A Note on Rational Approximation to $(1-x)^{\sigma}$

A. R. Remdy
School of Mathematics \& CIS, University of Hyderabad, Hyderabad 500134, India, and
Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
\section*{Communicated by Oved Shisha}

Received March 18, 1985

Theorem 1. For $0<\sigma \leqslant 1,0 \leqslant x \leqslant 1$ and $n \geqslant 0$, we have

$$
\begin{equation*}
0 \leqslant S_{n}^{-1}(x)-(1-x)^{\sigma} \leqslant \frac{x^{n+1}}{S_{n}(x)} \leqslant\binom{\sigma+n}{n}^{-1} \tag{1}
\end{equation*}
$$

where $S_{n}(x)=\sum_{j=0}^{n}\left({ }^{\sigma+j-1}\right) x^{j}$. (Note that $(1-x)^{-\sigma}=\sum_{j=0}^{\infty}\left({ }^{\sigma+j}{ }^{1}\right) x^{j}$ for $0<\sigma \leqslant 1,0 \leqslant x<1$.)

Proof. For $0<\sigma \leqslant 1,0 \leqslant x<1, j \geqslant 0$, and $n \geqslant 0$, we obtain, by oberserving the fact that

$$
\begin{aligned}
\binom{n+\sigma+j}{n+1+j} & \leqslant\binom{\sigma+j-1}{j}, \\
0 & \leqslant S_{n}^{-1}(x)-(1-x)^{\sigma}=\frac{\sum_{j=n+1}^{x}\binom{\sigma+j-1}{j} x^{j}}{S_{n}(x)(1-x)^{-\sigma}} \\
& =\frac{x^{n+1} \sum_{j=0}^{\infty}\binom{n+\sigma+j}{n+1+j} x^{j}}{S_{n}(x)(1-x)^{-\sigma}} \\
& \leqslant \frac{x^{n+1} \sum_{j=0}^{\infty}\binom{\sigma+j-1}{j} x^{j}}{S_{n}(x)(1-x)^{-\sigma}}=\frac{x^{n+1}}{S_{n}(x)} .
\end{aligned}
$$

Let $0<\sigma \leqslant 1, n \geqslant 0$. As

$$
\begin{gathered}
(n+1) S_{n}(x)>x S_{n}^{\prime}(x) \quad \text { for } \quad x>0 \\
\left(\frac{x^{n+1}}{S_{n}(x)}\right)^{\prime}>0 \quad \text { for } \quad x>0
\end{gathered}
$$

and hence $x^{n+1} / S_{n}(x)$ is increasing on $[0, \infty)$. Thus, for $0 \leqslant x<1$,

$$
\begin{aligned}
0 & \leqslant\left[S_{n}(x)\right]^{-1}-(1-x)^{\sigma} \leqslant \frac{x^{n+1}}{S_{n}(x)}<\frac{1}{S_{n}(1)} \\
& =\left(\sum_{j=0}^{n}\binom{\sigma+j-1}{j}\right)^{-1}=\binom{\sigma+n}{n}^{-1}
\end{aligned}
$$

The last two equalities prove (1) also for $x=1$. It follows that

$$
\begin{equation*}
\left\|(1-x)^{\sigma}-S_{n}^{-1}(x)\right\|_{L^{\infty}[0,1]} \leqslant\binom{\sigma+n}{n}^{-1} \tag{2}
\end{equation*}
$$

Remarks on Theorem 1. (i) For $\sigma=\frac{1}{2}$, (2) was obtained in [1].
(ii) For $0<\sigma<1$, (2) is sharper than the estimate given in [2], as for $n=1,2, \ldots$,

$$
\binom{\sigma+n}{n}^{-1}=\frac{\Gamma(\sigma+1) \Gamma(n+1)}{\Gamma(\sigma+n+1)}<\frac{n}{n+1} \frac{\Gamma(\sigma) \Gamma(n)}{\Gamma(\sigma+n)}
$$

Theorem 2. Let $P(x)$ and $Q(x)$ be polynomials of degree at most n $(\geqslant 1)$ having only real, non-negative coefficients $(Q(0)>0)$ and let $0<\sigma<1$. Then

$$
\begin{align*}
& \left\|(1-x)^{\sigma}-\frac{P(x)}{Q(x)}\right\|_{L^{x}[0,1]} \\
& \quad \geqslant(n+1)^{-\sigma}\left(1+\left(\frac{n+1}{n}\right)^{n}\right)^{-1}>\frac{(n+1)^{-\sigma}}{1+e} \tag{3}
\end{align*}
$$

Proof. Set

$$
\left\|(1-x)^{\sigma}-\frac{P(x)}{Q(x)}\right\|_{L^{\omega}[0,1]}=\varepsilon .
$$

Then

$$
\begin{aligned}
\varepsilon & \geqslant\left(1-\frac{n}{n+1}\right)^{\sigma}-\frac{P\left(\frac{n}{n+1}\right)}{Q\left(\frac{n}{n+1}\right)} \\
& \geqslant \frac{1}{(n+1)^{\sigma}}+\left(0-\frac{P(1)}{Q(1)}\right)\left(\frac{n+1}{n}\right)^{n} \\
& \geqslant \frac{1}{(n+1)^{\sigma}}-\varepsilon\left(\frac{n+1}{n}\right)^{n}
\end{aligned}
$$

Hence

$$
\varepsilon \geqslant(n+1) \cdot \sigma\left(1+\left(\frac{n+1}{n}\right)^{n}\right)
$$

Remarks on Theorem 2. (i) The estimate (3) is sharper than these obtained in $[2,3]$. The technique used here is different from the one used in [3].
(ii) Actually the inequality $P(1) \geqslant \max (0, P(n /(n+1)))$ suffices for the proof of Theorem 2 rather than assuming $P(x)$ has only real, nonnegative coefficients.

Theorem 3. Let $P(x)$ and $Q(x)$ be polynomials of degree at most n $(\geqslant 2)$ and let $P(x)$ have only real, non-negative coefficients. Let $Q(x) \neq 0$ throughout $[0,1]$ and let $0<\sigma \leqslant 1$. Then

$$
\left\|(1-x)^{\sigma}-\frac{P(x)}{Q(x)}\right\|_{L^{\times}[0,1]} \geqslant\left(16 n^{2 \sigma}\right)
$$

We need the following well known
Lemma [5, p. 68, Eq. (9)]. If a real polynomial $Q_{n}(x)$ of degree $\leqslant n$ $(n \geqslant 0)$ satisfies the inequality $\left|Q_{n}(x)\right| \leqslant L$ on $[a, b](-\infty<a<b<\infty)$, then at each real x outside $[a, b]$ we have

$$
\left|Q_{n}(x)\right| \leqslant L\left|T_{n}\left(\frac{2 x-a-b}{b-a}\right)\right|
$$

where T_{n} is the nth degree Chebychev polynomial of the first kind.
Proof of Theorem 3. Suppose

$$
\begin{equation*}
\|(1-x)^{\sigma}-\left.\frac{P(x)}{Q(x)}\right|_{L^{\times}[0,1]}<\left(16 n^{2 \sigma}\right)^{-1} \tag{4}
\end{equation*}
$$

Then on $\left[0,1-n^{-2}\right]$,

$$
\begin{align*}
& \left|\frac{P(x)}{Q(x)}\right|>(1-x)^{\sigma}-\frac{1}{16 n^{2 \sigma}} \geqslant \frac{1}{n^{2 \sigma}}-\frac{1}{16 n^{2 \sigma}}=\frac{15}{16 n^{2 \sigma}}, \\
& |Q(x)|<\frac{16 n^{2 \sigma}}{15} P(1) . \tag{5}
\end{align*}
$$

In (5) we have used the assumption that $P(x)$ has only real, non-negative coefficients. Now, by applying the lemma to (5) with $a=0, b=1-n^{-2}$, we
get on $[0,1]$, by familiar elementary properties of T_{n}, and by [4, p. 38, Problem 172],

$$
\begin{align*}
\underset{[0.1]}{\operatorname{Max}}|Q(x)| & \leqslant \frac{16 n^{2 \sigma}}{15} P(1) T_{n}\left(\frac{n^{2}+1}{n^{2}-1}\right) \\
& <\frac{16 n^{2 \sigma}}{15} P(1)\left(\frac{n^{2}+1}{n^{2}-1}+\sqrt{\left(\frac{n^{2}+1}{n^{2}-1}\right)^{2}-1}\right)^{n} \\
& =\frac{16 n^{2 \sigma}}{15} P(1)\left(\frac{n+1}{n-1}\right)^{n} \\
& \leqslant \frac{16 n^{2 \sigma}}{15} P(1) \cdot 9=\frac{48}{5} n^{2 \sigma} P(1) . \tag{6}
\end{align*}
$$

From (6) and (4) we obtain $\frac{5}{48}<n^{2 \sigma}|P(1) / Q(1)|<\frac{1}{16}$, which is false.

References

1. P. Bundschuh, A remark on Reddy's paper on the rational approximation of ($1-x)^{1 / 2}$, J. Approx. Theory 32 (1981), 167-169.
2. A. M. D. Mercer, A note on rational approximation to $(1-x)^{x}$, J. Approx. Theory 38 (1983), 101-103.
3. A. R. Reddy, A note on rational approximation to $(1-x)^{1 / 2}$, J. Approx. Theory 25 (1979), 31-33.
4. G. Pólya and G. Szegö, "Problems and Theorems in Analysis," Vol. I, Springer, New York, 1972.
5. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," Macmillan Co., New York, 1963.
