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We study selfadjoint functors acting on categories of finite dimen-
sional modules over finite dimensional algebras with an emphasis
on functors satisfying some polynomial relations. Selfadjoint func-
tors satisfying several easy relations, in particular, idempotents and
square roots of a sum of identity functors, are classified. We also
describe various natural constructions for new actions using ex-
ternal direct sums, external tensor products, Serre subcategories,
quotients and centralizer subalgebras.
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1. Introduction

The main motivation for the present paper stems from the recent activities on categorification of
representations of various algebras, see, in particular, [CR,FKS,HS,HK,KMS1,Lau,KL,MM,MS1,MS3,MS4,R,
Zh1,Zh2], the reviews [KMS2,Ma2] and references therein. In these articles one could find several re-
sults of the following kind: given a field k, an associative k-algebra Λ with a fixed generating set {ai},
and a Λ-module M , one constructs a categorification of M , that is an abelian category C and exact
endofunctors {Fi} of C such that the following holds: The Grothendieck group [C] of C (with scalars
extended to an appropriate field) is isomorphic to M as a vector space and the functor Fi induces
on [C] the action of ai on M . Typical examples of algebras, for which categorifications of certain
modules are constructed, include group algebras of Weyl groups, Hecke algebras, Schur algebras and
enveloping algebras of some Lie algebras. There are special reasons why such algebras and modules
are of importance, for example, because of applications to link invariants (see [St1]) or Broué’s abelian
defect group conjecture (see [CR]). Introducing some extra conditions one could even establish some
uniqueness results, see [CR,R].
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In this paper we would like to look at this problem from a different perspective. The natural
question, which motivates us, is the following: Given Λ and {ai} can one classify all possible cate-
gorifications of all Λ-modules up to some natural equivalence? Of course in the full generality the
problem is hopeless, as even the problem of classifying all Λ-modules seems hopeless for wild alge-
bras. So, to start with, in this paper we make the main emphasis on the most basic example, that
is the case when the algebra Λ is generated by one element, say a. If Λ is finite dimensional, then
we necessarily have f (a) = 0 for some nonzero f (x) ∈ k[x]. To make the classification problem more
concrete, it is natural to look for a finite dimensional k-algebra A and an exact endofunctor F of
A-mod, which should satisfy some sensible analogue of the relation f (F) = 0. Assume that all coeffi-
cients of f (x) are integral and rewrite f (a) = 0 as g(a) = h(a), where both g and h have nonnegative
coefficients. Setting

kF :=
⎧⎨
⎩

F ⊕ F ⊕ · · · ⊕ F︸ ︷︷ ︸
k times

, k ∈ {1,2, . . .};

0, k= 0;
(1)

and interpreting + as ⊕, it makes sense to require g(F) ∼= h(F) for our functor F.
To simplify our problem further we make another observation about the examples of categori-

fication available from the literature mentioned above. All algebras appearing in this literature are
equipped with an involution, which in the categorification picture is interpreted as “taking the ad-
joint functor” (both left- and right-adjoint). We again take the simplest case of the trivial involution,
and can now formulate our main problem as follows:

Problem 1. Given a finite dimensional k-algebra A and two polynomials g(x) and h(x) with nonnega-
tive integral coefficients, classify, up to isomorphisms, all selfadjoint endofunctors F on A-mod which
satisfy g(F) ∼= h(F).

Using Morita equivalence, in what follows we may assume that A is basic (i.e. has one dimensional
simple modules). In this paper we obtain an answer to Problem 1 for relations x2 = x (Section 5),
x2 = k, k ∈ Z+ (Sections 2, 3 and 6) and xk = xm (Section 6). For semisimple algebras Problem 1
reduces to solving certain matrix equations over matrices with nonnegative integer coefficients (Sec-
tion 7).

Another natural and important general question, which we address in this paper, is how to pro-
duce new functorial actions by selfadjoint functors (e.g. new solutions to Problem 1) from already
known actions (known solutions to Problem 1). In particular, in Section 4 we describe the natural
operations of external direct sums and external tensor products. In Section 8 we study how functorial
actions by selfadjoint functors can be restricted to centralizer subalgebras. In the special case of the
algebra A having the double centralizer property for a projective–injective module X , we show that
there is a full and faithful functor from the category of selfadjoint functors on A-mod to the category
of selfadjoint functors on EndA(X)op-mod. We also present an example for which this functor is not
dense (essentially surjective). Finally, in Section 9 we study restriction of selfadjoint functors to invari-
ant Serre subcategories and induced actions on quotient categories, which we show are realized via
induced actions on centralizer subalgebras. Some other interesting results on selfadjoint endofunctors
can be found in [DP1,DP2].

2. Group actions on module categories

It is very likely that some of the results presented in this section are known, but we failed to
find them explicitly stated in the literature. Let k be an algebraically closed field, A a basic finite
dimensional unital k-algebra, and Z(A) the center of A. All functors we consider are assumed to be
additive and k-linear. We denote by N the set of positive integers and by Z+ the set of nonnegative
integers. Let {L1, L2, . . . , Ln} be a complete list of pairwise nonisomorphic simple A-modules. Let Pi ,
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i = 1, . . . ,n, denote the indecomposable projective cover of Li . We denote by ID the identity functor
and by 0 the zero functor.

To start with we consider the easiest possible nontrivial equation

F ◦ F ∼= ID, (2)

which just means that F is a (covariant) involution on A-mod. The answer to Problem 1 for relation (2)
reduces to the following fairly well-known result (for which we did not manage to find a reasonably
explicit reference though):

Proposition 2.

(i) For an algebra automorphism ϕ : A → A let ϕ A denote the bimodule A in which the left action is twisted
by ϕ (i.e. a · x · b = ϕ(a)xb). Then Fϕ := ϕ−1 A ⊗A − is an autoequivalence of A-mod.

(ii) We have Fϕ ◦ Fψ
∼= Fϕ◦ψ for any automorphisms ϕ and ψ of A.

(iii) Every autoequivalence of A-mod is isomorphic to Fϕ for some algebra automorphism ϕ : A → A.
(iv) Fϕ

∼= ID if and only if ϕ is an inner automorphism.
(v) Fϕ is selfadjoint if and only if ϕ2 is an inner automorphism.

Proof. The functor Fϕ just twists the action of A by ϕ−1. This implies claim (ii) and, in particular,
that Fϕ−1 is an inverse to Fϕ , which yields claim (i).

Let F : A-mod → A-mod be an autoequivalence. Then F maps indecomposable projectives to in-
decomposable projectives, in particular, FA A ∼= A A and we can identify these modules fixing some
isomorphism, say α : A A ∼−−→ FA A. Let β : Aop → EndA(A A) be the natural isomorphism sending a to
the right multiplication with a, which we denote by ra . Using the following sequence:

A A α−→ FA A
F (ra)−−−→ FA A α←− A A

we can define ϕ(a) := β−1(α−1 F (ra)α). Then ϕ is an automorphism of A. It is straightforward to
verify that F ∼= Fϕ . This proves claim (iii).

If ϕ : A → A is inner, say ϕ(a) = sas−1 for some invertible s ∈ A, it is straightforward to check
that the map a 
→ sa is a bimodule isomorphism from A to ϕ A. This means that Fϕ−1 ∼= ID in this
case. Conversely, if Fϕ−1 ∼= ID, then there exists an isomorphism of bimodules as follows: f : A → ϕ A.
Let s = f (1). Then s is invertible as 1 ∈ f (A) = f (1) · A = sA and 1 ∈ f (A) = A · f (1) = ϕ(A)s. Also
ϕ(a)s = a · f (1) = f (a) = f (1) · a = sa, which yields ϕ(a) = sas−1. This proves claim (iv).

As Fϕ is an autoequivalence by claim (i), the adjoint of Fϕ is Fϕ−1 . Therefore claim (v) follows from
claim (iv) �

We note that the bimodule ϕ A occurring in Proposition 2 is sometimes called a twisted bimodule,
see for example [EH].

Let G be a group. A weak (resp. strong) action of G on A-mod is a collection {Fg : g ∈ G} of
endofunctors of A-mod such that Fg ◦ Fh

∼= Fgh (resp. Fg ◦ Fh = Fgh) for all g,h ∈ G , and F1 ∼= ID
(resp. F1 = ID). Two weak actions {Fg : g ∈ G} and {F′

g : g ∈ G} are called equivalent provided that
Fg ∼= F′

g for all g ∈ G . Let Aut(A) denote the group of all automorphisms of A and Inn(A) denote
the normal subgroup of Aut(A) consisting of all inner automorphisms. Set Out(A) := Aut(A)/ Inn(A).
From Proposition 2 we have

Corollary 3. Equivalence classes of weak actions of a group G on A-mod are in one-to-one correspondence
with group homomorphisms from G to Out(A).

Proof. Let {Fg : g ∈ G} be a weak action of G on A-mod. Then for any g ∈ G the functor Fg is an
autoequivalence of A-mod and hence is isomorphic to the functor Fϕg for some automorphism ϕg of A
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(Proposition 2(iii)). By Proposition 2(iv), the automorphism ϕg is defined up to a factor from Inn(A),
hence, by Proposition 2(ii), the map g 
→ ϕg Inn(A) is a homomorphism from G to Out(A). From the
definitions it follows that equivalent actions produce the same homomorphism and nonequivalent
actions produce different homomorphisms. The claim follows. �
Corollary 4. If Inn(A) is trivial, then every weak action of a group G on A-mod is equivalent to a strong action.

Proof. If Inn(A) is trivial, the automorphism ϕg from the proof of Corollary 3 is uniquely defined, so
the action {Fg : g ∈ G} is equivalent to the strong action {Hg : g ∈ G}, where Hg denotes the functor
of twisting the A-action by ϕg . The claim follows. �
Corollary 5. Isomorphism classes of selfadjoint functors F satisfying (2) are in one-to-one correspondence with
group homomorphisms from Z2 to Out(A). The correspondence is given by:

F 
→ f , where f : Z2 → Out(A) is such that F ∼= Fϕ for any ϕ ∈ f (1). (3)

Proof. Note that any autoequivalence of A-mod satisfying (2) is selfadjoint (as F ∼= F−1 by (2)). There-
fore the claim follows from Corollary 3 and its proof. �
Corollary 6.

(i) Let n ∈ {2,3,4, . . .}. Then isomorphism classes of endofunctors F of A-mod satisfying

Fn := F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
n times

∼= ID (4)

are in one-to-one correspondence with group homomorphisms from Zn to Out(A) (the correspondence is
given by (3), where Z2 is substituted by Zn).

(ii) The endofunctor F from (i) is selfadjoint if and only if F2 ∼= ID.

Proof. Claim (i) is proved similarly to Corollary 5. Claim (ii) is obvious. �
3. Selfadjoint functorial square roots

In this section we consider the generalization

F ◦ F ∼= kID, k ∈ {2,3,4, . . .}, (5)

of Eq. (2) (see (1) for notation). Our main result here is the following:

Theorem 7.

(i) A selfadjoint endofunctor F of A-mod satisfying (5) exists if and only if k= m2 for some m ∈ {2,3,4, . . .}.
(ii) If k = m2 for some m ∈ {2,3,4, . . .}, then isomorphism classes of selfadjoint endofunctors F on A-mod

satisfying (5) are in one-to-one correspondence with isomorphism classes of selfadjoint endofunctors F′
on A-mod satisfying (2). The correspondence is given by: mF′ 
→ F′ .

Let [A] denote the Grothendieck group of A-mod. For M ∈ A-mod we denote by [M] the image
of M in [A]. The group [A] is a free abelian group with basis l := ([L1], [L2], . . . , [Ln]). Every exact
endofunctor G on A-mod defines a group endomorphism [G] of [A]. We denote by MG the matrix of
[G] in the basis l. Obviously, MG ∈ Matn×n(Z+).
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If G is selfadjoint, it is exact and maps projective modules to projective modules (and injective
modules to injective modules, see for example [Ma1, Corollary 5.21]). Then GP j = ⊕n

i=1 xi j P i . Define
NG = (xi j)i, j=1,...,n .

Lemma 8. We have NG = Mt
G , where ·t denotes the transposed matrix.

Proof. Let MG = (yi j)i, j=1,...,n . The claim follows from the selfadjointness of G as follows:

xi j = dim HomA(GP j, Li) = dim HomA(P j,GLi) = y ji . �
To prove Theorem 7 we will need to understand MF for selfadjoint functors F satisfying (5). Let 1n

denote the identity matrix in Matn×n(Z+). Then from (5) we obtain M2
F = k · 1n . The canonical form

for such MF is given by the following lemma:

Lemma 9. Let M ∈ Matn×n(Z+) be such that M2 = k · 1n. Then there exists a permutation matrix S such that
SM S−1 is a direct sum of matrices of the form

(
0 a
b 0

)
, a,b ∈ Z+, ab = k; and (a), a ∈ Z+, a2 = k.

Proof. We proceed by induction on n. If n = 1 the claim is obvious. Let M = (mij)i, j=1,...,n and M2 =
(kij)i, j=1,...,n . If m11 �= 0, then m1 j = 0, j = 2, . . . ,n, for otherwise k1 j �= 0 (as all our entries are in Z+).
Similarly m j1 = 0, j = 2, . . . ,n. This means that M is a direct sum of the block (m11), where m2

11 = k,

and a matrix M̂ of size n−1×n−1 satisfying M̂2 = k ·1n−1. The claim now follows from the inductive
assumption.

If m11 = 0 then, since k11 = k, there exists j ∈ {2,3, . . . ,n} such that m1 j �= 0 and m j1 �= 0. Sub-
stituting M by SM S−1, where S is the transposition of j and 2, we may assume j = 2. Then from
k1 j = k j1 = 0 for all j �= 1, and k2 j = k j2 = 0 for all j �= 2, it follows that m1 j = m j1 = 0 for all j �= 2

and m2 j = m j2 = 0 for all j �= 1. This means that M is a direct sum of the block
( 0 m1,2

m2,1 0

)
, where

m12m21 = k, and a matrix M̂ of size n − 2 × n − 2 satisfying M̂2 = k · 1n−2. Again, the claim now
follows from the inductive assumption. This completes the proof. �
Lemma 10. Assume that F is an endofunctor on A-mod satisfying (5). Then F preserves the full subcategory S
of A-mod, which consists of semisimple A-modules.

Proof. As F is additive, to prove the claim we have to show that F sends simple modules to semisim-
ple modules. Since F satisfies (5), the matrix MF satisfies M2

F = k · 1n and hence is described by
Lemma 9. From the latter lemma it follows that for any i ∈ {1,2, . . . ,n} we have [FLi] = a[L j] for
some j ∈ {1,2, . . . ,n} and a ∈ N, and, moreover, [FL j] = b[Li] for some b ∈ N such that ab = k. Ap-

plying F to any inclusion Li ↪→ FL j we get FLi ↪→ FFL j . However, FFL j

(5)∼= kL j is a semisimple module.
Therefore FLi , being a submodule of a semisimple module, is semisimple itself. �
Proof of Theorem 7(i). If k= m2 for some m ∈ {2,3,4, . . .}, then F = mID is a selfadjoint functor satisfy-
ing (5). Hence to prove Theorem 7(i) we have to show that in the case k �= m2 for any m ∈ {2,3,4, . . .}
no selfadjoint F satisfies (5).

In the latter case let us assume that F is a selfadjoint endofunctor on A-mod satisfying (5). From
Lemma 9 we have that, after a reordering of simple modules, the matrix MF becomes a direct sum
of matrices of the form

( 0 a
b 0

)
, where ab = k and a �= b. In particular, we have [FL1] = b[L2] and

[FL2] = a[L1] for some a,b ∈ N such that ab= k and a �= b. By Lemma 10, we even have FL1 ∼= bL2
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and FL2 ∼= aL1. Using this and the selfadjointness of F, we have

b= dim HomA(bL2, L2)

= dim HomA(FL1, L2)

= dim HomA(L1,FL2)

= dim HomA(L1,aL1)

= a,

a contradiction. The claim of Theorem 7(i) follows. �
Proof of Theorem 7(ii). This proof is inspired by [LS]. Assume that k= m2 for some m ∈ {2,3,4, . . .}.
If F′ is a selfadjoint endofunctor on A-mod satisfying (2), then mF′ is a selfadjoint endofunctor on
A-mod satisfying (5). Hence to prove Theorem 7(ii) we have to establish the converse statement.

Let F be some selfadjoint endofunctor on A-mod satisfying (5). Our strategy of the proof is as
follows: we would like to show that the functor F decomposes into a direct sum of m nontrivial
functors and then use the results from Section 2 to get that these functors have the required form. To
prove decomposability of F we produce m orthogonal idempotents in the endomorphism ring of F. For
this we first show that the necessary idempotents exist in the case of a semisimple algebra, and then
use lifting of idempotents modulo the radical. All the above requires some preparation and technical
work.

From Lemma 9 and the above proof of Theorem 7(i) it follows that, re-indexing, if necessary,
simple A-modules, the matrix MF reduces to a direct sum of the blocks(

0 m
m 0

)
and/or (m). (6)

Lemma 11. The claim of Theorem 7(ii) is true in the case of a semisimple algebra A.

Proof. Assume first that A is semisimple (and basic). Then A ∼= ⊕n
i=1 k and A-mod ∼= ⊕n

i=1 k-mod.
The only (up to isomorphism) indecomposable nonzero functor from k-mod to k-mod is the identity
functor (as k ⊗ k ∼= k). Therefore from (6) we get that F is isomorphic to a direct sum of functors of
the form

k-mod

mID

k-mod
mID

and/or k-mod

mID

(corresponding to the blocks from (6)). Define F′ as the corresponding direct sum of functors of the
form

k-mod

ID

k-mod
ID

and/or k-mod.

ID

Then F′ is selfadjoint and obviously satisfies (2), moreover, F ∼= mF′ . This proves Theorem 7(ii) in the
case of a semisimple algebra A. �

Let V be an A-A-bimodule such that F ∼= V ⊗A − . The right adjoint of F is F itself, in particular,
this right adjoint is an exact functor and hence is given by tensoring with the bimodule HomA−(V , A)
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(that is V ∼= HomA−(V , A)). The bimodule V is projective both as a right A-module (as F is exact)
and as a left A-module (as F sends projective modules to projective modules). Hence we have an
isomorphism of A-A-bimodules as follows:

HomA−(V , A) ⊗A V ∼= HomA−(V , V ),

f ⊗ v 
→ (
w 
→ f (w)v

)
.

This gives us the following isomorphism of A-A-bimodules:

V ⊗A V ∼= HomA−(V , A) ⊗A V ∼= HomA−(V , V ).

Note that the functor F ◦ F is given by tensoring with the bimodule V ⊗A V ∼= HomA−(V , V ). From (5)
we thus get an isomorphism

HomA−(V , V ) ∼= kA (7)

of A-bimodules. Taking on both sides of the latter isomorphism elements on which the left and the
right actions of A coincide, we get an isomorphism

HomA−A(V , V ) ∼= kZ(A) (8)

of Z(A)-bimodules.
Let Rl and Rr denote the radical of V , considered as a left and as a right A-module, respectively.

As V ⊗A − sends simple modules to semisimple modules (Lemma 10), it follows that Rl = Rr =: R .
From (6) we have that the matrix MF is symmetric. Hence NF = MF (Lemma 8). Therefore from (6)

it follows that each indecomposable projective module occurs in FA A with multiplicity m, that is
FA A ∼= mA A. Using decomposition (7) we thus can choose a basis {bi: i = 1, . . . ,k} of HomA−(V , V )

as a free left A-module such that the left and the right actions of A on the elements of this basis
coincide. Then all bi ’s belong to HomA−A(V , V ) and form there a basis as a free Z(A)-module (both
left and right).

Lemma 12. Let L = ⊕n
i=1 Li and b be a nontrivial k-linear combination of bi ’s. Then b is a natural transfor-

mation from F to F and the induced endomorphism bL of the A-module FL is nonzero.

Proof. Applying the exact functor V ⊗A − to the short exact sequence

0 → Rad(A) → A A → L → 0,

we obtain the short exact sequence

0 → V ⊗A Rad(A) → V → V ⊗A L → 0.

Note that V ⊗A Rad(A) = R . Applying to the latter sequence the exact functor HomA−(V ,−) we obtain
the short exact sequence

0 → HomA−(V , R) → HomA−(V , V ) → HomA−(V , V ⊗A L) → 0.

By the definition of b, the image of b ∈ HomA−(V , V ) does not belong to R and hence b induces a
nonzero element b ∈ HomA−(V , V ⊗A L). By adjunction we have the following isomorphism:
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HomA
(
L,HomA−(V , V ⊗A L)

) ∼= HomA(V ⊗A L, V ⊗A L),

which produces the nonzero endomorphism bL of V ⊗A L from our nonzero element b. The claim
follows. �

Set A = A/Rad(A), then A is a semisimple algebra. The bimodule V = V /R is an A-bimodule
satisfying (5) and we have Rad(A)V = V Rad(A) = 0. Hence we have the quotient homomorphism of
algebras as follows:

Φ : HomA−A(V , V ) → HomA−A(V , V ).

Note that the algebra A = Z(A) ∼= nk contains as a subalgebra the algebra Z(A) := Z(A)/Rad(Z(A)).
The algebra Z(A) is isomorphic to kk, where k is the number of connected components of the alge-
bra A. In particular, Z(A) ∼= A if A is a direct sum of local algebras.

Lemma 13. The kernel of Φ is the radical of HomA−A(V , V ) and the image of Φ is isomorphic to the algebra
Matm×m(Z(A)).

Proof. The space HomA−A(V , V ) is a free left Z(A)-module of rank k with the basis {bi} from the
above. Since A is semisimple, so is V and thus both Rad(Z(A)) and the radical of HomA−A(V , V )

annihilate V both from the left and from the right. Therefore the first claim of the lemma follows
from the second claim just by counting dimensions.

Similarly to the proof of Lemma 12 one shows that the image X of Φ has dimension k · dim Z(A)

and is a subalgebra of EndA(V ⊗A A), which corresponds to the embedding Z(A) ⊂ A (the algebra
EndA(V ⊗A A) is free both as a left and as a right A-module). By Lemma 11 we have an isomorphism
V ⊗A A ∼= V ∼= mA of A-modules. Hence the algebra X is a subalgebra of the algebra

EndA(mA) ∼= Matm×m(A),

which corresponds to the embedding Z(A) ⊂ A. This means that X ∼= Matm×m(Z(A)). �
We have Matm×m(Z(A)) ∼= Matm×m(k) ⊗ Z(A). Let ei , i = 1, . . . ,n, denote the usual primitive di-

agonal idempotents of Matm×m(k) such that
∑

i ei is the identity matrix. By Lemma 13 we can lift
the idempotents ei ⊗ 1 from Matm×m(k) ⊗ Z(A) to HomA−A(V , V ) modulo the radical (see e.g. [Lam,
3.6]). Thus we obtain m orthogonal idempotents in HomA−A(V , V ), which implies the existence of a
decomposition

F = F1 ⊕ F2 ⊕ · · · ⊕ Fm

for the functor F. As Z(A) is a unital subalgebra of A, we have an isomorphism (ei ⊗ 1)A ∼= A of left
A-modules. Hence, it follows that

Fi L ∼= L for all i ∈ {1,2, . . . ,n}. (9)

From (5) we have
∑

i, j Fi ◦ F j ∼= kID. From (9) and the Krull–Schmidt theorem it follows that
Fi ◦ F j ∼= ID for every i and j. In particular, Fi ◦ Fi ∼= ID, which yields that every Fi is selfadjoint
by Proposition 2(v). Now the claim of Theorem 7(ii) follows from Proposition 2. This completes the
proof. �
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4. External direct sums and tensor products

To construct new solutions to functorial equations one may use the classical constructions of ex-
ternal direct sums and tensor products.

We start with the construction of an external direct sum. Let g(x),h(x) ∈ Z+(x). Assume that for
i = 1,2 we have a finite dimensional associative k-algebra Ai and a (selfadjoint) exact functor Fi on
Ai-mod such that g(Fi) ∼= h(Fi). Set A = A1 ⊕ A2 and let F := F1 � F2 denote the external direct sum
of F1 and F2 (it acts on A-modules componentwise).

Proposition 14. The functor F is a (selfadjoint) exact endofunctor on A-mod satisfying g(F) ∼= h(F).

Proof. The action of F is computed componentwise and hence properties of F follow from the corre-
sponding properties of the Fi ’s. �

The external tensor product works as follows: Let g(x),h(x) ∈ Z+(x). Assume that we have a
finite dimensional associative k-algebra A and a (selfadjoint) exact functor F on A-mod such that
g(F) ∼= h(F). Let B be a finite dimensional associative k-algebra and IDB denote the identity functor
on B-mod. Consider the algebra C = A ⊗ B . Then the external tensor product G := F � IDB is an exact
endofunctor on C-mod defined as follows: Any X ∈ C-mod can be considered as an A-module with a
fixed action of B by endomorphisms ψb , b ∈ B . Then the C-module GX is defined as the A-module
FX with the action of B given by Fψb . The action of G on morphisms is defined in the natural way.

Proposition 15.

(i) The functor G is selfadjoint if and only if F is selfadjoint.
(ii) There is an isomorphism of functors as follows: g(G) ∼= h(G).

Proof. From the definition of G it follows that the adjunction morphisms adj : IDA → FF and
adj′ : FF → IDA induce in the natural way adjunction morphisms adj : IDC → GG and adj′ : GG → IDC ,
and vice versa. This proves claim (i).

Any isomorphism g(F) ∼= h(F) of functors induces, by the functoriality of F and the definition of G,
an isomorphism g(G) ∼= h(G). Claim (ii) follows and the proof is complete. �
5. Selfadjoint idempotents (orthogonal projections)

In this section we consider the equation

F ◦ F ∼= F, (10)

which simply means that F is a selfadjoint idempotent (an orthogonal projection). For the theory of
∗-representations of algebras, generated by orthogonal projections, we refer the reader to [Co,KS,KRS]
and references therein.

Every decomposition A ∼= B ⊕ C into a direct sum of algebras (unital or zero) yields a decomposi-
tion A-mod = B-mod ⊕ C-mod. Denote by pB : A-mod → B-mod the natural projection with respect
to this decomposition, that is the functor ID � 0. Our main result in this section is the following:

Theorem 16. Assume that F is a selfadjoint endofunctor on A-mod satisfying (10). Then there exists a decom-
position A ∼= B ⊕ C into a direct sum of algebras (unital or zero) such that F ∼= pB .

Proof. For a simple A-module L set FL = XL .

Lemma 17. We have XL = 0 or XL ∼= L ⊕ Y L such that FY L = 0.
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Proof. Assume XL �= 0. Then we have

0 �= HomA(XL, XL)

= HomA(FL,FL)

(by adjunction) = HomA(L,FFL)(
by (10)

) = HomA(L,FL)

= HomA(L, XL).

Similarly, HomA(XL, L) �= 0, which means that L is both, a submodule and a quotient of XL . In partic-
ular, we have [XL] = [L] + z for some z ∈ [A].

Further, we have

[XL] = [FL] (10)= [
F2L

] = [FXL] = [F][XL] = [F]([L] + z
) = [F][L] + [F]z = [FL] + [F]z = [XL] + [F]z.

This yields [F]z = 0. In particular, L occurs with multiplicity one in XL and hence, by the previous
paragraph, XL ∼= L ⊕ Y L for some Y L . We further have [Yl] = z and thus FY L = 0 follows from [F]z = 0.
This completes the proof. �
Lemma 18. For every L such that FL �= 0 we have Y L = 0.

Proof. Assume that Y L �= 0 and let L′ be a simple submodule of Y L . Then FL′ = 0 by Lemma 17, in
particular, L′ �= L. Hence we have

0 �= HomA
(
L′, Y L

)
= HomA

(
L′, Y L ⊕ L

)
= HomA

(
L′,FL

)
(by adjunction) = HomA

(
FL′, L

)
(by Lemma 17) = 0.

The obtained contradiction completes the proof. �
From Lemmata 17 and 18 it follows that the matrix MF is diagonal with zeros and ones on the

diagonal, and the ones correspond to exactly those simple A-modules, which are not annihilated
by F. Without loss of generality we may assume that the simple modules not annihilated by F are
L1, L2, . . . , Lk for some k ∈ {0,1, . . . ,n}. From Lemma 8 we also obtain MF = NF, that is

FPi =
{

Pi, i � k;
0, i > k.

As any simple module is sent to a simple module or zero, it follows that for i � k all simple subquo-
tients of Pi have the form L j , j � k; and for i > k all simple subquotients of Pi have the form L j ,
j > k. Therefore there is a decomposition A ∼= B ⊕ C , where

B ∼= EndA(P1 ⊕ P2 ⊕ · · · ⊕ Pk)
op, C ∼= EndA(Pk+1 ⊕ Pk+2 ⊕ · · · ⊕ Pn)

op.
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The adjunction morphism ID → F2 ∼= F is nonzero on all Li , i � k, and hence is an isomorphism as
FLi ∼= Li by Lemmata 17 and 18. By induction on the length of a module and the Five Lemma it
follows that the adjunction morphism is an isomorphism on all B-modules (see e.g. [Ma1, 3.7] for
details). Therefore F is isomorphic to the identity functor, when restricted to B-mod. By the definition
of C , the functor F is the zero functor on C-mod. The claim of the theorem follows. �
Corollary 19. If A is connected then the only selfadjoint solutions to (10) are the identity and the zero functors.

Proof. If A is connected and A ∼= B ⊕C , then either B or C is zero. Thus the statement follows directly
from Theorem 16. �
Corollary 20. If F and G are two selfadjoint solutions to (10), then F ◦ G ∼= G ◦ F.

Proof. Define

X00 = {
i ∈ {1,2, . . . ,n}: FLi �= 0, GLi �= 0

}
,

X10 = {
i ∈ {1,2, . . . ,n}: FLi = 0, GLi �= 0

}
,

X01 = {
i ∈ {1,2, . . . ,n}: FLi �= 0, GLi = 0

}
,

X11 = {
i ∈ {1,2, . . . ,n}: FLi = 0, GLi = 0

}
.

Then {1,2, . . . ,n} is a disjoint union of Xij , i, j ∈ {0,1}. For i, j ∈ {0,1} set

Aij := EndA

( ⊕
s∈Xij

P s

)op

.

Similarly to the proof of Theorem 16 one obtains that A ∼= ⊕1
i, j=0 Ai, j and, moreover, that both F ◦ G

and G ◦ F are isomorphic to pA00 with respect to this decomposition. The claim follows. �
Selfadjointness of F is important for the claim of Theorem 16. Here is an example of an exact, but

not selfadjoint, functor satisfying (10), which is not of the type pB : Let A = k ⊕ k, then an A-module
is just a collection (X, Y ) of two vector spaces. Define the functor F as follows: F(X, Y ) := (X ⊕ Y ,0)

with the obvious action on morphisms. Then F satisfies (10) but is not selfadjoint. In fact, for any
idempotent matrix M ∈ Matn×n(Z+) one can similarly define an exact endofunctor F on A-mod, where

A = k ⊕ k ⊕ · · · ⊕ k︸ ︷︷ ︸
n summands

,

such that MF = M (see Section 7 for more details).
There are also many natural idempotent functors, which are exact on only one side. For example,

for any X ⊂ {1,2, . . . ,n} one could define an idempotent right exact (but, in general, not left exact)
endofunctor ZX on A-mod as follows: ZX N is the maximal quotient of N , whose simple subquotients
are all isomorphic to Li , i ∈ X . The latter functors appear in Lie Theory, see e.g. [MS2].

6. Functors generating a cyclic semigroup

Proposition 21. Let F be a selfadjoint endofunctor on A-mod. If Fk = 0 for some k ∈ N, then F = 0.
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Proof. The claim is obvious for k = 1. Assume that k = 2. Then F2 = 0. The condition F �= 0 is equiv-
alent to the condition FLi �= 0 for some i ∈ {1,2, . . . ,n}. If FLi �= 0, then, using the adjunction, we get

0 �= HomA(FLi,FLi) ∼= HomA(Li,FFLi).

However, FFLi = 0 as F2 = 0, a contradiction. Therefore F = 0.
Now we proceed by induction on k. Assume k > 2. Then Fk = 0 implies F2(k−1) = (Fk−1)2 = 0. As

Fk−1 is selfadjoint, by the above we have Fk−1 = 0. Now F = 0 follows from the inductive assump-
tion. �
Proposition 22. Let F be a selfadjoint endofunctor on A-mod such that

Fk ∼= Fm (11)

for some k,m ∈ N, k > m � 1.

(i) If k − m is odd, then F2 ∼= F (and, conversely, any F satisfying F2 ∼= F obviously satisfies Fk ∼= Fm).
(ii) If k −m is even, then there is a decomposition A ∼= B ⊕ C into a direct sum of algebras (unital or zero) and

an algebra automorphism ϕ : B → B such that ϕ2 is inner and F ∼= Fϕ � 0.

Proof. From (11) it follows that Fm+i(k−m) ∼= Fm for all i ∈ N. We can choose i such that s :=
i(k − m) > m. Applying Fs−m to Fm+s ∼= Fm we get F2s ∼= Fs . As Fs is selfadjoint, from Theorem 16
we obtain a decomposition A ∼= B ⊕ C into a direct sum of algebras (unital or zero) such that Fs ∼= pB .
We have

A-mod ∼= B-mod ⊕ C-mod.

Lemma 23. We have FN = 0 for any N ∈ C-mod.

Proof. We prove that Fi N = 0 by decreasing induction on i. As Fs ∼= pB , we have Fs N = 0, which is
the basis of our induction. For i ∈ {1,2, . . . , s − 1} we have, by adjunction,

HomA
(
Fi N,Fi N

) ∼= HomA
(
N,F2i N

)
.

From the inductive assumption we have F2i N = 0 which implies HomA(N, F2i N) = 0 and hence
Fi N = 0. �
Lemma 24. The functor F preserves B-mod.

Proof. For N ∈ B-mod we have, by adjunction,

HomA(C C,FN) ∼= HomA(FC C, N)
Lemma 23∼= 0.

The claim follows. �
From Lemmata 23 and 24 we may write F = GB � 0, where GB is a selfadjoint endofunctor on

B-mod. From Fs ∼= pB we obtain Gs
B

∼= ID. By Proposition 2, the latter yields GB ∼= Fϕ for some algebra
automorphism ϕ : B → B such that ϕ2 is inner.

Note that F2
ϕ

∼= ID. Therefore in the case when k − m is odd, we must have that already Fϕ
∼= ID,

which implies that F ∼= pB . It is easy to see that pB satisfies (11).
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In the case when k − m is even, it is easy to check that every Fϕ � 0, for ϕ as above, satisfies (11).
The claim follows. �
7. Semisimple algebras

For a semisimple algebra A ∼= ⊕n
i=1 k there is a natural bijection between isomorphism classes of

endofunctors on A-mod and matrices in Matn×n(Z+). The correspondence is given as follows: The
endofunctor F on A-mod is sent to the matrix MF. The inverse of this map is defined as follows: De-
note by k(i) , i = 1, . . . ,n, the i-th simple component of the algebra A (i.e. A = k(1) ⊕ · · · ⊕ k(n)).
Then the matrix X = (xi, j)i, j=1,...,n is sent to the direct sum (over all i and j) of the functors
xi, j ID : k( j)-mod → k(i)-mod. We have

Proposition 25. Let A ∼= ⊕n
i=1 k.

(i) An endofunctor F on A-mod is selfadjoint if and only if MF is symmetric.
(ii) Let g(x),h(x) ∈ Z+(x). Then there is a one-to-one correspondence between the isomorphism classes of

(selfadjoint) endofunctors F on A-mod satisfying g(F) ∼= h(F) and (symmetric) solutions (in Matn×n(Z+))
of the matrix equation g(x) = h(x).

Proof. Since over A simple modules are projective, claim (i) follows from Lemma 8. Claim (ii) follows
from (i), the complete reducibility of functors on semisimple algebras and the previous paragraph. �

In light of Proposition 25 the problem we consider in this paper may be viewed as a kind of a
categorical generalization of the problem of solving matrix equations. From Proposition 25 we have
the following general criterion for solubility of functorial equations:

Corollary 26. Let g(x),h(x) ∈ Z+(x). Then the following conditions are equivalent:

(a) There is a finite dimensional basic k-algebra A with n isomorphism classes of simple modules and an exact
endofunctor F of A-mod such that g(F) ∼= h(F).

(b) There is a matrix X ∈ Matn×n(Z+) such that g(X) = h(X).

Proof. If A and F are as in (a), then MF is a solution to the matrix equation g(x) = h(x). Hence (a)
implies (b).

On the other hand, that (b) implies (a) in the case of a semisimple algebra A follows from Propo-
sition 25. This completes the proof. �

Note that a tensor product of a semisimple algebra and a local algebra is a direct sum of local
algebras. Therefore we would like to finish this section with the following observation, which might
be used for reduction of certain classification problems to corresponding problems over semisimple
algebras.

Proposition 27. Let A be a finite dimensional algebra and F1, . . . , Fk be a collection of selfadjoint endofunctors
on A-mod such that the following conditions are satisfied:

(a) For every i = 1, . . . ,k we have MFi = Mt
Fi

.
(b) For some field K of characteristic zero the space K⊗Z [A] does not contain any proper subspace invariant

under all [Fi].

Then A is a direct sum of local algebras of the same dimension.

Proof. Let C denote the Cartan matrix of A (i.e. the matrix of multiplicities of simple modules in
projective modules). Then [Fi]C = C[Fi] for all i = 1, . . . ,k by Lemma 9 and condition (a). Since the
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representation K ⊗Z [A] of the associative algebra, generated by the [Fi], i = 1, . . . ,k, is irreducible
by (b), from the Schur Lemma it follows that C is a multiple of the identity matrix. The claim fol-
lows. �
8. Restriction to centralizer subalgebras

Let X be a projective A-module and B = EndA(X)op (the corresponding centralizer subalgebra
of A). Then X has the natural structure of an A-B-bimodule. Denote by add(X) the additive closure
of X , that is the full subcategory of A-mod, which consists of all modules Y , isomorphic to direct sums
of (some) direct summands of X . Consider the full subcategory X = X X of A-mod, which consists of
all modules Y admitting a two step resolution

X1 → X0 → Y → 0, X0, X1 ∈ add(X). (12)

The functor Φ := HomA(X,−) : X → B-mod is an equivalence, see [Au, Section 5].

Proposition 28. Assume that F is a selfadjoint endofunctor on A-mod such that FX ∈ add(X). Then the fol-
lowing hold:

(i) The functor F preserves X and induces (via Φ) a selfadjoint endofunctor F on B-mod.
(ii) If g(x),h(x) ∈ Z+[x] and g(F) ∼= h(F), then g(F) ∼= h(F).

Proof. Applying F to the exact sequence (12) we obtain an exact sequence

FX1 → FX0 → FY → 0.

Here both FX0 and FX1 are in add(X) by assumption and hence FY ∈ X . Therefore F preserves X
and hence F := ΦFΦ−1 is a selfadjoint endofunctor on B-mod. This proves claim (i). Claim (ii) follows
from the definition of F by restricting any isomorphism g(F) ∼= h(F) to the subcategory X , which is
preserved by both g(F) and h(F) by claim (i). This completes the proof. �
Corollary 29. Assume that X is a multiplicity free direct sum of all indecomposable projective–injective A-
modules and X �= 0. Then we have the following:

(i) Any selfadjoint endofunctor F on A-mod induces a selfadjoint endofunctor F on B-mod.
(ii) The map F 
→ F is functorial in F.

Proof. From the definition of X we have that the category add(X) is just the full subcategory of
A-mod consisting of all projective–injective modules. If F is a selfadjoint endofunctor on A-mod, then
F preserves both projective and injective modules and hence preserves add(X). Therefore claim (i)
follows from Proposition 28(i). Up to conjugation with the equivalence Φ , the map F 
→ F is just the
restriction map to an invariant subcategory, which is functorial. �

Until the end of this section we assume that X is projective–injective. Recall (see [Ta,KSX,MS5])
that A is said to have the double centralizer property for X provided that there is an exact sequence

A A ↪→ X0
α−→ X1, X0, X1 ∈ add(X). (13)

The name comes from the observation, see [Ta], that in this case the actions of A and B on X are
exactly the centralizers of each other. Examples of such situations include blocks of various generaliza-
tions of the BGG category O, see [MS5] for details. The following result can be seen as a generalization
of [St2, Theorem 1.8], where a similar result was obtained for projective functors on the category O
(and its parabolic version).
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Theorem 30. Assume that X is projective–injective and that A has the double centralizer property for X. Then
the functor F 
→ F from Corollary 29 is full and faithful.

Proof of faithfulness. Let F and G be two selfadjoint endofunctors on A-mod and ξ : F → G be a
natural transformation. Assume that ξ : F → G is zero. Since both F and G are exact, from (13) we
have the following commutative diagram with exact rows:

0 FA A

ξA A

FX0

ξX0

FX1

ξX1

0 GA A GX0 GX1

By assumption, ξ is zero, which means that both ξX0 and ξX1 are zero. Therefore ξA A is zero as well.
Now for any M ∈ A-mod consider the first two steps of the projective resolution of M:

P1 → P0 → M → 0. (14)

Since both F and G are exact, from (14) we have the following commutative diagram with exact rows:

FP1

ξP1

FP0

ξP0

FM

ξM

0

GP1 GP0 GM 0

As ξA A is zero by the previous paragraph and P0, P1 ∈ add(A A), we have that both ξP0 and ξP1

are zero. Therefore ξM is zero as well. This shows that the natural transformation ξ is zero, which
establishes faithfulness of the functor F 
→ F. �
Proof of fullness. Let F and G be two selfadjoint endofunctors on A-mod and ξ : F → G be a natural
transformation. Then we have the following commutative diagram:

FΦ X0
FΦα

ξΦ X0

FΦ X1

ξΦ X1

GΦ X0
GΦα

GΦ X1

Applying Φ−1 we obtain the following diagram, the solid part of which commutes:

FA A

η

FX0
Fα

Φ−1ξΦ X0

FX1

Φ−1ξΦ X1

GA A GX0
Gα

GX1

(15)

Because of the commutativity of the solid part, the diagram extends uniquely to a commutative di-
agram by the dotted arrow η. We claim that η is, in fact, a bimodule homomorphism. Indeed, any
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homomorphism f : A A → A A can be extended, by the injectivity of X , to a commutative diagram as
follows:

A A

f

X0
α

f0

X1

f1

A A X0
α

X1

(16)

Consider the following diagram:

Ker(Fα)

η

F f
FX0

Fα

Φ−1ξΦ X0

F f0

FX1

Φ−1ξΦ X1

F f1

Ker(Fα)

η

FX0
Fα

Φ−1ξΦ X0

FX1

Φ−1ξΦ X1

Ker(Gα)
G f

GX0
Gα

G f0

GX1

G f1
Ker(Gα) GX0

Gα
GX1

(17)

The upper face of the diagram (17) commutes as it coincides with the image of the commutative
diagram (16) under F. Similarly, the lower face of the diagram (17) commutes as it coincides with the
image of the commutative diagram (16) under G. The front and the back faces coincide with (15) and
hence commute. The right and the middle square sections commute as ξ is a natural transformation.
This implies that the whole diagram commutes, showing that η is indeed a bimodule map from F
to G.

This means that η defines a natural transformation from F to G. By construction, we have ξ = η,
which proves that the functor F 
→ F is full. �

Unfortunately, the functor F 
→ F from Corollary 29 is not dense (in particular, not an equivalence
between the monoidal categories of selfadjoint endofunctors on A-mod and B-mod) in the general
case. Let G be a selfadjoint endofunctors on B-mod and assume that G = F for some selfadjoint
endofunctors on A-mod. Then from (13) we have

FA A = Ker
(
Φ−1GΦα

)
(18)

(as a bimodule, with the induced action on morphisms), which uniquely defines the functor F (see
[Ba, Chapter II]). However, here is an example of A, X and G for which the bimodule Ker(Φ−1GΦα)

defines only a right exact (and hence not selfadjoint) functor:

Example 31. Let A be the algebra of the following quiver with relations:

1 x 2

a

3
b

ab = x2 = 0

The indecomposable projective A-modules look as follows:
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P1: 1

x

1

P2: 2

a

3

b

2

P3: 3

b

2

The modules P1 and P2 are injective, so we take X = P1 ⊕ P2 and have that B is isomorphic to the
algebra of the following quiver with relations:

1 x 2 y x2 = y2 = 0 (19)

(here y = ba). The double centralizer property is guaranteed by the fact that the first two steps of the
injective coresolution of P3 are as follows:

0 → P3 → P2
β−→ P2,

where β is the right multiplication with the element ba. Let ϕ : B → B be the involutive automor-
phism of B given by the automorphism of the quiver (19) swapping the vertices. Then G := ϕ B ⊗B − is
a selfadjoint autoequivalence of B-mod (see Proposition 2). Assume that F is a right exact endofunc-
tor on A-mod given by (18). Then the restriction of F to add(X) is isomorphic to G, which implies
FP1 ∼= P2. For i = 1,2,3 we denote by Li the simple head of Pi . Applying F to the exact sequence
P1 → P1 � L1, we get the exact sequence P2 → P2 � FL1, which implies that the module FL1 is
isomorphic to the following module:

N: 2

a

3

Now, applying F to the short exact sequence L1 ↪→ P1 � L1 we obtain the sequence

N → P2 � N,

which is not exact. This means that F is not exact and thus cannot be selfadjoint.

It would be interesting to know when the functor F 
→ F from Corollary 29 is dense.

9. Invariant Serre subcategories and quotients

For S ⊂ {1,2, . . . ,n} set S ′ = {1,2, . . . ,n} \ S and let N S denote the full subcategory of A-mod,
which consists of all modules N for which [N : Li] �= 0 implies i ∈ S . Then N S is a Serre subcategory
of A-mod and, moreover, any Serre subcategory of A-mod equals N S for some S as above. Both N S

and the quotient Q S := A-mod/N S are abelian categories. Recall (see e.g. [Ga, Chapter III] or [Fa,
Chapter 15]) that the quotient Q S has the same objects as A-mod and for objects M, N we have

HomQ S (M, N) = lim HomA
(
M ′, N/N ′),
−→
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where M ′ ⊂ M and N ′ ⊂ N are such that M/M ′, N ′ ∈ N S . As we are working with finite dimensional
modules, the space HomQ S (M, N) can be alternatively described as follows: For a module M let M−
denote the smallest submodule of M such that M/M− ∈ N S and M+ denote the largest submodule
of M such that M+ ∈ N S . Then we have

HomQ S (M, N) = HomA
((

M− + M+)
/M+,

(
N− + N+)

/N+)
.

For S ⊂ {1,2, . . . ,n} define P S := ⊕
i∈S P i and B S := EndA(P S )

op. If S is nonempty, let I S denote
the trace of the module P S ′ in A A. Then I S is obviously an ideal in A, so we can define the quotient
algebra D S := A S/I S .

Proposition 32. For any N ∈ N S we have I S N = 0, so such N becomes a D S -module. This defines an equiva-
lence N S ∼= D S -mod.

Proof. The quotient map A � D S defines a full and faithful embedding of D S -mod into A-mod and
the image of this embedding consists exactly of N ∈ A-mod such that I S N = 0.

If N ∈ N S , then HomA(P S ′ , N) = 0 by the definition of N S , which implies I S N = 0. Conversely,
if N ∈ A-mod is such that N �= 0, I S N = 0, then HomA(P S ′ , N) = 0 and hence every composition
subquotient of N is isomorphic to some Li , i ∈ S . This means that N S coincides with the image of
D S -mod in A-mod and the claim follows. �
Proposition 33. Let S � {1,2, . . . ,n}. Then we have equivalences Q S ∼= X P S′ ∼= B S ′ -mod.

Proof. That X P S′ is equivalent to B S ′ -mod follows from [Ba, Chapter II] (see also [Au, Section 5]). Let
us show that the embedding of X P S′ to A-mod induces an equivalence Q S ∼= X P S′ via the canonical
quotient map A-mod � Q S . Let Ψ : X P S′ ↪→ A-mod � Q S denote the corresponding functor.

If M ∈ X P S′ and M ′ ⊂ M , then M/M ′ is a quotient of some module from add(P S ′ ). Hence M/M ′ /∈
N S unless M/M ′ = 0.

Lemma 34. For M ∈ X P S′ we have Ext1
A(M, Z) = 0 for any Z ∈ N S .

Proof. Let X1 → X0 � M be the first two steps of the projective resolution of M , given by (12). Then
HomA(X1, Z) = 0 (as the head of X1 contains only L j , j ∈ S ′ , while all composition subquotients of Z
are of the form Li , i ∈ S) and the claim follows. �

If M ∈ X P S′ and N ′ ⊂ N is such that N ′ ∈ N S , then HomA(M, N ′) = 0 and Ext1
A(M, N ′) = 0 (the

latter by Lemma 34). Therefore HomA(M, N) ∼= HomA(M, N/N ′). Combining this with the paragraph
before Lemma 34 we have HomA(M, N) = HomA(M ′, N/N ′) in the case M, N ∈ X P S′ . This yields

HomQ S (M, N) = HomA(M, N) for all M, N ∈ X P S′ .

This means that the functor Ψ is full and faithful. It is left to prove that Ψ is dense.
Let N be an A-module and N ′ be the trace of P S ′ in N . Take a projective cover X0 � N ′ , where

X0 ∈ add(P S ′ ), let Q be the kernel of this epimorphism and Q ′ be the trace of P S ′ in Q . Define
M = X0/Q ′ and M ′ = Q /Q ′ ⊂ M . Then M ′, N/N ′ ∈ N S and M/M ′ ∼= X0/Q ∼= N ′ by definition. Let
ϕ : M → N be the composition of the natural maps M → N ′ ↪→ N . Let ψ : N ′ → M/M ′ be the inverse
of the natural isomorphism M/M ′ ∼−−→ N ′ . Then both ϕ ∈ HomQ S (M, N) and ψ ∈ HomQ S (N, M) and
it is straightforward to check that ϕ and ψ are mutually inverse isomorphisms. This means that N is
isomorphic in Q S to M ∈ X P S′ and hence the functor Ψ is dense. This completes the proof. �

Proposition 33 can be deduced from the results described in [Fa, Chapter 15]. However, it is shorter
to prove it in the above form than to introduce all the notions and notation necessary for application
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of [Fa, Chapter 15]. The correspondence N 
→ M from the last paragraph of the proof of Proposition 33
is functorial. The module M is called the partial coapproximation of N with respect to X P S′ , see [KM,
2.5] for details. From Proposition 33 it follows that S -subcategories of the BGG category O associated
with parabolic sl2-induction (see [FKM1,FKM2]) can been regarded as quotients of blocks of the usual
category O modulo the corresponding parabolic subcategory (in the sense of [RC]). In the general case
S -subcategories of O are quotient categories as well (however, modulo a subcategory, which prop-
erly contains the corresponding parabolic subcategory). In fact, the latter can be deduced combining
several known results from the literature ([BG], [Ja, Kapitel 6] and [KoM]).

Corollary 35. Let F be a selfadjoint endofunctor on A-mod and S � {1,2, . . . ,n} be such that the linear span
of [Li], i ∈ S, is invariant under [F].

(i) The functor F preserves the category N S and hence induces, via restriction and the equivalence from
Proposition 32, a selfadjoint endofunctor F̂ on D S -mod.

(ii) The functor F preserves the category X P S′ and hence induces, via restriction and the equivalence from

Proposition 33, a selfadjoint endofunctor F on B S ′ -mod.
(iii) If g(x),h(x) ∈ Z+[x] and g(F) ∼= h(F), then g(F̂) ∼= h(F̂) and g(F) ∼= h(F).

Proof. The functor F preserves the category N S by our assumptions and claim (i) follows.
For i ∈ S we have

HomA(FP S ′ , Li) ∼= HomA(P S ′ ,FLi) = 0

as FLi ∈ N S by claim (i). This means that FP S ′ ∈ add(P S ′ ) and claim (ii) follows from Proposition 28.
Any isomorphism g(F) ∼= h(F) induces, by restriction to N S and X P S′ , isomorphisms g(F̂) ∼= h(F̂)

and g(F) ∼= h(F), respectively. This proves claim (iii) and completes the proof. �
From the proof of Corollary 35 it follows that in the case when a selfadjoint endofunctor F on

A-mod preserves the category add(P S ) for some nonempty S ⊂ {1,2, . . . ,n}, then F preserves the
category N S ′ as well.
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[DP1] K. Došen, Z. Petrić, Self-adjunctions and matrices, J. Pure Appl. Algebra 184 (1) (2003) 7–39.
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