U1 and U2. These constructions 
extend to arbitrary collections of subspaces, but we shall not need them here. 

Now consider the set of solutions of a system of linear equations written in matrix form, A x  = b. 
Let S =  {x [ A x =  b}. I f b • 6 ,  t h e n S i s  not asubspaee. Indeed, S i s  a s u b s p a c e i f f b = 6 .  
However, S does enjoy a restricted kind of closure property. Namely, if xl  and x2 are in S, then 
Axl + (1 - A)x2 C S as well for any scalar A. The proof is quick and easy and is based on the 
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following computation: 

A (,,~X 1 n u (1 - -  ~) X2) ---- )~Ax 1 nu.(1 - -  )0 Ax2 = Ab + (1 - A) b = b. 

Any subset S that  satisfies this kind of closure property is called an affine subspace. This closure 

property is equivalent to being closed under the taking of arbi t rary finite affine combinations. 

Tha t  is, xl ,  x 2 , . . . ,  xk E S and A1 + A2 + ' "  + Ak ---- 1 implies Alxl + ~ 2 X 2  -{- " • • -{- ~kXk 6 S. For 
fixed x, y, the set of vectors Ax + (1 - A)y is interpreted as the "line" through x and y. So, one 

way to look at an affine subspace is as a subset tha t  contains the entire line through any two of 
its vectors (points). This is why some call affine subspaces "fiats"? In some sense, then, it would 
seem more natural  to s tudy affine subspaces rather than ordinary ones. Of course, it turns out 

they are closely related. Given any subset W of a vector space, we can translate it by a fixed 
vector a. The translate of W by vector a is defined by 

a + W =  { a + w ] w  e W }  = W + a .  

The reader may easily verify the first useful fact about translates. 

LEMMA 1.1. The translate of  an affine subspace is again an affine subspace. 

Examples of affine subspaces are 

(1) the empty set ~ which satisfies the closure property vacuously, 
(2) singleton sets of vectors (points), 

(3) all linear subspaces and, in view of the preceding lemma, 

(4) all translates of linear subspaces. 

It  is easy to identify the linear subspaces among the affine ones since they are the affine subspaees 

that  contain the origin. 

LEMMA 1.2. M is a linear subspace iff M is an affine subspace that  contains the origin (i.e., the 

zero vector). 

Again, we leave the details to the reader but offer the hint that first you show 0 6 M affine 

implies M is closed under all scalar multiples. Then, note x + y = 2((I/2)(x -l- y)) = 2((i/2)x + 

( i / 2 ) y )  = 2 ( ( i / 2 ) x  + ( i  - i / 2 ) y ) .  
We now come to the significant fact tha t  our list of examples of affine subspaces is complete. 

Tha t  is, affine subspaces are just  the translates of linear subspaces. 

THEOREM 1.3. If M is an afnne subspace, there is a unique linear subspace U such that M = 

a + U for some vector a. 

PROOF. To argue uniqueness, suppose M = a 1 -b U l  = a2 + U 2 .  T h e n ,  U 1 = (a 2 -- al)  -[- U2 
so in particular 0 6 (a2 - a l )  + [/2. This says a2 - al  6 U2, but  since [/2 is a subspace, 
al - a2 = - ( a 2  - a l )  6 U2 as well. Thus, U2 _D [/2 + (a2 -- a l )  = [/1. A symmetric argument 
gives U1 _ U2, hence, [71 = U2. For existence, let U = {x - y [ x 6 M , y  6 M}. It  is easy to 
check tha t  U is affine and 0" 6 U so the previous lemma applies. | 

So, to each affine subspace we have associated a unique linear subspace. This allows concepts 
from linear algebra, like dimension, etc., to be applied to affine subspaces as well. However, this 
would take us too far afield in this short paper. We note tha t  while the subspace associated with 
an affine subspace is unique, the translating vector is not. Nonetheless, we have the following 

simple connection. 

LEMMA 1.4. Let  U be a linear subspace. Then, a + U = b + U if[ b -- a E U iff a C b + U. 

Another significant fact is tha t  affine subspaces (in finite dimensions) are precisely the solution 

sets of systems of linear equations. 
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THEOREM 1.5. The af~ne subspaces of C n are exactly the solution sets to systems of linear 
equations in n variables. That is, {x 6 C "~ i A x  = b E C m } is an aft/he subspace of C n. Moreover~ 

any af~ne subspace of  C n may be represented in this way. 

PROOF. The reader is referred to [1, pp. 5-6]. | 

This theorem reinforces our understanding tha t  systems of linear equations can be inconsistent: 
and have no solutions, the solution set is empty, they can have a unique solution, the solution 

set. is a singleton set, or they can have infinitely many solutions, the solution set is a nontriviat 

affine subspace. 

Wha t  about  the constructions of intersection and of linear sum for linear subspaces? Are there 

analogous constructions for affine subspaces? Intersections work out more or less naturally but 

"sums" are a bit tricky. 

THEOREM 1.6. Let a ÷ U1 and b ÷ U2 be a ~ n e  subspaces. Then, (a -b U1) N (b q- U2) is again an 
arlene subspace (possibly the empty  one). Moreover, it is the largest arlene subspace contained h~ 
both a ÷ U1 and b + U2. I f  the intersection is not empty, then (a + U1) N (b -b U2) -- c ÷ (U1 n U2) 
where c is any vector in the intersection. We can even teU when the intersection is nonempty: 
Namely, (a ÷ U1) N (b ÷ U2) is not empty  iff a - b E U1 ÷ U2 and (a + [71) N (b + U2) is a singleton 
set iff a - b E U1 q- U2 -- the whole space and U1 N [72 = (6). Finally, the smaI1est af//ne subspace 

contaimng a + V~ and b + Us is a + [sp{a - b} + V~ + V2] = b + [sp(a - b} + U~ + Us] and will b,~ 
denoted (a + U1) [] (b + U2). Note tha t  sp stands for span. 

PROOF. There are many  details to check here but  they are more or less routine and safely left 
to  the reader. || 

I t  is instructive to  think why the "obvious" of sum does not work, namely, (a q- b + U1 ÷ U2). The 
theorem above opens the door to a discussion of affine and projective geometry. The interested 

reader is referred to the book by Bennett  [2] for an elaboration and discussion of these two kinds 
of geometry tha t  lie at the very heart  of ]]near algebra. Our focus must  be much narrower. 

We wish to pursue the analog of orthogonal projections onto linear subspaces by projection onto 
affine subspaces as well. This is not just an exercise to keep mathematicians busy on weekends ~, 

but  affine projections actually are used, for example, in the Kaczmarz projection method (see [3]). 
From now on, perpendicularity plays an impor tant  role so inner products  are key. To get some 
nice formulas for projections we will use the Moore-Penrose pseudoinverse. Tha t  is the subject 
of the next section. We end with a summary table. 

Table 1. 

Projective Geometry Affine Geometry 

Linear subspaces--Closed under the 
formation of arbitrary linear combinations 

Solution sets of homogeneous systems of 

linear equations 

U a linear subspace 

U1 n U2--The largest linear 
subspace contained in both U1 and U2 

U1 + U2--The smallest linear 
subspace containing both U1 and U2 

Affine subspaces-Closed under the 
formation of arbitrary affine combinations 

Solution sets of arbitrary systems of 

linear equations 

a + U an affine subspace 

(a -b U1) N (b -k U2)--The largest affine 
subspexe contained in both a -k U1 and b + 0"2 

(a q- U1) I~ (b -b U2)--The smallest affine 
subspace containing both a q- U1 and b -k U2 
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2. T H E  M O O R E - P E N R O S E  P S E U D O I N V E R S E  

The matrix theory required for this paper is a very basic understanding of the Moore-Penrose 
generalized inverse (the pseudoinverse) of a matrix. That is, if A is an m-by-n matrix, then 
X = A + (the pseudoinverse) is the unique solution to the four matrix equations 

A X A = A ,  (1) 

X A X = X ,  (2) 

( A X ) * = A X ,  (3) 

( X A ) *  = X A .  (4) 

(Here * denotes conjugate transpose.) 
Note that  (1) and (3) imply that (AX) 2 = (AA+) 2 = A A + A A  + = A A  + = (AA+) *, that is, 

A A  + is an Hermitian idempotent matrix. The same is so for A+A.  That is, both are orthogonal 
projections. 

References on the pseudoinverse include Boullion and Odell [4], Ben-Israel and GreviUe [5], 
Rao and Mitra [6] and Campbell and Meyer [7]. Recently, two excellent references have ap- 
peared, Meyer [3] and Rao and Rao [8]. A handbook compiled by Lutpepohl [9] is also helpful 
for supplying various identities and formulas. Meyer [3] gives most all the background one needs 
for this paper. However, Rao and Rao is filled with helpful identities and results for construc- 
tive arguments, for formulating mathematical models and especially for performing statistical 
evaluations. 

The following properties of the pseudoinverse axe used in our discussion and can be proved by 
substituting the right side of each equation below into the four defining equations (1)-(4) and 
relying on the uniqueness of A +. 

A + = (A*A)+A *, (5) 

A + = A*(AA*) +, (6) 

(AA*)  + = (A*)+A +, (7) 

(A*) + = (A+) * . (8) 

Also, the following facts axe fundamental to our presentation. 

LEMMA 2.1. Let  A X  = C be a matr/x equation in the unknown matr/x X .  Then, a solution 
exists i f  and only i f  the following consistency condition holds: 

A A + C  = C. 

LEMMA 2.2. I f  A A + C  = C, then {x l x = A + C  + [I - A +  A]Z, Z is arbitrary} is the solution set 

for A x  = C, where x is a vector. 

LEMMA 2.3. H A A + C  7 ~ C, then x = A + C  is the best approximate solution in the sense that 
IIAx - CII 2 > IIAA+C - C[12; that  is, x = A + C  is the least squares solution o f  A x  = C. 

The proofs of these facts can be found in the references listed above. We pause to note that 
if y is an m-by-1 (column) vector and A is an m-by-n matrix, then the vector Y0 = A A + y  belongs 
to the column space of A and is that vector such that  IlY - Yol12 = IlY - AA+ylI2 is minimal. In 
other words, IlY - Y0112 = IlY - AA+y[12 is minimal. 

LEMMA 2.4. PCol(A) = A A  + is the projection matr/x ( idempotent  and Hermitian) that  projects 
any y 6 C n onto the column space of  A; that  is, PCol(A)Y = A A + y  = Y0 6 Col(A), where Col(A) 
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is the column space of  A and ]IY - YoH2 is minimal.  Moreover, y = A A + y  + [ I -  AA+]y = yo + y~, 
is an orthogonal decomposition of  the vector y since the inner product  Y~Yl = O. 

We further note that  all of the so-called "fundamental" of A can be computed using A+: 

• A + A  is the projection on the column space of A*, 
• I - A A  + is the projection on the orthogonal complement of the column space of A, which 

is the null space of A*, and 
® I -  A + A  is the projection on the orthogonal complement of the column space of A* which 

is the null space of A. 

Again, we recommend the text by Meyer [3], to those who wish to gain more insight into the 
pseudoinverse and its uses. 

3. T H E  M A T R I X  C O N N E C T I O N  

In order to use matrix theory on subspaces, we need to make a connection between the two. 
If we have a matrix A, then we can always form the column space Col(A), tha t  is, the subspace 
spanned (i.e., generated) by the columns of A and get a perfectly fine linear subspace. We use 
"sp" as a shorthand for "span". On the other hand, given a subspace, we can always choose a 
spanning set of vectors, even a basis, and form these into the columns of a matrix so that  the 
column space of this matrix evidently gives the subspace back. For intersections, if U1 = Col(A) 
and U2 = Col(B), then U1 N U2 = Col(A) n Col(B) = {y I Y = A x l  = Bx2  for some xl and x2}. 
For the sum, we have 

(I 11[ 1]} g 1 ÷ U 2 = Col(A) + Col(B) = Col A ! B  =~  y [ y = A ! B  . . .  , 

X2 

where [AiB] is matrix A augmented by the matrix B. Tha t  is, put matrix B to the right of 
matrix A making a bigger new matrix. Now if we have an affine subspace M, we associate a 
matrix A with its unique linear subspace. Then, M = a + U1 = a + Col(A). For intersections, 
( a - b U 1 ) f ~ ( b q - U 2 )  = ( a ÷ C o l ( A ) ) N ( b ÷ C o l ( B ) )  = {y : y = A x l ÷ a  = Bx2-bb for some xl and x2). 
For "sums", 

(a + U1) [] (b + V2) = (a + Col(A)) [] (b + Col(B)) = b + [sp{a - b} + U1 + e2] 

= b + [ s p { a -  b} + CoI(A) + Col(B)] = b + Col ( [ A ! B ! a  - b] )  

It  is t ime for some examples. 

l[Xl] } 
l Y =  A i B i ( a - b )  x2 + b  . 

X3 

Consider a one dimensional subspace of ~2, that  is a line L 
through the origin say of slope m , y  = rex. Then, Lm = {(x,  m x )  I x E •}. We associate the 

[ 00] } rank one matrix A -- to L,~ so that  L,~ = ,~ 0 I x, y E R . For the affine line 

y = m x  q- yo, we have 

As a second illustration, consider the plane (two-dimensional subspace) in R 3 given by ax  ÷ 
by ÷ cz -- 0, where c ¢ 0. Here, we associate the rank two matrix [10 ] 

0 1 
a b 

e c 
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(a) Affine subspace. 

. . ° 

-10 

y l : ] j  

0 I I . , , r  . . 

0 2.5 5 

(b) Linear subspace. 

Figure 1. 

so the  plane is descr ibed by  

{[1 ° } 0 1 6 R  . 

a b 

c c 

For  an affine plane in R3 given by ax + by + cz = d, we have 

10 i1[ ] 0 1 + 

a b 

c c c 

x,y, z 6 R I . 

As a final i l lus t ra t ion,  suppose we wish to  represent  the  affine line L(t) --- (1, 3, 0) + t ( 1 , - 1 ,  2) 

given pa ramet r i ca l ly  in ] l  3. We associate  the  rank one ma t r ix  

o0 
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so the line is the set of vectors 

00 +[i] 
We shall refer to these examples later. 

x, y, z E ~} . 
4 .  P R O J E C T I O N S  

For orthogonal projections onto subspaces, introductory linear algebra courses usually appeal to 
orthonormal bases or at least orthogonal bases, to generate formulas. However, we are promoting 
the pseudoinverse as the way to compute projections. That  is, if U is a subspace realized by 
Col(A), then Pu = A A  +. For example, to project on the line of slope m through the origin L,~, 

recall we associated the matrix A = [ ~ 0 ] .  One computes A + -  - [1/(1+"2)m/(l+m2)] " o  0 (There is 

an algorithm in Campbell and Meyer [7] that works for small matrices or one can use a computer 
[ 1/(1+ ~2) m/(l+ m~) ] algebra system like MATHEMATICA to get it.) and so PL,~ = A A  + = [m/(l+m 2) ,~2/(1+m2)]. 

Therefore, if you want to project an arbitrary vector (x ,y )  in R2 onto the line Lm, you find 
[ ~/(1+-~ 2) m/(l+m 2) ] m/(i+m2) m2/(,+m~)j [~] = [(mx+m2y)/(l+m:)(x+mY)/(l+rn2) ]. Concretely then, if you want to project (4,41} 

onto the line y -- 3 x 3, you take A = and compute A A  + = [a/lo 9/10j so that the 

[1/10 3 /10 ] [ : ]  [1.6] Similarly, if U is the plane ax + by + ez = 0 i n  N a, recall projection is [a/lo 9/10] = 4.8 " 
we associated the matrix 

0 1 . 

a b 
e c 

[!0i] 1 [!0i] 1 
The formula 

l + a 2 + ~  2 l + a 2 + ~  2 1 + a 2 - ~ f l  ~ 

l + a  2+/32 l + a  2 + ~ 2  l + a  2+f l2  

l + a 2 + ~  2 1 + a 2  + /~  2 1 + OL2 z¢-/~ 2 

allows us to compute projections onto such planes. Concretely~ if you want to project (1,1,3) 
onto the plane given by 3x + 2y $ 6z = 0, we associate 

1 0  i] 0 1 
1 1 
2 3 

and compute 

l o  !] 
0 1 
1 1 
2 3 2 3 

40 - 6  -18 -- ~ -~9-) 49 49 

- 6  45 - 1 2  

49 49 
-1 8  - 1 2  13 
49 49 4-9 

So now the big question is how do you project (orthogonally) onto affine subspaces? A nice 
discussion and picture is found in [3, p. 436ff]. The idea is to take the ai~ine subspace, translate 
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I 

T 
,.- ! 

~ "  | a 
s I 

/ 

f 

! 

I / 
! / 

a ÷ U  = M 

u = Col(A) 

Figure 2. 

it back to  the origin and get its uniquely associated linear subspace, project there where we know 

how to do a projection, and translate back. 

So our official definition of an affine projection is this. If  x is a vector in R ~, and M is an affine 

subspace of R n, the affine project ion o f  x onto M where M = a + U is 

I~M(X ) ~- a --~ P u ( x  - a) ---- a + P u ( x )  - P u ( a )  = P u ( x )  + Pu-L(a) .  

This simple algebraic equivalence suggests another geometric interpretation using the orthog- 

onal complement of U as the next figure shows. 

So for example, to project onto the affine line Lm,u o in [¢2, we find IIL,,,v o (x, y) ---- 

1 m 1 1 + m 2 1 ~--m 2 

?T~ /77. 2 

l + m  2 l ~ m  "~ 

(I;] [:o])~[:ol : 
x + m(y  - yo) 1 

1 ÷ m  2 ] m x  d- m 2 ( y  - Yo) ~_ Yo 
1 d - m  2 

To project onto the affine plane ax  + by + cz  = d, we calculate H(x, y, z) = 

[ 1 0xb 0:]i 1 01b I ])° 0 0 _ 0 & . 
a a d 

c c c c ~ c 
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! 
! 

/ 

/ 

! 
/ 

/ 
/ 

! 

a + U  = M 

u = Col(A) 

Figure 3. 

Concretely then to project (x, y, z) onto the plane given by 3x + 2y + 6z = 6, we compute 

II(x, y, z) = 0 1 0 1 _ + 
1 1 1 1 

2 3 2 3 

- 4 0  6 18  • 

/ - 6  4 5  12  . 

---- I -49x + T9Y- "~ (z -1 )  " 

[ - - 1 8  12 13 . 

L - g - x  - 7~y + 76 (z - i) + 1 

So to compute the projection of (1,1,3) onto this plane compute that  

15 
H 0 ,  1, 3) = N 

45 

As one final illustration, let us suppose we want to project onto the affine line L(t) = (1, 3,0) + 
t ( 1 , - 1 ,  2) in N 3. We compute 
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1 1 2 

1 1 2 

g 6 

2 4 
- g  g 

x 1 i 

1 1 2 

6 ( x -  1) 6 ( y -  3) +~zz + I  

i 1 2 
- - + - -  {--3 
6 (x - 1) 6 (y - 3) 6z 

2 2 4 

6 ( x -  1) 6 (y - 3 - - - - ~  + ~zz 

SO for example,  

1 I ( 1 , 1 , 5 )  = . 

Now several quest ions arise about  proper t ies  of affine projec t ions  and how they  mirror  prop- 

erties we know about  or thogonal  projections.  These are given in the  following table.  

Table 2. 

Ordinary Projections Affine Projections 

P u  projects onto linear subspace U 

U is exactly the set of fixed points of PV 

BY" (x) = ( / -  Pu)(x) 

Pu is i d e m p o t e n t - - P u  ( P u  ( x ) ) -~ P u  ( x ) 

HM projects onto affine subspace M ---- a + U 

M is exactly the set of fixed points of H M 

n~+ul (2) = (1 - n a + u ) ( ~ )  

IIM is idempotent--IIM(HM(X)) : 1-IM(x ) 

In  a d d i t i o n ,  i f  M = a + U,  we h a v e  

a n d  

x - n v ( x )  = (x  - a)  - P ~ ( .  - a)  = P u l ( ~  - a) ,  

HIIM(y) - n M ( z ) l l  = ItPu(Y) - Pu(*)II  

IIIIM(~)II ~ = [ [ P g ( x ) t l  2 + IIP~I (a)[[ 2 • 

(9) 
(lO) 

(11) 

As long as we are ta lk ing abou t  norms, since ord inary  project ions  solve a minimizat ion  (least 

squares) problem, so do affine projections.  After  all, t r ans la t ion  by  a fixed vector  does not  change 

distances.  More precisely, let  y be  an a rb i t r a ry  vector and  suppose we seek the  closest vector  in 

M = a + U to y where  U = Col(A).  Then,  

I [ (Ax  + a)  - Y[I = II A z  - (Y  - a)ll = []Az - A A + ( y  - a)[ I 

> I I A A + ( y  - a )  - ( y  - a ) l l  = J l A A + ( y  - a )  + a - YlJ = ILnM(y)  - y " .  

Finally,  we produce  formulas for projec t ing  onto the  intersect ion and "sum" affine subspaces. 

These formulas extend the  work done in [10]. We work on intersect ions first. Of course, i t  only 
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makes sense to project when the intersection is not empty. We have seen that  ( a + U ~ ) A ( b + U 2 )  = 

(a + Col(A)) n (b + Col(B)) ¢ 0 iff b - a e U1 + U2 = Col(A) + Col(B) = Col([AiB]). Thus, 

Using (6), 

b - a = A x l  + B x 2  = !B  

B*  B :  L B * ( A A * + B B * ) + J  

For notational convenience, let D = A A *  + B B *  = D*. Thus, the projection onto Col(A)+Col(B) 
is 

. . . . .  A A * D  + + B B * D  + = D D  +. 

LB*D + 

Thus ,  we see Ca + Co l (A) )  n (b + Co l (B) )  # 0 iff  b - a = D D + ( b  - a ) .  But  b - a = D D + ( b  - ~) 
iff b -  a = A A * D + ( b  - a) + B B * D + ( b  - a) iff A A  * D+(b  - a) + a = - B B  * D+(b  - a) + b. 

Also since Col(A) and Col(B) are contained in Col(A) + Col(B), D D + A  = A and D D + B  = 

B. But D D + A  = A implies ( A A *  + B B * ) D + A  = A so B B * D + A  = A - A A * D + A  whence 
B B *  D+ A A  * -- A A *  - A A *  D+ A A  *. But this matrix is self-adjoint so 

B B * D + A A  * = ( B B * D + A A * )  * = A A * D + B B  *. 

We now have background for the next theorem. 

THEOREM 4.1. (a + Col(A)) n (b + Col(B)) is no t  e m p t y  i f f b  - a e Col(A) + Col(B) i f f b  - a = 

D D + ( b  - a), where D = A A *  + B B * .  M o r e o v e r , / f  the in tersect ion is n o t  empty ,  (a + Col(A)) ~: 

(b + Col(B)) = c + Col(C), where c -- A A * D + ( b  - a) + a and C ~- [ B B * D + A i A A * D + B ] .  

PROOF. The first part  has already been argued above, so let us look at the "moreover". Let u.~ 
say y e (a + Col(A)) n (b + Col(B)). Then, y = A x t  + a = B x 2  + b for suitable Xl and x2. But; 
then A x l  + a -- B x 2  + b so b - a -- A x  1 - B x 2 .  In matrix notation, 

J[::] A ! - B  = b - a .  

By Lemma 2.2, the solution to this system take the form 

- B * D  + ( b -  a) B * D + A  I -  B * D + B  z2 ' 

where z is arbitrary. Then, y = Am1 + a = [AA*D+(b  - a) + a] + [A - A A * D + A i A A * D + B ] z l  =: 

c + [ B B * D + A i A A * D + B ] z , .  This puts y in c + ColiC ). 

Conversely, suppose y E c + Col(C). Then, y = [ B B * D + A i A A * D + ] z  for some z in Col(C). 

But then, y -- ( ( A A * D + ) ( b  - a) + a) + [A - A A * D + A i A A * D + B ] z  = A [ A * D + ( b  - a)] + A [ I  - 
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A*D+A!A*D+B]z + a = Awl + a which is in a + Col(A). Similarly, y = ( - B B * D  + (b - a) + b) + 

[BB*D + AiB - BB*D + B]z = B [ - B * D  + (b - a) + B[B*D + A I I  - B*D + B]z + b = Bw2 + b 
which is in b + Col(B). Thus, y is in the intersection which completes the proof. | 

The reader may now verify the following useful reduction. 

[ BB*D+AiAA*D+B] [BB*D+AiAA*D+B] + =  [BB*D+AA *] [BB*D+AA*] + . (12) 

We are now in a position to exhibit a formula for the projection onto the intersection of two 
affine subspaces. As a corollary, we also get a formula for the orthogonal projection onto the 
intersection of two linear subspaces. 

COROLLARY 4.2. 

(1) II(a+Col(A))n(b+Col(B) ) (X) = [BB*D+AA *][BB*D+AA*] + (x - c) + c, 
(2) PCol(A)nCol(B)(X) = [BB*D+ AA *] [BB*D+ AA *] + (x). 

We illustrate with an example. Consider the plane 3x - 6y - 2z = 15 in R 3 to which we 
associate the matrix 

A =  0 1 
3 
~ - 3  

and vector 

Also consider the plane 2x + y - 2z = 5 to which we associate the matrix 

B =  1 
1 

and vector 

[° 1 b= ~ . 

We shall compute the affine projection onto the intersection of these two afline planes which will 
turn out to be an agine line. First, 

3 1 1 

AA* = 0 1 BB* = 1 D+ 1 3 1 , , = g 

1 1 
- 3  2 4 J  --~ ~ 25 

Now DD + -- I ensuring that these planes do intersect without appealing to other considerations 
like dimension. Next, 

and C =  

49 7 21 

 001 
1004021 1003 40 9 1  
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Intersection 

Ordinary Affine 

y 6 Col(A) N Col(B) ~=> 

(1) y---- IA--AA'D+AiAA*D+Bt z 

for some z or 

(2) y = [ A -  AA*D+A!B - BB*D+BI z 

for some z or 

(3) y---- [BB*D+AiB-  BB*D+B] z 

y e (a + Col(A)) N (b + C o l ( B ) )  ¢> 
" 1  

(1) y---- A - - A A * D + A I A A * D + B ] z  
. 3  

+AA*D+(b - a) + a for some z or 

(2) y=  [ A - A A * D + A i B -  BB*D+B] z 

+AA* D+(b - a) + a for some z or 

(3) y= [BB*D+AiB-BB*D+B] Z 

f o r  s o m e  z o r  

(4) y = [BB*D+AiAA*D+B] z 

f o r  s o m e  z 

Pool(A) (x) = AA + (x) 

+BB*D+(a -- b) + b for some z or 

(4) y = [B B* D+ AiAA* D+ B] Z + B B* D+ (a - b) + b 

for some z 

][Ia+Col(A) ( ~ ) 
= AA+(x - a) + a = l"I(a.}_Col(A))N(bq_Col(B))(x ) 

---- [BB * D+ AA*] [BB * D+ AA*] + (x) ] =[BB*D+AA*][BB*D+AA*]+ (x - (BB*D+(a-b)+b) 
I +[BB*D+(a - b) + b] 

Sum 

yECoI(A)+Col(B)=Col([AiB])  

(1) y = [ A i B ] z f o r s o m e z o r  

P¢oI(A)+CoI(B) (x) 

[][I = A[B AiB (x) ---- DD+(x) 

where D = AA * +BB* 

y C (a + Col(A)) [] (b + Col(B)) 

(1) y = [ A i B i ( a - b ) ] z + b f o r s o m e z o r  

(2) y=  [AiB!(b-a)]z+a 

rI(a+Col( A ) )W(b+Col( B ) ) ( x) 

= [ D  + ( a  - b ) ( a  - b)*] [ D  + ( a  - b ) ( ~  - b)*l  + [,: - b]+b 
where D = AA * +BB* 

a n d  s o  

42 

4-~ 
7 

w h e r e  t = ( 1 4 / 2 1 5 ) ( x  - 1 / 5 )  q- ( 2 / 4 1 5 ) ( y  + 7 / 5 )  + ( 1 5 / 4 2 5 ) ( z  + 3).  

ii ] i14:1 = 5 7 + 

L15tj 

S i n c e  p r o j e c t i n g  o n t o  t h e  " s u m "  o f  a f f ine  is s t r a i g h t f o r w a r d ,  w e  f i n i sh  w i t h  s u m m a r i z i n g  o u r  

f i n d i n g s  in  T a b l e  3. 
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