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1. INTRODUCTION 

In [12] the authors introduced the class group C/(9?(X)) and the Brauer 
group Br(W(X)), where 9?(X) is a suitably nice category of divisorial lattices 
over a Krull scheme X. In this paper we show that there are exact sequen- 
ces of Galois cohomology which relate the class groups and Brauer groups 
so defined. By choosing %7(X) properly we can obtain as special cases 
several exact sequences of Galois cohomology derived by others: an exact 
sequence involving Brauer groups and class groups of noetherian normal 
domains presented by Rim [ 181; one involving Brauer groups and Picard 
groups of commutative rings considered by Chase and Rosenberg [2], 
DeMeyer and Ingraham [4], and by Auslander and Brumer in an 
unpublished paper; an exact sequence of Yuan [23] dealing with class 
groups and modified Brauer groups of a noetherian normal domain; and a 
sequence of Lichtenbaum [ 131 involving divisor class groups and Brauer 
groups of a projective curve. 

The exact sequence we shall obtain (see Theorem 4.1) contains the seven 
terms: 

1 -+ H’(G, O,(Y)*) --f CZ(‘S( Y)) -+ @(G, CI(%‘( Y))) + H2(G, O,(Y)*) 

-+ Br(%T( Y/X)) + H’(G, C/(%?(Y))) --f H3(G, O,(Y)*), 
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where G is a finite group and rr: Y --) X is a %‘-Galois covering of Krull 
schemes with group G. This condition on rc (see the definition preceding 
Theorem 3.2) coincides with being an ordinary Galois covering when, for a 
general Krull scheme W, the category v(W) coincides with p(W), the 
category of locally free &,-modules of finite type (see Proposition 4.2). But 
for other categories of interest the condition on x may be less restrictive 
than being a Galois covering: when w( ) = 9( ), with 9(W) the category of 
W-lattices, rc is a %-Galois covering if and only if for every afline open set 
U= Spec(R) of X, and every point x of U with R, of Krull dimension one, 
SO R,r is a Galois extension of R., with group G, where 7c ~ ‘(U) = Spec(S). 

When %?( ) = 9( ) the exact sequence can also be obtained for G a 
prolinite group (see Proposition 4.5), and we shall use this in Section 5 to 
compute the ordinary Brauer group of some projective varieties. 

2. A COHOMOLOGY SEQUENCE 

The setting in which we will discuss Brauer groups Br(%?(X)) and class 
groups C/(%?(X)) will be that of [12], wherein the constructions of 
Br(%T(R)), Cl(%‘(R)) given in [ 151 for R a Krull domain are extended to X 
a Krull scheme. For the convenience of the reader we will recall the 
definitions of the basic objects of interest-Krull domains, Krull schemes, 
divisorial lattices, Krull morphisms. We refer the reader to [12] and [15] 
for a more detailed discussion. The reader will notice that our definitions of 
concepts for schemes are straightforward extensions of the affine ones. We 
have relied on this feature in proving most of our results by giving the 
proof in the afline case and noting that the extension to schemes follows 
from the definitions. What is usually left unsaid later, but is worth noting 
here, is that for our quasi-compact schemes (X, OX) and their modules M, 
the properties in our definitions hold for OX(U), M(V) with U an arbitrary 
open set if and only if they hold for all alline open sets U. 

Let R be a domain with field of fractions K and let 2 be the set of primes 
of R having height one. R is a Krull domain if: 

(i) R, is a D.V.R. for each p in 2. 
(ii) R = npeZ R,. 

(iii) Each nonzero element of K is a unit in all but finitely many R,, 
p in Z. 

(See [S, Chapter I] for other characterizations of a Krull domain.) 
Let (X, OX) be a quasi-compact, integral scheme with function field K 

and let Z be the set of points x of X for which OX.X has Krull dimension 
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one-we shall refer to these as the height one points of X. (X, Ox) is a Krull 
scheme if: 

0) ox,, is a D.V.R. for each x in Z. We will write u, for the 
corresponding valuation. 

(ii) If U is an open set in X and f is a nonzero element of K such 
that u,(f) > 0 for all x in U n Z, then f is in C!&.(U). 

(iii) For every nonzero element f in K, v,(f) = 0 for all but finitely 
many x in Z. 

If X = Spec(R) then X is a Krull scheme if and only if R is a Krull 
domain. 

Throughout the paper (X, ox and (Y, 0,) will be Krull schemes. We will 
adopt abbreviated notation of the following sort: We will refer to the 
scheme X and the X-module M, rather than to the scheme (X, ox) and the 
Q-module M. We will write Hom.(M, N) and MOx N for the X-modules 
usually denoted s$%M~~( M, N) and A4 Or x N. If f: Y + X is a morphism of 
schemes and M is an X-module we will write Y@, M for the Y-module 
usually denoted by o,@f l(M), @ being overf-l(X). For x a point of X 
we will write U,,., for O,lCc yj..y, where,f*(C”,) is the direct image sheaf of 0, 
under J: 

Let R be a Krull domain, K the field of fractions of R, Z the set of height 
one primes of R. An R-module M is diuisorial if M = nPE z M,. For (X, ox) 
a Krull scheme, the X-module M is diuisorial if M(U) = n M(U), for each 
open set U of X, the intersection being taken over Zn U, Z the set of 
height one points of X. An R-module M is an R-lattice if M is torsion-free, 
with dim,(K@, M) finite and Mc Fc KOR M for some R-module F of 
finite type (see [S, pp. 8-91 for other characterizations of a lattice). An X- 
module M is an X-lattice if for each open set U of X, M(U) is an Ox(U)- 
lattice. 

It M and N are R-modules, the ordinary tensor product MOR N need 
not be divisorial, but 

M &N= n (MN), 
psz 

is a divisorial R-module, where MN is the image of MOR N in 
Kg_, M OR N. We will usually write M 6 N for M 6 R N. This module 
M 0 N satisfies the same mapping properties with respect to divisorial R- 
modules as M OR N does with respect to all R-modules (see [15, 
Proposition 1.31, or [ 16, Proposition 21 or [23, Lemma 43). We will use 
the notation M G,, N or M @ N for the corresponding construction in the 
case of (X, G&)-modules. This construction is described in [ 12, 
Proposition 1.11. There is a canonical map j: MO, N + M & N, and if M, 
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N are divisorial R-modules with either of them R-flat, then j is an 
isomorphism [ 16, Proposition 2, (e)]. In this case we will view j as an 
identification, and write M @ R N = M & N or M OX N = M @ N. 

The next elementary result will be used several times in Section 3, but is 
naturally stated at this point. 

LEMMA 2.1. Let R be a Krull domain. Let M, N be torsion-free R- 
modules and let L be a divisorial R-lattice. Let f: MO, N--t L be an R- 
module homomorphism such that for each p in Z(R) the induced map 
fp:~/&Jp-)Lp is an isomorphism. Then f induces a map 7: 
A4 0 R N + L which is an isomorphism. 

Proof Because L is divisorial there is an R-module homomorphism 7 
making this diagram commutative 

L 

where j is the canonical map described above. Our hypotheses imply that 
M, and N, are torsion-free R,-modules and since R, is a D.V.R. they are 
flat R,-modules. The flatness implies that the canonical map 
M, OR,, Np + p”p & Rp N, is an isomorphism. Since f, is an isomorphism, 
and since (M OR N)p = Mp GR, N, [ 16, Proposition 2, (k)], it follows that 
& : (M @ R N)p -+ L, is an isomorphism for all p in Z(R). But 7 is a map 
between divisorial R-modules and it follows easily that Jb being an 
isomorphism for all p implies 7 is an isomorphism. 

For W a Krull scheme let Z(W) denote the set of height one points of 
W, 9(W) the category of divisorial W-lattices an W-module morphisms. 
As discussed in [ 12, Section 3 J there does not seem to be a natural way to 
arrange for an arbitrary morphism of Krull schemes, rc: Y + X, to induce a 
functor 9(X) -+ 9( Y) such that the composite of morphisms gives the com- 
posite of functors. But by putting conditions on rr one can overcome this 
lack of functoriality. Let rc: Y + X be a morphism of Krull schemes (z 
being our abbreviation for (71, x# ): ( Y, 0,) + (X, CO,)). We say 71 is a Krull 
morphism if the generic point of Y maps to the generic point q of X and 
rc(Z( Y)) c Z(X) u {q}. The following result summarizes information which 
we will need (see [ 121, especially Section 3, for a more detailed discussion, 
and refer to our foregoing notational conventions). 

PROPOSITION 2.2. Let II: Y + X be a morphism of Krull schemes. 

(a) 71 is a Krull morphism if and only if z,(O,) is divisorial as an X- 
module. 
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(b) If 7t is a Krull morphism then for any divisorial C&-lattice M the 
Ormodule Y 6 M is a divisorial &$-lattice. IT induces a functor 
n : 9(X) + .q Y). 

For W a Krull scheme let .9’(W) denote the category of locally free W- 
modules offinite type. If M is an object in P(X) then Y 6 M = Y@, A4 and 
n induces a functor 7~: .9(X) -+ P( Y). 

(c) If 9: W-P Y is another morphism of Krull schemes and C$ = nt3 then 
t$=lt 0 I3 (up to natural equivalence of functors from 9( W) to 9(X)). 

This result, together with properties of divisorial lattices discussed in 
[ 12, Section 2 and 31 and [ 1.5, Sections 1 and 31 can be seen to imply that 
if we write U(W) for 9(W), this gives one way of assigning to each Krull 
scheme W a subcategory %‘( W) of 9(W) such that the following axioms 
hold: 

(Al) For X a Krull scheme, X is an object in U(X), and Q?(X) is a 
subcategory of 9(X). 

(A2) If M and N are objects in W(X) then so are MO N, M 6 N and 
Hom,(M, N). 

(A3) If M and M & N are in U(X) and N is in 9(X) then N is in 
Wm. 

(A4) If 7~: Y --, X is a Krull morphism of Krull schemes then for any 
object M in V(X), Y 6 M is in V(Y). 

In [12] axioms (Al) and (A2) are shown to be sufficient to permit the 
construction of a Brauer group &(93(X)) and a class group C&%‘(X)). 
Axiom (A4) is shown to imply that the assignments X--+ Br(+T(X)), 
X -+ CZ(%?(X)) define functors from the category of Krull schemes and Krull 
morphisms to the category of abelian groups. Axiom (A3) occurs in a more 
general form in [ 121, involving a pair of categories g,(X) c sz(X), rather 
than Q?(X) E 9(X), and is used there to get an exact sequence linking the 
groups Br(gi(X)), Cl(G?$(X)), i= 1,2. In the current paper (A3) will be 
crucial for establishing our cohomological exact sequence. 

Let Vf(W(X)) be the subcategory of W(X) consisting of objects which 
have rank one as X-modules. Since rank is multiplicative with respect to 
6, ‘$f(V(X)) is closed under the operation sending (M, N) to M 6 N. The 
operation 6 is commutative and associative, meaning that for L, M and N 
any X-modules, there exist canonical isomorphisms 

M@N+NGM, L&(M&N)+(L@M)GN 

which arise from the maps (in the afftne case and for ordinary tensor 
products) sending x0 y to y@x and x@( y@z) to (x@y)@z. For M in 
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V/(%(X)), the dual module Hom,(M, X) is again in %?Qg(X)). This 
module is usually denoted M* for an arbitrary module M, but for M in 
Vt(V(X)) we shall also write M-r for M*. There is a canonical 
isomorphism 

which arises from the map (in the affine case and for ordinary tensor 
products) sending x@h in M@Hom,(M, R) to h(X). We shall write 

x: V:a(GfqX)) -+ W(%yX)), 

( ) - ’ : %:e(W(X)) -+ W(ce(X)) 

for the functors which send an object M in Vt(%?(X)) to Co, and M-l, 
respectively, and an isomorphism j: A4 -+ N to Id, and ( ) 0 j- ‘, respec- 
tively. 

The automorphism groups of objects of %t(%(X)) play a role in the 
cohomology referred to below, so some remarks about them are in order. 
For any divisorial lattice M there is a canonical isomorphism from 
M g M* to End.(M), related to the map which in the afline case and for 
ordinary tensor products sends x@ h to h( )x. When M has rank one it 
follows that End,(M) is canonically isomorphic of Ox, and Aut,(M) is 
canonically isomorphic to the sheaf Ox( )* of units of 0,. 

We now change notation slightly so that we are working with a Krull 
scheme Y, rather than X. Let G be a group acting on Y as automorphisms 
of schemes, the action being faithful. Each o in G gives rise to a functor (r 
from ‘%‘t(%‘( Y)) to %?a(%( Y)), which is a category equivalence. The basic 
description of this functor is in the afline case, where Y= Spec(S), so that 
G acts as ring automorphisms of S. An element of Vt(C(S)) is represented 
by a rank one S-module M in e(S). For such an M let a(M) be the rank 
one S-module whose underlying set is A4 but with S-action given by 

s . x = cT(s)x, SES,XEM. (1) 

For h a morphism in %‘(S), o(h) is the set map h itself. For Y not 
necessarily affine we can set a(M) to be the direct image sheaf of M with 
respect to e - ‘. This description, o(M) = o; l(M), is consistent with the 
affine one. 

Now let CI(%( Y)) be the set of isomorphism classes {M} of objects M in 
V?e(%( Y)). The operation (M} {N) = {M & N} makes C1(%( Y)) into an 
abelian group. The inverse of {M} is {M- ’ }. For o in G, the functor o on 
V:d(%( Y)) induces a G-action on CZ(%?( Y)). 

Having noted these basic facts we can now turn to their cohomological 
consequences as developed by Ulbrich [21]. We can apply Section 3 of 
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that paper in our setting, substituting V/(V( Y)) for 9%(S) and making the 
necessary allowances for differences in notation. Ulbrich’s analysis (or the 
analysis of Hattori [S] on which Ulbrich’s is based) applies mutatis 
mutandis, and yields that there is an exact sequence 

1 + H’(G, O,(Y)*) + Ho -+ p(G, C@‘(Y))) --) H2(G, Ooy( Y)*) 

+ H’ -+ H’(G, Cl(U( Y))) + H3(G, O,(Y)*) + H2 -+ . . . . (2) 

The groups of the form H’(G, A) refer to group cohomology of G acting on 
A. The groups Hi are defined in [21] following a model presented in [S]. 
In the next section we shall examine Ho and H’ in more detail. 

3. ANALYSIS OF Ho AND H’ 

Let Y continue to denote a Krull scheme, V(Y) a category which 
depends on Y in the manner circumscribed by axioms (Al ) to (A4) of Sec- 
tion 2. Let Z(Y) denote the set of height one points of Y. Let G be a finite 
groups of automorphisms of the scheme Y over the Krull scheme X. We 
will restrict ourselves first to the aftine case in order to make the definitions 
which will be the basis for the non-affine version of the concepts 
introduced. To this end we will assume Y= Spec(S), X= Spec(R), so that 
G is a finite group of R-algebra automorphisms of S and both R and S are 
Krull domains. We will write W(R) for g(X), etc. 

Let D(S, G) denote the trivial crossed product of S with G. This means 
D(S, G) is @O Su, (0 varies over G) as an S-module and is a ring in which 
b%)(w) = sdt) u,,. Let j: D(S, G) --t End,(S) be determined by 
j(su,)(t) = so(t). We will say S is a %Y-Galois extension of R with group G if 
three conditions hold: 

(1) j is an isomorphism. 
(2) If A4 is in g(S) then M is in 5$‘(R); in particular S is in V(R). 

h3iMA 3.1. Let R E S he Krull domains and assume S is a %?-Galois 
extension of R with group G. Then: 

(a) R --, S is a Krull morphism. 

(b) SG=R. 

(c) Let M be a D(S, G)-module in 9(S). Let MG be the set of 
elements of M fixed under the action of each o in G. Then there is a natural 
isomorphism S 6 MG -+ M (6 is the product referred to in Section 2). If M 
is in F?(S) then MG is in %7(R). 
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Proof: (a) Condition (2) implies that S is a divisorial R-module, since 
g(R) 5 9(R) (axiom (Al) of Section 2). Hence the inclusion of R in S 
satisfies condition (PDE) (i.e., the contraction to R of a height one prime 
of S has height at most one) [ 15, Theorem 11. Thus is the definition of 
R + S being a Krull morphism. 

(b) Let p be any height one prime of R. Write A for R,, B for S, (by 
which we mean the ring of fractions SOR R, with respect to the mul- 
tiplicative set R - p). Conditions (1) and (2) imply that B is a free A- 
module (A is a discrete valuation ring) and that j: D( B, G) + End,(B) is 
an isomorphism. Because B is A-free, there is an A-homomorphism 
t: B --$ A such that t(b) = b for b in A. Since j is an isomorphism, t = C 6, 
for some 6, in B. Then C b, = 1 and for b in BG, b = C b,o(b) = t(b), so b 
is in A. Thus BG = A. Thus, for Z the set of height one primes of R, 

RrSGs 0 Sp”= n R,=R, 
PEZ PfZ 

the last equality being valid because R is a Krull domain. 

(c) There is a natural map f: SQR MC + M satisfying f(s @ x) = sx. 
It is easy to see that for p any height one prime of R we have (MC), = 
(M,)‘. It follows thatf, is an isomorphism. This is true because R, is a dis- 
crete valuation ring; hence S, is a Galois extension of R, with Galois group 
G, in the sense of [2]. We would like to apply Lemma 2.1 to deduce the 
existence of the desired isomorphism S 6 MC -+ M. To apply this lemma 
we need to know M is a divisorial R-lattice. But A4 is a divisorial S-lattice 
(it is in 9(S)) and S is a divisorial R-lattice (condition (2) plus the 
assumed inclusion %7(R) 5 9(R)) and this implies A4 is a divisorial R-lattice 
[ 15, Corollary 1 to Theorem 11. 

For a covering of Krull schemes, rc: Y --) X, in which X and Y are not 
necessarily afline and on which G acts as a group of automorphisms, we 
say z is a %-Gafois covering with group G if rt is an affine map (i.e., rc - ‘(U) 
is affrne for U an afftne open set of X) and for each open set U in X, 
Co,(n - l(U)) is a %?-Galois extension of OX(V) with group G. The assertions 
of Lemma 3.1 have corresponding versions in this situation, which we shall 
not state explicitly. 

THEOREM 3.2. Let X and Y be Krull schemes and 7~: Y + X a %-Galois 
covering with group G. Then Ho N CI(%?(X)). 

ProoJ: We will work with Hattori’s formulation [S] for the 
cohomology group involved in the case where 9&(S) replaces %/(%7(Y)). 
We note that in Hattori’s paper Ho is called H’(S, G). We shall adjust Hat- 
tori’s indexing so it conforms to ours, which is that used by Ulbrich [21]. 
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Hence Z*(S/R) will become Z’, etc. In Section 5 of his paper Hattori 
sketches the construction of an isomorphism from Ho to Pit(R). A careful 
reading of the proof shows that his construction can be adapted to our set- 
ting. We shall outline below the additional facts that are needed. For the 
sake of simplicity, and to keep our notation parallel to that in [S] we shall 
reduce to the afline case, and work with R and S rather than X and Y. 

Let ((P, p)) be a cocycle in Z”. Then P is an object in %‘e(%‘(S)) and p 
consists of a family of isomorphisms po: “P 6 P- ’ + S, with “P defined by 
(1) of Section 2. Thus, for each 0 in G we get an isomorphism qg : “P + P. 
Let each 0 in G act on P by ox = q,(x). The cocycle condition on ((P, p)) 
implies that B(U) = (ar)x, hence that P is a D(S, G)-module. By (c) of 
Lemma 3.1, there is an isomorphism S & PC -+ P, and PC is in 59/(%?(R)). 
The correspondence sending the cohomology class of ((P, p)) to the 
isomorphism class of PC in CI(V(R)) yields an isomorphism of Ho with 
CZ(V(R)). We refer the reader to [8] for verification of the details. This 
completes the proof of Theorem 3.2. 

Our analysis of H’ also follows the model provided in [S, Section 51, 
which is also related to work of Kanzaki [lo]. But the interpretation of H’ 
is more cumbersome than that of Ho and we shall have to indicate why the 
work of Hattori and Kanzaki can be carried over to our setting. 

Hattori demonstrates that a group he calls H*(S, G) or H’(S/R) is 
isomorphic to the relative Brauer group Br(S/R) for S/R a Galois exten- 
sion with group G. The proof proceeds by establishing a commutative 
diagram 

1 -+ Pr(S/R) -+ i%(S/R) + Br(S/R) + 1, 

(3) 

1+ B*(S/R) + Z2(S/R) + H*(S/R) + 1 

with exact rows. We shall re-examine these correspondences in our setting. 
First we indicate the changes we need from Hattori’s notation. Br(R) will 

be replaced by Br(V(R)), Br(S/R) by Br(%‘(S/R)), B*(S/R) by B’, Z2(S/R) 
by Z’, H*(S/R) by H’, Pr(S/R) by Pr(V(S/R)). We will explain what these 
objects are as we go along. 

Br(%(R)) is the Brauer group of equivalence classes [A] of U[R]- 
Azymaya algebras A [12, 151. Such algebras A are characterized by being 
in V(R) as R-modules, having R as center and having the natural map 

yap : A 6 A0 + End,(A) 

be an isomorphism. The equivalence relation is defined by setting A-B if 

A 6 End,(P)- B 6 End,(Q) 
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with P and Q in ‘X(R). For R c S a Krull morphism (it is understood of 
Krull domains) there is a map from Br(%(R)) to Br(%‘(S)) induced by 
sending [A] to [S 6 A]. The kernel of this map is denoted Br(V(S/R)). 

Since the usual Brauer group arises when %‘(R) is the category of projec- 
tive R-modules of finite type we shall refer to this situation as the projective 
case. Since any projective module (or even any flat one) is divisorial [ 16, 
Proposition 21 this classical setting is one in which our hypotheses apply. 
It will be useful to remember that in this case the modified tensor product 
6 agrees with the ordinary tensor product OR for objects in +2(R) [ 16, 
Proposition 2, (e)]. In the projective case %?-Galois extensions coincide 
with Galois extensions in the sense of [2]. The projective case of the next 
result plays a crucial role in Hattori’s proof that H2(S/R)g Br(S/R). 

PROPOSITION 3.3. Let R E S be Krull domains, with S a V-Galois exten- 
sion of R. A %‘(R)-Azumaya algebra A represents an element in Br(W(S/R)) 
if and only if A-B, with B a W(R)-Azumaya algebra containing S as a 
maximal commutative subalgebra. 

Proof This argument parallels the one in the projective case (see [4, 
Theorem 5.5, p. 64)). Let A be in Br(V(S/R)) and identify S & A0 with 
End,(E), E in V(S); the trivial element of Br(%‘(S)) is of this form by the 
concluding remark in the proof of Theorem 3.1 of [ 151. By condition (2) 
for Ce-Galois extensions, E is in W(R), hence C = End,(E) is a q(R)- 
Azumaya algebra, and we have 

Sg A’=End,(E)sC. 

Let B = CA”. The multiplication map B OR A0 + C induces a map from 
B 6 A0 to C which is an isomorphism in the projective case, hence an 
isomorphism in our setting too, by Lemma 2.1. The same sort of argument, 
plus the use of axiom (A3), shows that B is a W(R)-Azumaya algebra, that 
[B] = [A] in Br(V(R)) and that S is a maximal commutative subalgebra 
of B. 

Conversely, if B is a V(R)-Azumaya algebra containing S as a maximal 
commutative subalgebra, then we define a map from SOR A, to Ends(A) 
by sending s@ao to s( )a. In the projective case this map is an 
isomorphism, hence in our setting we have an isomorphism of SO A0 with 
End,(A) by the now usual localization argument. This completes our 
proof. 

Following [S] we will call a pair (A, ct) a @‘(S/R)-Azumaya algebra 
when A is a %?( R)-Azumaya algebra and c(: S + A is an embedding of S as a 
maximal commutative subalgebra of A. The S-isomorphism classes of such 
pairs form a group &V(S/R)). The product is given by 
(A, CI) * (B, fi) = (C, y), where C = e(A 6 B)e. In the projective case e is the 
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separability idempotent of SOR S-it can be described as h - ‘(e, ), where h 
is the isomorphism from S OR S to Maps(G, S) given by 
h(sO t)(a) = so(t), and ei(a) = 6,,, (the Kronecker delta). In our setting we 
have a corresponding e in S 6 S, again by a localization argument using 
Lemma 2.1-e is now A-‘(e,). The natural map from SOR S to A ORB 
induces one from S 6 S to A @ B, so the expression e(A & B)e makes 
sense. 

There is a surjective map from &(V(S/R)) to Br(V(S/R)) defined by 
sending the isomorphism class of (A, a) to [A] (see Proposition 3.3). The 
kernel of this map is called Pr(V(S/R)), and consists of classes of pairs 
(End.(E), tl) with E in q(R). The embedding CC S --) End,(E) makes E into 
an S-module, and because S is a V-Galois extension, E is in %?(S). A rank 
argument shows E is in %/(W(S)). So we have an exact sequence 

1 + Pr(V(S/R)) -+ b(%f(S/R)) ---f Br(V(S/R)) -+ 1. (4) 

The isomorphism H’ N Br(‘Gf?(S/R)) which we are after is obtained by show- 
ing that Z’ -&(9?(S/R)) under an isomorphism which carries B’ to 
PrPYWR)). 

To associate an element of lb(@(S/R)) to a cocycle ((P, p)) in Z’ we can 
use exactly the same construction Hattori uses, namely the crossed product 
algebra. If ((P, p)) is in Z’, then for each CJ in G we have that F’(a) is an 
object in W/(U(S)). Let S, = (so 1 s in S}, with left S-action ts, = (ts), and 
right S-action s, t = (m(t)),. Define J, = P(o) & S,, where 6 denotes the 
modified tensor product associated to OS, i.e., the operation in g(S). The 
cocycle condition on ((P, p)) implies that there are (S, S)-bimodule 
isomorphisms j,, : J, gs J, -+ JO, such that the definition d(J, j) = @ ~ J, 
yields an associative algebra. As in the projective case this crossed product 
algebra is a %7(R)-Azumaya algebra containing S as a maximal com- 
mutative subring-the fact that S is g-Galois is used to verify this, just as 
in the projective case S being an ordinary Galois extension is used. Thus 
the S-isomorphism class of d(J, j) is an element of &(V(S/R)). The 
correspondence ((P, p)) -+ d(J, j) gives an isomorphism of Z’ with 
&(%T(S/R)). Verifying the details used in this assertion can be done by the 
methods used in the projective case plus the sort of arguments we have 
employed in the foregoing discussion. Similarly, B’ corresponds bijectively 
to Pr(V(S/R)) under the isomorphism sending ((P, p)) to d(J, j). This 
establishes that there is a commutative diagram 

1 + Pr(+Z(S/R)) --f &‘+?(S/R)) -+ Br(V(S/R)) + 1 

II II II 
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with exact rows. This shine argument can be extended to Krull schemes by 
using the assumption that a %-Galois covering K: Y--*X is an aff’ne map. 
Hence we have the next result. 

THEOREM 3.4. Let X and Y be Krull schemes and n: Y + X a V-Galois 
covering with group G. Then H’ z I+(‘$( Y/X)). 

We would like to thank the referee for some observations relating to 
other generalizations of the Brauer group and to their use in extending our 
analysis. Frohlich and Wall’s work on equivariant Brauer groups and class 
groups [6, 71 is related to that of Hattori [8, 91, some of which we 
exploited to obtain our exact sequence (2) of Section 2. The connection of 
Hattori’s work with that of Frohlich and Wall is noticeable by a reading of 
Section 8 of [7] and Sections 2 and 3 of [9]. One might hope that in a 
setting more general than our Galois coverings an interpretation of the 
groups Hi, i= 0, 1, might be given by building on and extending the 
notions considered in the affine case by Frohlich and Wall. Such an inter- 
pretation does not seem to be presently available. For an illuminating over- 
view of various general approaches to the exact sequence (2) of Section 2 
the reader is referred to the papers of Takeuchi [ 191, Takeuchi and 
Ulbrich [20] and Ulbrich [21]. As a more concrete background 
motivating these approaches one may consult the papers of Chase and 
Rosenberg [2], Childs [3] and Villamayor and Zelinsky [22]. 

4. THE EXACT SEQUENCE AND SPECIAL CASES 

The hypotheses on %?, and our notational conventions, are those of the 
previous section. In particular, G is at the outset a finite group. 

THEOREM 4.1. Let X and Y be Krull schemes. Let 71: Y -+ X be a SF?- 
Galois covering with finite group G. Then there is an exact sequence 

1 -, H’(G, 0,(Y)*) -+ Cl@?(X)) -+ Cl(W( Y))’ -+ H’(G, U,(Y)*) 

+ Br(%?( Y/X)) + H’(G, Cl(V( Y))) + H3(G, Lo,(Y)*). (5) 

Proof: This is an immediate consequence of the exact sequence (2) of 
Section 2, used together with Theorems 3.2 and 3.4 and with the relation 
H(‘(G, A) = AC. 

We will be concerned with applying Theorem 4.1 in the cases where 
%‘(X) = g(X), the category of divisorial X-lattices, and q(X) = P?(X), the 
category of projective X-lattices (which are the locally free Ormodules of 
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finite type, since in the alline case a projective lattice is automatically 
finitely generated [16, Corollary to Proposition 21). It will be useful to 
have a characterization of %?-Galois extensions for these categories. 

PROPOSITION 4.2. Let XII: Y + X be an affine Km11 morphism of Krull 
schemes, G a finite group of automorphisms of Y. 

(a) Each of the following conditions is equivalent to rt being a 8- 
Galois covering with group G: 

(i) For each affine open set U = Spec(R) of X and n - ‘(U) = 
Spec(S), S is a Galois extension of R with group G (in the usual sense, as 
used in [ 1,2, 4, 8, 10, 211, for example). 

(ii) For each x in X, O,X is a Galois extension of CI9X,X with group G 
(we are writing O,, for OT.cO,,,,). 

(b) IT is a %Galois covering with group G tf and only lffor each height 
one point x in X, Co,,, is a Galois extension of OXsX with group G. 

Proof (a) Follows easily from the definitions and from the well- 
known local criteria for separability and projectivity (see [4, Theorem 7.11, 
for example). 

(b) Suppose rc is a %Galois covering with group G. For U an afline 
open set in X let U = Spec(R) and let n - ‘(U) = Spec(S). Then S is a 9(R)- 
Galois extension of R with group G. Thus j: D(S, G) --) End,(S) is an 
isomorphism and S is a divisorial R-lattice. Hence for x in U we have that 
j, is an isomorphism and that S, is a divisorial Rx-lattice (this last asser- 
tion holds by [ 16, Proposition 3 and (e) of Proposition 21). But if x is a 
height one point, R, is a discrete valuation ring, hence S, is then a projec- 
tive R,-module of finite type. Hence Co,,, (which is S,, or equivalently, 
SO R,X or S@ ox,.,) is a Galois extension of 0x,X with group G. 

Conversely, suppose that 0,x is a Galois extension of 0x,,x with group G 
for every x of height one in X. We need to show that for R and S as above, 
S is a 9(R)-Galois extension of R with group G, i.e., conditions (1) and (2) 
given prior to Lemma 3.1 hold. But S is divisorial as an R-module since rc 
being a Krull morphism implies ~~(0,) is divisorial as an &$-module [12, 
Proposition 3.11. Also j: D(S, G) --+ End,(S) is an isomorphism since each 
j, is an isomorphism for x of height one [ 15, Lemma 1.11. Thus (1) holds. 
Condition (2) holds by the result that for S a divisorial R-module, any 
divisorial R-module is divisorial over R [16, Corollary 1 to Theorem 11. 
This completes the proof. 

Rim [18] proved result (b) below under the more restrictive hypotheses 
that X = Spec(R), Y = Spec(S) with R and S noetherian normal domains 
and S a Galois extension of R. 
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THEOREM 4.3. Let TC: Y + X be an affine Krull morphism of Krull 
schemes, G a finite group of automorphisms of Y. 

(a) Suppose 7t is a Galois covering with group G (by which we mean 
that n is a 9-Galois covering with group G). Then there is an exact sequence 

1 + H’(G, O,(Y)*) -+ Pit(X) -+ Pic( Y)G + H’(G, O,(Y)*) 

-+ Br( Y/X) + H’(G, Pic( Y)) -+ H3(G, O,(Y)*). 

(b) Suppose that for each height one point x of X, O,, is a Galois 
extension of Clxx,, with group G. Then there is an exact sequence 

1 -+ H’(G, O,(Y)*) -+ Cl(X) + CI( Y)’ + H2(G, O,(Y)*) 

.+ -x?, W~y,x/~x,x) --) ff’(G C4 Y)) --+ ff3(G 44 Y)*), (6) 

where Z is the set of height one points of X. 

Proof. We apply Theorem 4.1 with V = 9 for (a) and V = 9 for (b), 
keeping Proposition 4.2 in mind. Then (a) follows at once by noting that 
Cr(s(X)) = Pit(X), the group of invertible Q-modules. In (b) we have that 
CI(9(X)) = U(X), where Cf(X) is defined as Div(X)/Prin(X). Div(X) is the 
group of divisors on X, i.e., the free abelian group on the height one points 
of X and Prin(X) is the subgroup of principal divisors div(x) arising from 
the elements x in the generic stalk K of X. For details see [S]. With these 
remarks almost all of sequence (6) is a direct transcription of sequence (5), 
provided we can write 

(7) 

where the Brauer groups on the right are the ordinary ones. The group 
&(9(X)) was denoted as /I(X) in [12], where it was shown that 

(8) 

Br(Ox,,) embeds into Br(K), where K is the generic stalk of X, since Ox,, is 
a regular domain with field of fractions K, and the intersection in (8) is 
understood to occur inside B(K). From (8) it is not diIIicult to derive (7): 
If [A] is in Br(9(Y/X)) then [A,] is in Br(Ox,,) for each x in Z, by (8). 
But then for L the generic stalk of Y, [K@A,] = 1 in B(L). Since O,,, is a 
Galois extension of Ox,,, and the latter is regular, O,,, is regular too. Hence 
[A,] = 1, so that [A] is in Br(Q,,/Ox,,) for all x in Z. The reverse 
inclusion is established similarly. 
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We shall now extend our considerations to profinite groups G. Let R s S 
be a divisorial morphism of Krull domains, and G a profinite group of R- 
algebra automorphisms of S. Let G = !~IIJG, be the representation of G as 
the inverse limit of its finite quotient groups, and let I denote the indexing 
set of finite quotients G, of G. Let 8,: G -+ G,, 19~,~: G, + G, be the projec- 
tions associated with this representation, for LX, /I in I and CI <p. Write H, 
for Ker(B,) and H,, for Ker(6Ja,p). Let S, be the set of elements of S fixed 
by all elements of H,. We shall say that S is a V-Galois extension of R with 
group G if the following conditions hold: 

1. S, is a Krull domain for each c1 in I. 
2. S=l&S,, i.e., S= u, S,. 
3. S, is a %?-Galois extension of R with group G,. 
4. For tl< p, S, is a 9?-Galois extension of S, with group H,,,. 

For rc: Y-+X a morphism of Krull schemes, suppose G is a group of 
automorphisms of Y over X. We shall say z is a %7-Galois covering with 
group G if 7~ is an affine morphism and for each open set U in X, 
S,(rr - ‘(U)) is a Q?-Galois extension of I!?&(U) with group G. In this case we 
can represent Y as hr~Y, with Y, a Krull scheme, and we will write 
7(,: Y-r Y,, 7c,o: Y, -+ Y, for the morphisms which arise. 

In the situation just described the morphisms X= and rrn,,@ are Krull 
morphisms, by (c) of Lemma 3.1. They therefore induce maps CI(%?( Y,)) -+ 
C/(%?(Y)), C/(59( Y,)) -+ CI(w( Y,)), and corresponding ones for the Brauer 
groups. We shall now consider the question of whether 
CI(V( Y)) = hCI(%( Y,)) and Br(V( Y)) = b&-(%7( Y,)) with respect to the 
maps so induced. 

LEMMA 4.4. Let I be a directed set, R, a Krull domain for each i in I, 
fi,j: Ri -+ R, a Krull morphism for each id j. Let R = l&R, and assume that 
for each i in I, f,: R, c R is a Krull morphism of Krull domains. Then 

Cl(R) = l&X( RJ, Pic( R) = hPic( Ri), 

B(R) = bUIP(Ri), B(R) = lbBr(R,). 

ProoJ The assertions for Pit(R) and Br(R) are well-known, and do not 
require the hypotheses that the f, and the fi,j are Krull morphisms-the 
crucial observation is that being a projective R-module of finite type 
(respectively an Azumaya R-algebra A) depends on the existence of a finite 
set of data such as a projective basis (respectively a projective basis plus 
data for A OR A0 + End.(A) to be an isomorphism). 

Recall that B(R) denotes &(9(R)), where 9(R) is the category of 
divisorial R-lattices. Let i be in I and write R’ for Ri. Let M’ be a divisorial 

481/95’2-2 
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R’-lattice. The passage from CI(R’) to Cl(R) involves assigning to the 
isomorphism class of M’ not the class of ROR, M’, but rather the class of 
R @ R, M’. Because the inclusion of R’ in R is a Krull morphism, R & Rc M 
can be described in the alternative forms 

R&M’= n (R&M’),= n (R&M’), 
PCZ C/eZ’ 

where Z is the set of height one points of R and Z’ the set of height one 
points of R’ [ 16, Proposition 41. We remind the reader that the modified 
tensor product & has the property that A4 GR N= MO, N if A4 is 
divisorial over R and iV is R-flat-this fact will be used implicitly later in 
the proof. 

Let A4 be a divisorial R-lattice. To show CZ(R) = l&Cl(R,) we wish to 
show that for some index i in Z there is a divisorial R,-lattice M’ such that 
MZR &,M’. Let K be the field of fractions of R, and let 
V = KQ R A4 = KM. Because M is an R-lattice there is a free R-module F in 
V with MG F and KF= V. Fix an R-basis W = (ul ,..., v,} for F, where 
n = dim, V. For any subring S of K we will write S9 to denote the free S- 
module with basis 9. Thus F = RB and for S E Tc_ K we have 
T(S98) = TB. 

For p in Z and i in Z write R,,. for 9’ ~ ‘Ri, where 9’ is the multiplicative 
set Ri-( p n Ri). It is easy to see that R, = uR,,+,. . Note that Ri,pc is a dis- 
crete valuation ring, since the hypothesis that fi is a Krull morphism 
implies p. n Ri is a height one prime of R,. 

For p in Z, M, is a free R,-module on a basis 9?$,, and for p not in J we 
may take .CJp = 99. It is easy to see that since 91p is a finite set there is for 
each p in J an index i(p) such that .%?p G Ricp,,pfd9. Since J is a finite set 
there is therefore an index i(0) such that, writing R’ for Rico), we have 

for p in Z, with equality if p is not in J. 
Let S denote the set of elements of Z’ of the form p’ = p n R’ with p in J. 

For q in J’ let p,,..., p, be the elements p of J for which p’= q. Let 
9’=R-(p,u ... up,), a multiplicative subset of R. Then Y-‘R is a 
Krull domain of Krull dimension one, hence a Dedekind domain [S, 
Theorem 13.11, and is semi-local as well, hence is a principal ideal domain. 
The Y ~ ‘R-module 

N(q) = fi Mpg 
i=l 

has the property that RPtN(q) = M,, for i = l,..., t [S, Proposition 5.21. It is 
torsion-free, and is of finite type as an Y - ‘R-module, being contained in 
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the intersection n R,,&f, which equals Y - ‘R.9#. Thus N(q) is free, on a 
basis we will call .c?+$. Let M(q) = Rbaq for q in J’, and M(q) = RI99 for q in 
Z’ but not in J’. Let K’ denote the field of fractions of R’, and let V’ = K’&?. 
We then have: 

For each q in Z’, M(q) is a free Rb-module satisfying 
RM(q) = V’ and M(q) = RbB, with equality if qe Z-J’. 
Furthermore, if p’ = q, then R, M(q) = M,. 

Now define an RI-module M’ by 

MI = n hqq). 
YEZ’ 

We claim that M’ is a divisorial R/-lattice for which R 6,,, M’ N M. The 
divisoriality of 44’ follows from two features of the family {M(q)} [16, 
Lemma 11: (i) each M(q) is a divisorial Rb-module; (ii) the family {M(q)} 
is of finite character. The last statement means that KM(q) = V’ is 
independent of q, and each element of v’ is in all but finitely many M(q) (a 
condition which holds here because M(q) = R$%? for all but finitely many q 
in Z). 

To see that R &,,, M’ N M first observe that because R’ + R is a Krull 
morphism, R gR, M’ is a divisorial R-lattice [16, Proposition 33. We note 
that M’ G M because 

M’G n M(q)E n M,=M, 
YSJ’ FEZ 

since A4 is divisorial over R. Thus we have an R-homomorphism 
g: R QR, M’ -+ M satisfying g(r Q m’) = rm’ for r in R, m’ in M’. Since M is 
a divisorial R-module, g induces an R-homomorphism h: R @Rg M’ + M 
[ 16, Proposition 21. To show h is an isomorphism it suffices by Lemma 2.1 
to show h, is an isomorphism for each p in Z. But 

(R & M’)p= (R@,, M’), [S, Proposition 5.21 

= R, OR;, M;, 

= R,M(p’) 

=M,. 

This completes the proof of the fact that Cl(R) = kin~Cl(R~). To show the 
corresponding fact for the Brauer groups of the categories 9(R) and 9(Ri) 
one can use a similar argument, and we shall not provide the details here. 
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PROPOSITION 4.5. Let X and Y be Krull schemes and IC: Y + X a 
morphism of schemes. Let G be a profinite group of automorphisms of Y 
over X. 

(a) Suppose II is a Galois covering with group G. Then there is an 
exact sequence 

1 -+ H’(G, Oy( Y)*) + Pit(X) + Pic( Y)’ + H2(G, O,(Y)*) 

-+ Br( Y/X) -+ H’(G, Pic( Y)) -+ H3(G, O,(Y)*). 

(b) Suppose that for each height one point x of X, O,,, is a Galois 
extension of Ox,, with group G. Then there is an exact sequence 

1 -+ H’(G, O,(Y)*) -+ C/(X) + CI( Y)G -+ H2(G, O,(Y)*) 

4 ,?, ~r(~y,xl~x,.J + H’(G C4 Y)) --* ff3(G 44 Y)*h 

where Z is the set of height one point of X. 

Proof. These results follow easily from Corollary 4.2, Lemma 4.3 and 
the fact that H”(G, l&A i) = l&H”(G, A,). 

COROLLARY 4.6. Let X, Y and 7c be as in (a) of Proposition 4.5 If we 
further assume that X and Y are locally factorial then 

where Z is the set of height one points of X. 

Proof. The assumption that X and Y are locally factorial implies that 
Pit(X) = Cl(X) and Pic( Y) = CZ( Y) [S, Corollary 18.53. Comparing the 
exact sequences obtained from (a) and (b) of Proposition 4.5, we see that 
they give the same groups at all places save possibly one. The same groups 
must occur at this spot as well, which gives the desired result. 

5. BRAUER GROUPS OF SOME COMPLETE VARIETIES 

In this section we will apply the last result of Section 4 to obtain infor- 
mation about B(X) for certain complete varieties X. 

PROPOSITION 5.1. Let X be a complete normal geometrically connected 
variety over a field K. Let L be a Galois extension of K with group G and let 
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Y=Xx SpecK Spec L. Let Z denote the set of height one points of X. Then 
there exist exact sequences 

1 -+ C/(X) -+ CI( Y)’ + Br(L/K) -+ 0 Br(O,X/OX,,) 
xc2 

-+ H’(G, CZ( Y)) -+ H3(G, L*), 

1 + Pit(X) -+ Pic( Y)G -+ Br(L/K) + Br( Y/X) 

+ H’(G, Pic( Y)) + H3(G, L*). 

Proof: Since X is a complete variety over K, Y is a complete variety 
over L, hence O,(Y)* = L*. Since H’(G, L*) = 1 and H2(G, L*) = Br(L/K) 
the exact sequences can be obtained from Proposition 4.5. 

COROLLARY 5.2 (Lichtenbaum [13]). Let X be a proper, smooth and 
geometrically connected curve over a field K. Let R be the separable closure 
of K, G = Gal(K/K) and x= Xx SpecK Spec L. Then there is an exact 
sequence 

1 -+ Pit(X) + Pic(x)G + Br(K) + Br(X) 

-+ H’(G, Pit(x)) -+ H3(G, L*). 

Now let X be any variety over a field K. If X has a K-rational point then 
Br(K) embeds as a direct summand of Br(X) via the composition of 
morphisms Spec K + X-+ Spec K. For K a local field arising from an 
algebraic number field and X a curve, Br(K) -+ Br(X) is one-one if and only 
if X has a K-rational point (see [ 131). The next proposition shows that the 
conclusion is not always true: take X the projective variety in P”(Q) 
defined by the quadratic form X: + . . + x:. Then X does not have a K- 
rational point, but Br(X) N Br(Q). 

PROPOSITION 5.3. Let X be a projective variety in W-‘(K) defined by a 
non-degenerate n-ary quadratic form over a field K of characteristic zero, 
where n 2 5. Then Br(X) N Br(K). 

ProoJ: By a linear change of variables we may assume the form is 
diagonal, and we may write X= Proj(R), where 

R = K[x, ,..., x,]/(a, XT + .. . + a,xz). 

Let L be the algebraic closure of K and let Y= Proj(S), where 

S=L[x, ,..., x,]/(a,xf+ ... +-a,~:). 
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We observe that: 

(a) X and Y are regular varieties [ 14, p. 2141. 
(b) R and S are unique factorization domains. 

Let G=Gal(L/K). We will show that the following hold: 
(c) CZ(X) = @(G, CZ( Y)) = CZ( Y) N %. 
(d) Br( Y) = (0). 

To prove (c) let D be a divisor on Y. Then D=Cinipi, where the pi are 
height one homogeneous prime ideals of S and only finitely many n, are 
not zero. Since S is a unique factorization domain, pi= ( gi) for some 
homogeneous element gi in S and D = div(n, 87). Define the integer 
deg(D) to be xi n,(deg(g;)). Let p be the homogeneous prime ideal 
generated by the residue class in S of x,. We claim that if deg(D) = d, then 
D-dp in Div( Y), where N denotes linear equivalence of divisors. To see 
this write D= D,-D,, where D1 and DZ are effective divisors. If 
D, = div(h,) and D, = div(h,) then d= deg(h,) - deg(h,). Since D - dp = 
div(h,/xfh,), and since deg(h,) = d+ deg(h,) = deg(xf’h,), it follows that 
h,/x~hz is in the function field L(Y) of Y. This shows D-dp. Also, for 
every D in G, c(p) = p and G acts trivially on C1( Y). This proves (c). 

To prove (d), let S,=L[z ,,..., z,_ 1]/(z,zz-G(z3 ,..., z,-~), where 
zi= y,/y, and the yj are chosen so that 

S=L[y I,“., YJAY: + .*. + Yi,. 

Then the assignment from S,[l/z,]to L[tr, l/tl, f3,..., t,- ,] given by 
sending zi to ti for i = 1, 3 ,..., n - 1 and z2 to G(t, ,..., t,_ ,)/t, is an 
isomorphism (the inverse map is defined by sending ti to z,., 
i= 1, 3,..., n - 1). Hence 

the last isomorphism being valid because L[t,, l/t11 is a regular ring of 
characteristic zero [17, Corollary 8.8., p. 1001. By regularity of L[t,) the 
group Br(L[t,, l/tl]) embeds in Br(L(t,), but the latter is zero by Tsen’s 
theorem. Again, by regularity of Y we have 

Br( Y)s Br(S,) c Br(S,[l/z,]), 

and (d) follows. 
Since X is regular, every finite Galois extension of @x,x is regular for each 

x in X. It follows that X and Y are locally factorial, hence CZ(X) = Pie(X) 
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and CZ( Y) = Pic( Y). Since projective varieties are complete we may use (c) 
and (d), together with Proposition 5.1, to conclude that Br(X) N Br(K). 

In the next example we consider the projective variety defined by a non- 
degenerate quadratic form with a unique singular point. 

LEMMA 5.4. Let X be a projective variety in P”(K) defined by a non- 
degenerate n-ary quadratic form, with n 3 5 and K a field of characteristic 
zero. Let L denote the algebraic closure of K and let Y = X xSpecK Spec L. 
Then for each x in X and each y in Y the rings Ox,,x and Lay,,), are 
geometrically factorial (i.e., their strict henselizations are factorial). 

Proof: We may assume X= Proj(R) and Y = Proj( S), where 

R=K[~,,...,x,+~]/(a,x:+ ... +a,xi) 

and S = L QK R. Let q denote the homogeneous prime ideal generated by 
the residue classes of x, ,..., x, (by abuse of notation we will use q whether 
we are working with X or Y). By the Jacobian criterion q is the unique 
singular point in X or Y. Since the completion 6,, is a faithfully flat O$‘V- 
module and CZ(O$‘,) + C/(0,,) is an embedding (Ash denotes the strict 
henselization of A) 

oy,, z L[ [Xl ,...) x,]]/(x: + . . . + xi, 

has a unique singular maximal ideal by the Nagata Jacobian criterion and 
since n> 5, O,,, is a unique factorization domain [S, Proposition 18.51. 
Now the lemma follows since SF,, = 02,. 

PROPOSITION 5.5. Let X be as in Lemma 5.4. Then Br(X) N Br(K). 

Proof: By Lemma 5.4, every Galois extension of each OX,, and Or,, is a 
UFD. Br( Y) embeds in Br(F), where F is the function field of Y [12, 
Theorem 5.21. Write 

S=L[y,,..., Y,+,I/(Y,Yz-G(Y~,..., Y,)), 

where G( y1 ,..., y,) is a quadratic form in n - 2 variables, and let 

s n+l =UY,,..., ~nll(~~yz-G(y,~...~ YJ. 

Then Spec( S, + I ) is isomorphic to an affrne open set of Y and 

S,+,Cl/y,l =LCt,, WI, t3,..., t,l. 
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Now we conclude Br( Y) = 1, from the commutative diagram 

Br(& + I F-+Br(&+,Cl/~~l)= 1 

l--J 
Br( Y) 7 Br(F) 

where M and p are one-one. From the exact sequence in Proposition 5.1 we 
can conclude Br(X) N Br(K). 
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