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THEOREM 1. ForO<abl, 06x61 andn>,O, we have 

(1) 

where S,,(x) = XI’= 0 (O + : ’ )x’. (Notethat (l-.Y)~“=~,?~,(“+; ‘)x/for 
o<o< 1, O<x< 1.) 

Proof. For 0 < CT < 1, 0 < x < 1, j 3 0, and n 3 0, we obtain, by oberserv- 
ing the fact that 

< 
x~+‘~~o(~+;-l)x~ x”+, 

S,(x)(l -x)-O =- S,(x)’ 

Let 0 < CT f 1, n 2 0. As 

(n + 1) S,(x) > xs:(x) for x>O, 

x n+l I 

0 S,(x) 
>o for x> 0, 
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and hence xn + ‘/S,( ) x IS increasing on [0, co). Thus, for 0 d x < 1, 
,t + I 

0 6 [S,(x)] -- l- (1 - xy 6 x < - 
xl(x) S,(l) 

=(~o(~+:-l))~l=(~~n)~l.’ 

The last two equalities prove (1) also for x = 1. It follows that 

Remarks on Theorem 1. (i) For 0 = 4, (2) was obtained in [ 11. 
(ii) For 0~ 0 < 1, (2) is sharper than the estimate given in [2], as 

for n = 1, 2,..., 

a+n -’ 
( > 

I’(U+l)I-(n+l)< n r(a)r(n) 
n = T(cr+n+l) n+ 1 r(a+n). 

THEOREM 2. Let P(x) and Q(x) be polynomials of degree at most n 
( 2 1) having only real, non-negative coefficients (Q(0) > 0) and let 0 < CJ < 1. 
Then 

P(x) 
Cl -x’u-Q(x, L~[o,II -II 

3(n+ l)-” (l +(+)“)-‘>‘“;;~“. 

Proof: Set 

Then 

(3) 

1 n+l ’ 
‘(n-l)” n c-1 
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Hence 

A. R. REDDY 

c3(n+ 1) (1 +(G)“) ‘. 

Remarks on Theorem 2. (i) The estimate (3) is sharper than these 
obtained in [2, 31. The technique used here is different from the one used 
in [3]. 

(ii) Actually the inequality P( 1) 3 max(O, P(n/(n + 1))) suffices for 
the proof of Theorem 2 rather than assuming P(X) has only real, non- 
negative coefficients. 

THEOREM 3. Let P(x) and Q(x) be polynomials of degree at most n 
( > 2) and let P(x) have only real, non-negative cotlfficients. Let Q(x) # 0 
throughout [0, 1 ] and let 0 < r~ d 1. Then 

~~ 
P(x) (1 -2y)“-m L’lo,,l 3 (16nZo) I, II 

We need the following well known 

LEMMA [S, p. 68, Eq. (9)]. Zf a real polynomial Q,(x) qf degree <n 
(n > 0) satisfies the inequality 1 Q,(x) 1 <L on [a, b] ( --oo <a < b < cc), 
then at each real x outside [a, b] we have 

where T,, is the n th degree Chebychev polynomial of the first kind. 

Proof of Theorem 3. Suppose 

< (16n’“) I. 
LX lO.11 

Then on [0, 1 -np’], 

P(x) 
l-l Q(x) 

IQ(x)1 <TP(l). 

(4) 

(5) 

In (5) we have used the assumption that P(x) has only real, non-negative 
coefftcients. Now, by applying the lemma to (5) with a = 0, b = 1 - np2, we 
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get on [0, 11, by familiar elementary properties of T,,, and by [4, p. 38, 
Problem 1721, 

16n2” 
Max IQ(x)1 <1,0*) T, 
co. II 

16n*” 
<,P(l)-9=:n2”P(l). (6) 

From (6) and (4) we obtain & < n20 1 P( 1 )/Q( 1) 1 < &;, which is false. 
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