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THEOREM 1. For 0<o<1,0<x<1 and n=0, we have

n+1 -1
oss'l(,»c)—(l—x)”s)C < o , (1)
! S,(x) n

where S,(x)=2"_q(°* /7 ") x’. (Note that (1 —x)""=3>* ("1 ") x/ for

j=
0<o<l1,0gx<1)

Proof. ForO0<o<1,0<x<1,j=0, and n >0, we obtain, by oberserv-
ing the fact that

<n+6+j><<o+j—l>
n+t+j) J ’

0<S, "(x)—(1-x)

o o+ j—1
H:Z":”“< J )x'
S, (x)(1—x)~°
xn+l ;c=0<n+o-+j:>xl
- n+1+j

Salx)(1=x)"7
xn+1 o

o+j—1\ ,
j=0 ] X xn+1

< .
SAx)(1—x)7°7 Sa(x)

Let 0<o<1,n=0. As

(n+1)S,(x)>x5,(x) for x>0,

xn+1 ’
(S,,(x)) >0 for x>0,
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and hence x"*!/S,(x) is increasing on [0, co). Thus, for 0<x <1,
0<[S,(x)] " —(1—x)"<

=(,.§("“”)> ( )

The last two equalities prove (1) also for x = 1. It follows that
o+n\"!
||(1_x)a”‘Snl(x)|\1.°°[o,1]<< " > . (2)

Remarks on Theorem 1. (i) For ¢ =1, (2) was obtained in [1].

(ii) For 0<o <1, (2) is sharper than the estimate given in [2], as
forn=1,2,.,

S,,( )

<U+n>‘=F(a+l)F(n+l) n (o) (n)

n INo+n+1) n+1 MNo+n)’

THEOREM 2. Let P(x) and Q(x) be polynomials of degree at most n
(= 1) having only real, non-negative coefficients (Q(0)>0) and let 0 <o < 1.
Then

P(x)
1 7 ——
H( ¥) O(x) | L>ro.17
;(n+1)”<1+<n:1>n>f >@%. (3)
Proof. Set

P(x)

1 —x)———= =

H( *) O(x) | L=ro.17

Then
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S 1 n >"
/(n+1)“_8< n
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e=(n+1) "<1+<”:1>”> .

Remarks on Theorem 2. (1) The estimate (3) is sharper than these
obtained in [2, 3]. The technique used here is different from the one used
in [3].

(i1) Actually the inequality P(1)>=max(0, P(n/(n+1))) suffices for
the proof of Theorem 2 rather than assuming P{x) has only real, non-
negative coefficients.

Hence

THEOREM 3. Let P(x) and Q(x) be polynomials of degree at most n
(=2) and let P(x) have only real, non-negative coefficients. Let Q(x)#0
throughout [0, 1] and let 0 <o < 1. Then

_ﬁ P(x)
Q(x)

We need the following well known

> (16n"7) .

-

L*[0.1]

LemMa [5, p. 68, Eq. (9)]. If a real polynomial Q,(x) of degree <n
(n=20) satisfies the inequality |1Q,(x)| <L on [a,b] (—o<a<b<wx),
then at each real x outside [a, b] we have

)

2x—a—b>
b—a

|Q'I('X:)| SL } TH (

where T, is the nth degree Chebychev polynomial of the first kind.
Proof of Theorem 3. Suppose

3 P(x) 0y 1

1 —x)° —— 16n-7) . 4

950 oy <O “

Then on [0, 1 —n—2],
PO o Lo L 115
1—Q—(x_) >0 =X e Z 0% e~ T
16 20

|Q(x)| < == P(1) (5)

In (5) we have used the assumption that P(x) has only real, non-negative
coefficients. Now, by applying the lemma to (5) with a=0, b=1—n"2 we
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get on [0, 1], by familiar elementary properties of T,, and by [4, p. 38,
Problem 1727,

20 2
Max 1000 <5 P() T, (7

[0.1] n’—1
<o (=) -
- (i)
<1—61’151P(1)-9=4%8n2"P(1). (6)

From (6) and (4) we obtain & <n® | P(1)/Q(1)| < {, which is false.
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