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Monoblock centrifugal pumps are employed in variety of critical engineering applications. Continuous
monitoring of such machine component becomes essential in order to reduce the unnecessary break
downs. At the outset, vibration based approaches are widely used to carry out the condition monitoring
tasks. Particularly fuzzy logic, support vector machine (SVM) and artificial neural networks were
employed for continuous monitoring and fault diagnosis. In the present study, the application of SVM
algorithm in the field of fault diagnosis and condition monitoring is discussed. The continuous wavelet
transforms were calculated for different families and at different levels. The computed transformation
coefficients form the feature set for the classification of good and faulty conditions of the components of
centrifugal pump. The classification accuracies of different continuous wavelet families at different levels
were calculated and compared to find the best wavelet for the fault diagnosis of the monoblock cen-
trifugal pump.

Copyright � 2014, Karabuk University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

As centrifugal pumps play a vital role in many critical applica-
tions, the continuous availability of such mechanical components
become absolute essential. The pumps are the key elements in
waste water treatment plants, food industry, agriculture, oil & gas
industry, paper & pulp industry etc. In a monoblock centrifugal
pump, the performance of bearing and impeller has direct effect on
the desired pump characteristics. Faulty bearing, defect on the
impeller and cavitation are main sources of many serious problems
such as noise, high vibration etc. Cavitation can cause more unde-
sirable effects, such as deterioration of the hydraulic performance
(drop in head capacity and efficiency), damage of the pump by
pitting, erosion and structural vibration. Vibration signals are
widely used in condition monitoring of centrifugal pumps. Fault
detection is achieved by comparing the signals and the similarities
of monoblock centrifugal pump running under normal and faulty
conditions. The faults considered in this study are bearing fault (BF),
impeller fault (IF), bearing and impeller fault (BFIF) together and
cavitation (CAV). In conventional condition monitoring, the vibra-
tion analysis is carried out with Fast Fourier Transform (FFT). With
uralidharan).
ity.

duction and hosting by Elsevier B
the help of seismic or piezoelectric transducers, the level of vibra-
tion can be measured. For complex systems involving many com-
ponents, it is difficult to compute characteristic fault frequencies.
Even if characteristic frequencies are available the vibration signals
are highly non-stationary in nature and FFT basedmethodsmay not
be suited for such processes. In the machine learning approach the
data acquisition system is used to capture the vibration signals.
From the vibration signal relevant features can be extracted and
classified using a classifier. The step by step procedure for classifi-
cation of faults is presented in Fig. 1.

H.Q. Wang et al., (2007) presented a fault diagnosis method for a
centrifugal pump with frequency domain symptom parameter by
using wavelet transform (feature extraction), rough sets (rule
generation) and fuzzy neural network (classification) to detect
faults and distinguish fault types at early stages [1].

V. Muralidharan and V. Sugumaran (2012) have reported the
comparative performance of Naive Bayes and Bayes net algorithm
for monoblock centrifugal pump. This paper mainly deals the
flexibility of Bayes algorithm as a classifier [2]. V. Muralidharan, V.
Sugumaran and N.R. Sakthivel (2011) proposed the application of
SVM classifier for the decomposed wavelet features and also the
classification performances. This study deals the decomposition of
signals using discrete wavelet transforms [3,10]. Kemal Polat and
Salih Gunes (2009) proposed a novel hybrid classification system
based on J48 algorithm and one-against-all approach to classify the
multi-class problems including dermatology, image segmentation
.V. All rights reserved.
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Fig. 1. Flow chart of monoblock centrifugal pump fault diagnosis system.
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and lymphography. Initially, J48 algorithm has been used and
achieved 84.48%, 88.79%, and 80.11% classification accuracies for
dermatology, image segmentation, and lymphography datasets
respectively. The proposed method based on J48 algorithm and
one-against-all approach obtained 96.71%, 95.18%, and 87.95% for
above datasets, respectively [4]. Muralidharan and Sugumaran
(2013) reported the systematic methodology for wavelet selection
using J48 algorithm. However, SVM based method has very strong
mathematical background which may give more reliable results
when compared to other algorithms [5,11].

Fansen Kong and Ruheng Chen (2004) proposed a new com-
bined diagnostic system for triplex pump based on wavelet trans-
form, fuzzy logic and neural network. The developed diagnostic
system consists of four parts. The first part was wavelet transform
for multiresolution analysis. The second part was for asymptotic
spectrum estimation of the characteristic variable. The third part
was employed for characteristic variable fuzzified in simulating
fuzzy inference using incomplete information. The fourth part was
the neural network trained with fuzzified characteristic variable for
triplex pump failure diagnosis [6,12]. Jiangping Wang and Hangtao
Hu (2006) used fuzzy logic principle as classifier with the features
extracted from the vibration signals of the pump [7,9]. Javier Sanz
et al., (2007) presented a technique for monitoring the condition of
rotating machinery from vibration analysis that combines the
capability of wavelet transform to treat the transient signals with
the ability of auto associative neural networks to extract features of
datasets in an unsupervised mode. Trained and configured net-
works with wavelet transform coefficients of non faulty signals
were used as amethod to detect the novelties or anomalies of faulty
signals [8,13,14]. Also, V. Muralidharan and V. Sugumaran (2012)
have illustrated the feature extraction using wavelets and classifi-
cation using J48 algorithm for a fault diagnosis problem. In all of the
above papers, researchers have reported with high classification
accuracy. However, using Bayes algorithm and J48 algorithm re-
quires a lot of domain expertise and computational time whereas
the extraction of wavelet features and SVM classifiers are mathe-
matically proved and validated with lots of bench marked complex
datasets. Hence, this paper illustrates the application of SVM based
classification of continuous wavelet features for fault diagnosis of
monoblock centrifugal pump.

The rest of the paper is organized as follows. In Section 2,
experimental setup and experimental procedure are described
followed by feature extraction from the time domain signal is
presented in Section 3. Then SVM classifier and the results of the
experiment are discussed in Sections 4 and 5 respectively.
Finally, conclusions are presented in Section 6 followed by
references.

2. Experimental studies

The different fault conditions considered for the study are
bearing fault, impeller defect, bearing and impeller defect together
and cavitation. The main focus of this study is on the application of
SVM algorithm for fault diagnosis of monoblock centrifugal pump.

2.1. Experimental procedure

The vibration signals are measured from the monoblock cen-
trifugal pump working under normal condition at a constant
rotation speed of 2880 rpm. The vibration signal from acceler-
ometer mounted on the pump inlet was taken. The sampling
frequency was 24 kHz and sample length was 1024 for all condi-
tions of the pump. 250 trials were taken for each monoblock
centrifugal pump condition, and vibration signals were stored in
the data files.

In the present study the following faults were simulated

(i) Cavitation
(ii) Bearing fault
(iii) Impeller fault
(iv) Bearing and Impeller fault together
2.2. Experimental result

The faults were introduced one at a time and the pump per-
formance characteristic and vibration signals were taken. As a
result of the experiment, the representative time domain plots are
given in Fig. 2.

3. Feature extraction

The time domain signal can be used to perform fault diagnosis
by analyzing vibration signals obtained from the experiment.
Continuous Wavelet Transform (CWT) has been widely used and
provides the physical characteristics of timeefrequency domain
data. Wavelet analysis of vibration signals yields different
descriptive parameters. Fairly a wide set of parameters were
selected as the basis for the study. A set of statistical parameters
and histogram features have been extracted. From the pool of
features the best ones were selected for classification. The wavelet
transformations are explained below. In this paper, CWT of
different versions of different wavelet families has been considered
for different levels. The list of families considered for this study is
given below:

1. Daubechies wavelet (db1,db2,db3,db4,db5,db6,db7,db8,db9,-
db10).

2. Coiflet (coif1,coif2,coif3,coif4,coif5).
3. Bi-orthogonal wavelet (bior1.1,bior1.3,bior1.5,bior2.2,bior2.4,-

bior2.6,bior2.8,bior3.5,bior3.7,bior3.9,bior4.4,bior5.5, bior6.8).
4. Reverse bi-orthogonal wavelet (rbio1.1,rbio1.3,rbio1.5,rbio2.2,-

rbio2.4,rbio2.6,rbio2.8,rbio3.1,rbio3.3,rbio3.5,rbio3.7,rbio3.9,r-
bio4.4,-rbio5.5,rbio6.8).

5. Symlets (sym2,sym3,sym4,sym5,sym6,sym7,sym8).
6. Meyer wavelet.
7. Morlet.
8. Gaussian wavelet (gaus1,gaus2,gaus3,gaus4,gaus5,gaus6,-

gaus7,gaus8).
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Fig. 2. Time domain plots of monoblock centrifugal pump.
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3.1. Feature definition

3.1.1. Concept of continuous wavelet transforms
Wavelet transform is transform for timeefrequency analysis.

Wavelet means ‘small wave’. Short duration finite energy functions
can be called as wavelets. Wavelet transforms a signal under
investigation like a vibration signal into another representation
which presents the signal in a more useful form. Wavelet transform
is a time-scale representation of a signal. Wavelet theory has been
developed and applied widely in the recent years. The step by step
procedure for the calculation of continuous wavelet transform
features can be better understood in the form a flow chart. Fig. 3
illustrates the flow of the process.

A continuous wavelet transform is defined as

Wða; bÞ ¼
Z
t

f ðtÞ 1ffiffiffiffiffiffijajp j

�
t � b
a

�
dt (1)
Fig. 3. Flow chart for feature extraction.
where,

j e wavelet function,
a e scaling parameter,
b e location parameter.

Assume that f(t) is a complex valued function on < which
represent some signal (think of t as time).

The Fourier transform

bf ðuÞ ¼ 1
2p

ZN
�N

f ðtÞe�it:udt (2)

is used to decompose f into its frequency components. The inver-
sion formula

f ðtÞ ¼ 1
2p

ZN
�N

bf ðuÞeit:udu (3)

can be interpreted as writing f as a superposition of time-harmonic
waves eit.u. If bf is large near some frequency, then f has a large
component that is periodic with that frequency. This approach
works well for analyzing signals that are produced by some peri-
odic process. Consider now two methods that attempt to provide
information on both time and frequency: the Windowed Fourier
Transform (WFT), also called Short Time Fourier Transform (STFT),
and the Continuous Wavelet Transform (CWT). Both of them map a
function of one variable (time) into a function of two variables
(time and frequency). A large value of the transform near time t,
frequency u is interpreted as: the signal f contains a large compo-
nent with frequency u near time t. Similar to FFT, a fast wavelet
transform is also available for computation work. One main
advantage of wavelet transform is for signals with long duration
low frequencies and short duration high frequencies. It has ability
to produce a high frequency resolution at low frequencies and a
high time resolution at high frequencies. Another advantage of
wavelet transform is its ability to reduce noise in raw signals. Fig. 4
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Fig. 4. Scatter plot of selected features.
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shows the scatter plot of selected features against classification of
faults.
4. SVM classifier

Data mining techniques are being increasingly used in many
modern organisations to retrieve valuable knowledge structures
from databases, including vibration data. An important knowledge
structure that can result from data mining activities is SVM. As
depicted in Fig. 5.

Consider the problem of classifying m points in the n-dimen-
sional real space Rn, represented by the m � n matrix A and m � m
diagonal matrix D with plus ones or minus ones along its diagonal
according to membership of each point Oi in the class Aþ or A�.

If, in the input space, data are not linearly separable, SV ma-
chines maps the data into some other dot product space called
feature space F via a non-linear map f:Rn / F and perform the
above linear algorithm in F. This only requires the evaluation of dot
products, f(xi)Tf(x). In literature, this function is called kernel and
we denote K(x,y) ¼ f(x)Tf(y).
Fig. 5. SVM formulation with soft margin (boundary).
In the feature space, we find a linearly separating hyperplane
wTf(x) � g ¼ 0; w˛F such that the two classes are maximally
separated.

Againw can be shown to be equal to
Pk

i¼1aifðxiÞwhere k is the
number of support vectors.

The decision function can now be written as :

f ðxÞ ¼ sign
�
wTfðxÞ � g

�
¼ sign

 Xk
i¼1

ai

�
fðxiÞTfðxÞ � g

�!
(4)

If F is high dimensional, fðxiÞTfðxÞ is very expensive to compute.
However, there are simple forms of kernels that can be evaluated
efficiently. One good example is the polynomial kernel where
k(x,y) ¼ (xTy)d.

For d ¼ 2 and x; y˛R2, we have

�
xTy
�2 ¼

h
ðx1; x2ÞT

�
y1;y2

�i2 ¼ ½x1y1 þ x2y2�2

¼ ðx1y1Þ2 þ 2x1y1x2y2 þ ðx2y2Þ2

¼
��

x21; x
2
2;

ffiffiffi
2

p
x1x2

�T�
y21; y

2
2;

ffiffiffi
2

p
y1y2

��
¼ fðxiÞTfðyÞ

here f maps ðx1; x2Þ to ½ðx21; x22;
ffiffiffi
2

p
x1x2Þ�.

This is so-called Kernel trick. We do not actually map the data
into feature space for any computation. Computation is done in the
input space itself. In the example, (xTy)2 is equivalent to f(xi)Tf(y).
The quantity (xTy) is a scalar and after computing that we just
square it to get the scalar quantity f(xi)Tf(y). The problem of
obtaining w as a linear combination of subset of training samples
(in feature space F) called support vectors are obtained by formu-
lating and solving the problem as a quadratic programming prob-
lem. The training algorithm uses Sequential Minimal Optimization
(SMO) technique. Once we obtain the support vectors using the
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SMO algorithm [9], the classification of new data point x requires
only the computation of signðPk

i¼1aiðfðxiÞTfðxÞ � gÞÞ, where i is
the index of support vectors.
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5. Results and discussion

The experimental studies have been carried out for good con-
dition and various fault conditions of the pump. One should un-
derstand that, for all faults considered in the study the performance
of the pump is adversely affected. Hence, the study is important
with these faults. In the present study SVM algorithm is used as
explained in the previous Section 4. The input of SVM algorithm is
set of wavelet features which are extracted from the vibration
signals as explained in Section 3.

From the selected features the classification has been carried
out. In order to have higher prediction accuracy and to avoid over
fitting of data, a set of experiments were carried out to design the
classifier and the results are discussed below. The results (classifi-
cation accuracies) obtained from SVM classifier using wavelet fea-
tures of various wavelet families shall be better explained in this
manner. As a first step, the classification accuracy is found for
different versions of the wavelet family. In the similar fashion, the
efficiencies of different versions of all the mentioned wavelet
families are computed and plotted as histogram charts.

Now, from the Figs. 6e11, best version of different families were
picked up from each of the chart and compared among those best
versions of different wavelet families and the overall best wavelet
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Fig. 6. Bi-orthogonal wavelet vs classification accuracy (%).
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family and the best version of that family were found. In this
manner, the versions bior3.7 (99.76), coif3 (99.76%), db8 (99.84%),
gaus6 (99.68), rbio1.5 (99.68%), sym7 (99.68%), dmey (97.68) and
mor (97.68%) have been picked up as the best from the Figs. 4e9
respectively.

All the best versions of different wavelet families were
compared. The overall best wavelet and the wavelet family were
found and plotted as a histogram chart as shown in Fig. 12. From
Fig. 12, one can clearly say that the best wavelet from the chart is
db8 and the classification accuracy achieved is 99.84%which is very
high among other families. The results of the wavelet db8 can be
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Fig. 10. Reversed bi-orthogonal wavelet vs classification accuracy (%).
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Table 1
Confusion matrix for db8 wavelet.

Good Cav FI FB FBI

Good 250 0 0 0 0
Cav 0 250 0 0 0
FI 0 0 248 0 2
FB 0 0 0 250 0
FBI 0 0 0 0 250
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illustrated in better way using the confusion matrix as shown in
Table 1.

From the confusion matrix, one can understand that 250 sam-
ples were considered for each condition of the pump. All the di-
agonal elements of the confusion matrix represent the number of
correctly classified data points and the non-diagonal elements
represent the incorrectly classified data points. In this fashion the
classification accuracies are found and compared for various types
of wavelets of different families. In this case, all the good condition
data points have been correctly classified and the same is the case
with bearing fault data points and fault with both bearing and
impeller. However, there were two misclassifications in pump with
faulty impeller and they were classified as pump with faulty
bearing and impeller conditions. Hence, efficiency was calculated
to be 99.84%. The results obtained are specific to this particular
dataset. Classification accuracy of 99.84% does not assure similar
performance for all feature datasets. However one can expect
classification accuracy close to 100%. In general the classification
accuracy is very high. Hence the db8 wavelet is very much suited
for fault diagnosis of centrifugal pumps.
6. Conclusion

This paper deals with vibration based fault diagnosis of mono-
block centrifugal pump. Five classical states viz., normal, cavitation,
bearing fault, impeller fault, impeller and bearing fault together, are
simulated on monoblock centrifugal pump. Set of features have
been extracted using different wavelets and classified using SVM
algorithm. From the results and discussion as discussed above one
can confidently say that feature extraction using wavelets and
SVM algorithm for classification are good candidates for practical
applications of fault diagnosis of monoblock centrifugal pump.
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