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An approach is presented that enables the calculation of elastic strain energy in linear and nonlinear elas-
tic solids during arbitrary thermomechanical load cycles. The approach uses the simple fact that the vari-
ation of both strain and complementary energies always forms a rectangular shape in stress–strain space,
hence integration is no longer required to calculate the energy. Furthermore, the approach considers the
mean stress effect so that predictions of fatigue damage are more realistically representative of real-life
experimental observations. By doing so, a parameter has been proposed to adjust the mean stress effect.
This parameter a is based on the well-known Smith–Watson–Topper energy criterion, but allows consid-
eration of other arbitrary mean stress effects, e.g. the Bergmann type criterion.
The approach has then been incorporated into a numerical method which can be applied to uniaxial

and multiaxial, proportional and non-proportional loadings to predict fatigue damage. The end result
of the method is the cyclic evolution of accumulated damage. Numerical examples show how the method
presented in this paper could be applied to a nonlinear elastic material.
� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Mechanical components are usually subjected to variable loads
during operation. These cause stresses, strains and temperature
rises in the component as a reaction to such loading. Depending
on the size of the load and the exposure (operating) time, fluctuat-
ing stress–strain fields in a component can eventually lead to a
crack where the damage is greatest – the critical location, which
will continue to grow under continued loading and eventually
result in the failure of the component [1–5]. Although various
mechanisms lead to the deterioration of mechanical products once
they are put into operation, fatigue is still one of the main sources
of failure for products that operate over longer amounts of time,
e.g. months, years or hundreds of thousands of load cycles [6,7].
Fatigue mechanisms prosper due to the changeable load and envi-
ronmental conditions and can ultimately lead to a complete stop-
page of functionality of these products [7–11].

Predicting fatigue damage of a product is therefore not only
important directly prior to manufacture but is an integral step in
the early stages of product development. However, the identifica-
tion of critical locations and the quality of the prediction, e.g. the
predicted number of cycles to failure, will only be as good as the
following: level of complexity of the temperature dependent
stress–strain calculation; reproducibility of the damage accumula-
tion modelling; level of detail included in the fatigue damage pre-
diction; and accuracy of the input data of the material properties
[9,11]. The final experimental verification of the prediction is
always valuable before the component enters the manufacturing
stage but prior to this stage, computer aided predictions are neces-
sary as a means of reducing financial outlay and shortening devel-
opment times [6,12].

The majority of fatigue damage predictions are still based on
uniaxial approaches or transformations of multiaxial stress–strain
states into equivalent (uniaxial) cases either assuming a failure
theory (e.g. signed von Mises stress) or applying the critical plane
approach [5,12–17]. They usually give satisfactory predictions,
especially if they incorporate various influences on the fatigue
damage prediction such as e.g. the mean stress correction [5,17–
21]. However, under more complex conditions some of the com-
monly used techniques may no longer be capable of producing
accurate predictions [16,17,19,21]. Alternatively, the invariance
of the energy (which is independent of the coordinate system of
observation) and its dissipation during cyclic loading have proven
to be a suitable tool for predicting fatigue damage regardless of the
type of loading (mechanical, thermal, uniaxial, multiaxial propor-
tional or non-proportional) [13,18,22,23]. Therefore energy-based
models for fatigue damage predictions have been a good counter-
weight to equivalent prediction models. However, according to the
available literature, there have been attempts to include the mean
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Nomenclature

a mean stress parameter
d Prandtl density
D damage operator
Dea;p elastic principal strain range
Deae;p equivalent elastic principal strain range
DUae;p total equivalent elastic principal energy range
ecyclea uniaxial experimental strain amplitude
ea;p elastic principal strain amplitude
eij; ekl elastic strain
ep; eq elastic principal strain
eresj;p residuum principal strain
ea;p elastic principal strain amplitude
e�ae;p equivalent linear elastic principal strain amplitude
eae;p equivalent nonlinear elastic principal strain amplitude
emax;p maximum absolute principal strain
eo;p origin of elastic principal strain
rcycle
a uniaxial experimental stress amplitude

ra;p principal stress amplitude
r�
ae;p equivalent linear principal stress amplitude

rae;p equivalent nonlinear principal stress amplitude
rij stress
rcycle
m uniaxial experimental mean stress

rm;p principal mean stress
rmax;p maximum principal stress
ro;p origin of principal stress
rp principal stress
C elastic complementary energy per unit volume
Ca elastic complementary energy amplitude
Ca;p elastic principal complementary energy amplitude
Cae;p equivalent elastic principal complementary energy

amplitude
Cm elastic mean complementary energy
Cm;p elastic principal mean complementary energy
d;df equivalent cycle damage
D;Df accumulated fatigue damage
Da damage due to total elastic energy amplitude
Dae damage due to total equivalent elastic energy amplitude
Dm damage due to total elastic mean energy

Dijkl nonlinear elastic stiffness
Dppqq linear elastic stiffness
i; j; k; l second and fourth order tensor indices
i stress history index (only in Appendix B)
j index for number of reversal points in residuum (only in

Appendix B)
j stress index of the spring-slider model
k temperature index of the spring-slider model
ns number of time increments
nu number of fictive yield energies
nT number of temperature divisions
p index of principal components
Re strain ratio
Rr stress ratio
s time index
S logical operator (only in Appendix B)
t time
T temperature
u yield surface
Ua total elastic energy amplitude
Ua;p total elastic principal energy amplitude
Uae total equivalent elastic energy amplitude
Ucycle

ae total experimental elastic energy amplitude
Uae;p total equivalent elastic principal energy amplitude
Udj back stress of the spring-slider model
Ue;p total equivalent elastic principal energy
Ue total equivalent elastic energy
Um total elastic mean energy
Um;p total elastic principal mean energy
Uo;p origin of total equivalent elastic principal energy
W elastic strain energy per unit volume
Wa elastic strain energy amplitude
Wa;p elastic principal strain energy amplitude
Wae equivalent elastic strain energy amplitude
Wae;p equivalent elastic principal strain energy amplitude
Wm elastic mean strain energy
Wm;p elastic principal mean strain energy
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stress correction in the energy-based methods e.g. [18,22], but to
date no established criterion has been accepted as e.g. are the Sm
ith–Watson–Topper (SWT) or Bergmann mean stress criteria for
the uniaxial stress–strain states [5,16,18,24,25].

Here we present how energy-based fatigue damage predictions
can be applied to a given variable multiaxial thermomechanical
loading and nonlinear elastic solid, and hence show how they
could be applied to materials such as metals, rubbers, polymer net-
works, liquid crystal elastomers and new biological materials
under large strains. Furthermore, the approach is extended to con-
sider the mean energy influence of the load cycles which can
exactly reproduce the well-known uniaxial SWT correction [24–
26] or can be adapted for another experimentally observed influ-
ence on the mean stress level, i.e. a Bergmann type correction
[25] by introducing an additional parameter a. The approach pre-
sented here is incorporated into a robust method based on Prandtl
operators [6,10,12,23] that estimates the accumulated thermome-
chanical fatigue damage at any time instant during the load history
by calculating the cyclic fatigue damage evolution.
Energy calculation

The material response under cyclic loading is assumed to be
temperature dependent and nonlinear elastic. This means that it
is independent of the load history (path independent) and that
the stress tensor rij and strain tensor ekl form a nonlinear constitu-
tive law

rijðtsÞ ¼ rijðDijklðTsÞ; eklðtsÞÞ ð1Þ
which depends on a temperature dependent stiffness tensor Dijkl

and temperature Ts ¼ TðtsÞ for every time instant ts; s ¼ 1; . . . ;ns. It
will be assumed here that both stress and strain tensors rij and
ekl for every time instant have been determined in advance accord-
ing to a nonlinear elastic model as the material response modelling
is not the main focus of the paper. As the approach is general, the
stress and strain tensor can be considered as multiaxial and non-
proportional. In the equations below, the time and temperature
dependence will be omitted for simplicity though they are consid-
ered throughout the calculation. Additionally, all the quantities in

this paper apply only to elastic materials, e.g., ekl ¼ eelkl;Ue ¼ Uel
e ;

hence ‘‘el” superscripts will be omitted for clarity.
First, strain energy and its complementary energy must be

defined. These phenomena are crucial for the calculations to fol-
low. Eqs. 1–13 refer to [27] where the reader can find further
details on the strain and complementary energies.

For a given stress state rij, an infinitesimal amount of strain
energy per unit volume dW (referred to as strain energy hereafter)
during a load cycle can be calculated as
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dW ¼ rijdeij: ð2Þ
Integrating the contributions of strain energy dW over a range

from the beginning of loading to a given strain eij, the total strain
energy can be calculated as

W ¼
Z eij

0
rijdeij: ð3Þ

As the material is elastic, the path independence can be consid-
ered and hence the differential of the strain energy can be written
as

dW ¼ @W
@eij

deij ð4Þ

and inserting Eq. (2) into Eq. (4) we obtain

rij � @W
@eij

� �
deij ¼ 0 ð5Þ

or

rij ¼ @W
@eij

: ð6Þ

Eq. (6) suggests that the stress tensor is a constitutive law
dependent function of the strain energy.

For every strain energy, complementary energy per unit volume
(referred to as complementary energy hereafter) can be introduced
(see Fig. 1) whereby

C ¼ rijeij �W: ð7Þ
The complementary energy also depends only on the observed

state therefore its differential can be calculated as

dC ¼ drijeij þ rijdeij � dW: ð8Þ
Inserting Eqs. (4) and (6) into Eq. (8), the differential of the com-

plementary energy is observed as
Fig. 1. Principal stress and strain tensor components r1 and e1 between time
instants t1 and t3 under changeable mechanical and thermal conditions. Strain
energy W and complementary energy C form a rectangle at any time instant. Every
cycle can be decomposed into amplitude and mean segments (shown for an
arbitrary point between time instants t2 and t3).
dC ¼ eijdrij: ð9Þ
By integrating the differentials of the complementary energy dC

over a range from the beginning of loading to a given stress rij, the
total complementary energy can be calculated as

C ¼
Z rij

0
eijdrij: ð10Þ

As the constitutive law is path independent, the differential of
the complementary energy can then be written as

dC ¼ @C
@rij

drij ð11Þ

and by placing Eq. (9) into Eq. (11) one can obtain

eij � @C
@rij

� �
drij ¼ 0 ð12Þ

or

eij ¼ @C
@rij

: ð13Þ

Eq. (13) proves that the strain tensor is a constitutive law
dependent function of the complementary energy. Adding both
strain and complementary energies of the ith and jth tensor com-
ponents together, they always form a rectangular shape in any
time instant as shown in Fig. 1.

Stress and strain tensors at any time instant can be expressed in
the coordinate system of principal directions as a principal stress
tensor rp and principal strain tensor ep, where p ¼ 1;2;3 repre-
sents the indices of the principal values. Despite the transforma-
tion both strain and complementary energies remain the same as
they are invariant, i.e. the amount of energy cannot be influenced
by the coordinate system [27].

Next, the mean stress effect and the multiaxiality of the stress–
strain states are addressed. The components of the principal stress
tensor rp which occur at any point in a material during loading can
always be decomposed into mean rm;p (static) and amplitude
(dynamic) segments ra;p as shown in Fig. 1. The same is valid for
the strain tensor components. For every principal component at
any instant in time, the origins of both stress ro;p and strain eo;p
can be determined. Thus by knowing the current state of a mate-
rial, the correct calculation of the amplitudes ra;p and ea;p and the
mean rm;p are possible.

According to the SWT criterion [18,24,25], the mean stress
effect of an arbitrary load cycle in an observed time instant ts
can be described as

r�
ae;pr

�
ae;p ¼ rmax;pra;p ð14Þ

where rmax;p ¼ rm;p þ ra;p is the maximum stress tensor, ra;p is the
amplitude tensor and r�

ae;p is the equivalent linear amplitude tensor
originating from a fully reversed cycle without mean stress and
resulting in the same damage as the combination of rm;p and ra;p.
Obviously Eq. (14) can only be valid for positive values of the max-
imum stress tensor component. The relations between equivalent
linear stress and strain tensors are

r�
ae;p ¼ Dppqqe�ae;q;rm;p ¼ Dppqqem;q and ra;p ¼ Dppqqea;q ð15Þ

hence Eq. (14) can be rewritten as the following expressions

r�
ae;pDppqqe�ae;q ¼ rm;pDppqqea;q þ ra;pDppqqea;q

D�1
ppqqr

�
ae;pDppqqe�ae;q ¼ D�1

ppqqrm;pDppqqea;q þ D�1
ppqqra;pDppqqea;q

r�
ae;pdppqqe

�
ae;q ¼ rm;pdppqqea;q þ ra;pdppqqea;q

r�
ae;pe

�
ae;p ¼ rm;pea;p þ ra;pea;p

ð16Þ

which confirm the observation, that the background of the mean
stress correction according to the Smith–Watson–Topper criterion



Fig. 2. Accumulated energies for linear and nonlinear material responses.

Fig. 3. Variation of energies during thermomechanical loading. The total equivalent
principal energy (marked as a dark grey column) is always the sum of both mean
(hatched column) and amplitude (light grey column) contributions. It is shown for
an arbitrary state of principal stress and strain tensor components r1 and e1
between time instants t2 and t3.
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is the energy calculation and consists of the mean energy contribu-
tion and the energy amplitude contribution [18].

Equating areas considering either linear or nonlinear material
response, it can be seen in Fig. 2 that

r�
ae;pe

�
ae;p ¼ rae;peae;p ð17Þ

which enables to apply the energy calculation from Eq. (16) also to a
nonlinear material response. A similar approach for equating linear
and nonlinear energies can be found in e.g. [28]. Substituting the
left side of Eq. (17) with Eq. (16) gives

rae;peae;p ¼ rm;pea;p þ ra;pea;p: ð18Þ
Furthermore, if the ranges Deae;p ¼ 2eae;p and Dep ¼ 2ea;p are con-

sidered rather than the amplitudes eae;p and ea;p, Eq. (18) can be
multiplied by a factor of 2. Hence the total principal energy is
expressed as

2rae;peae;p ¼ 2rm;pea;p þ 2ra;pea;p
rae;pDeae;p ¼ rm;pDep þ ra;pDep
Wae;p þ Cae;p ¼ Wm;p þ Cm;p þWa;p þ Ca;p

Uae;p ¼ Um;p þ Ua;p

ð19Þ

as shown in Fig. 3. The quantities rae;pDeae;p, rm;pDep and ra;pDep rep-
resent the total equivalent principal energy amplitude Uae;p, the
total mean principal energy Um;p and the total principal energy
amplitude Ua;p, respectively, each one containing information on
strain and complementary energies W and C. As is the case for Eq.
(14), Eq. (19) is valid only if rm;p þ ra;p > 0, otherwise
Ua;p ¼ Um;p ¼ Uae;p ¼ 0.

Adding the range of the total equivalent principal energy ampli-
tude DUae;p ¼ 2Uae;p to the current origin of total equivalent princi-
pal energy Uo;p, the total equivalent principal energy Ue;p can be
obtained as

Ue;p ¼ Uo;p þ DUae;p: ð20Þ
By summing all the total equivalent principal energies, the total

equivalent energy Ue can then be obtained as

Ue ¼
X3
p¼1

Ue;p ð21Þ
and corresponds to the equivalent energy state of the observed
material point with stress tensor rij and strain tensor ekl.

Finally, according to Eqs. (19) and (21) we can conclude that
damage due to the total equivalent energy amplitude
Dae ¼ DðUaeÞ can be given in terms of damage due to the total mean
energy Dm ¼ DðUmÞ and damage due to the total energy amplitude
Da ¼ DðUaÞ,
DðUaeÞ ¼ DðUmÞ þ DðUaÞ: ð22Þ

Considering the composition of the total energy from the strain
and the complementary part as shown in Eq. (19), Eq. (22) becomes

DðUaeÞ ¼ DðWmÞ þ DðCmÞ þ DðWaÞ þ DðCaÞ: ð23Þ
Now considering that the displacement and damage of material

are caused by strain energy only [29–31], the damage contribution
of the complementary energies equals 0, so

DðUaeÞ ¼ DðWmÞ þ DðWaÞ: ð24Þ
Equating Eq. (22) with (24) shows that damage contributions of

the total and strain energies are equal,

DðUaeÞ ¼ DðWaeÞ;DðUmÞ ¼ DðWmÞ and DðUaÞ ¼ DðWaÞ: ð25Þ
Hence the total equivalent energy according to Eq. (21) can be

directly used to predict fatigue life. It is shown in Appendix A that
Eq. (25) is in accordance with the conventional strain energy calcu-
lation considering the contributions of mean and amplitude load
levels.

Additionally, if a mean stress parameter a is introduced to the
total energy calculation in Eq. (19), it is possible to adjust the
importance of the mean stress effect by the equation

Uae;p ¼ aUm;p þ Ua;p: ð26Þ
If a ¼ 1, the Smith–Watson–Topper’s mean stress correction is

considered, if a ¼ 0, no mean stress correction will be calculated.
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For 0 < a < 1, an arbitrary mean stress correction is considered,
e.g. the Bergmann type [25] which can be based on experimental
observations, e.g. by fatigue tests at different mean stress values.

Energy life curves

S� N and e� N curves are gained from high-cycle fatigue (HCF)
and low-cycle fatigue (LCF) tests, respectively. The controlled vari-
ables, i.e. stress in HCF tests and strain in LCF tests, alternate
between limit states continuously until failure of the specimen
according to the stress ratio Rr or the strain ratio Re, respectively.
As the material response is nonlinear elastic as well as different in
tension and compression, the stress and strain ratios are usually
not equal. Energy life curves are created from r� e curves and
either e� N or S� N curves at distinct constant temperatures. If
the e� N curve for a strain ratio Re and temperature T is available,
the number of cycles to failure N can be obtained for a given strain
e as shown in Fig. 4(a). From the r� e curve in Fig. 4(b), the stress
r for a given strain e is retrieved and both the mean energy Um and
the energy amplitude Ua are calculated according to Eq. (19). Con-
sidering Eqs. (19) and (20) for the experimental values of stress and
strain as well as the chosen mean stress parameter a, the equiva-

lent energy Ucycle
ae can be calculated from

Ucycle
ae ¼ 2

raea Re ¼ �1
raea þ armea otherwise:

�
ð27Þ

It turns out that U � N curves which follow from this calculation
should be transformed into energy life U � d curves as

d ¼ 1=N ð28Þ
to avoid numerical difficulties due to unlimited number of cycles to
failure for equivalent energies beneath the endurance limit. The
equivalent cycle damage d is always bounded between the values
of 0 and 1 and is therefore more convenient than the number of
cycles to failure for further analyses. The energy life U � d curve is
presented in Fig. 4(c). However it should be noted that caution must
be taken when determining ea, ra and rm. The mean stress param-
eter a must be the same as that used during the energy calculation
otherwise erroneous fatigue damage predictions may occur. Eq. (27)

is also valid only if rm þ ra > 0, otherwise Ucycle
ae ¼ 0.

If the S� N curve for the stress ratio Rr at temperature T is
available, the number of cycles to failure N is obtained for a given
stress r. The strain e and strain ratio Re are then obtained from the
experimental r� e curve. The rest of the transformation into a
U � d curve is the same as for the e� N curve. The transformation
shown in Fig. 4 is mandatory for each test temperature.
Fig. 4. (a) e� N curve for Re ¼ 0 [32], (b) r� e response [8] with c
Continuous energy and damage calculations

For simple load cycles the calculations of the total mean and
amplitude energies are fairly straightforward. But if real-life situa-
tions of arbitrarily loaded components are being analysed, their
values are not so obvious. Therefore the approach has been incor-
porated into a method which enables the continuous calculation of
rm;p and ra;p based on memory rules that provide information of
the equivalent elastic stress and strain amplitude, and the total
energy at every time instant. A flow chart illustrating the stages
of the method is given in Fig. 5.

The method is similar to the one presented in [26] but with an
additional outer loop to consider all principal directions and is then
followed by a damage calculation based on Prandtl operators. A
pseudo code illustrating the continuous total energy calculation
is given in Appendix B.

The procedure depicted in Fig. 5 is carried out as follows:

1. Stress and strain tensors rijðtsÞ and eklðtsÞ, the mean stress
parameter a as well as uniaxial r� e and S� N or e� N
curves are required as input data.

2. U � d curves for test temperatures are created (as outlined in
Section ‘‘Energy life curves”).

3. U � d curves are discretised into fictive yield energies
uj ¼ 1; . . . ;nu which allows the utilisation of the Prandtl
spring-slider model in Fig. 6 for the fatigue damage calcula-
tion. A similar procedure can be found in [6,12].

4. Prandtl densities djðTkÞ; j ¼ 1; . . . ; nu; k ¼ 1; . . . ;nT are deter-
mined as

 !
alculate
djðTkÞ ¼ 1
ujþ1 � uj

dfjþ1ðTkÞ
4

�
Xj�1

i¼1

diðTkÞ ujþ1 � ui
� �

: ð29Þ
5. Principal stresses rpðtsÞ and principal strains epðtsÞ are then
searched for.

6. For every principal component p and time instant ts origins
of both stress ro;pðtsÞ and strain eo;pðtsÞ, and the origin of total
equivalent principal energy Uo;pðtsÞ are determined, indicat-
ing the current cyclic state of the material based on the iden-
tification of rainflow and Clormann–Seeger load cycles [26].
This allows calculation of the amplitudes ra;pðtsÞ and ea;pðtsÞ
and the mean rm;pðtsÞ.

7. The total equivalent principal energy amplitude Uae;pðtsÞ is
calculated from Eq. (26).

8. The total equivalent principal energy Ue;pðtsÞ is calculated
using Eq. (20).
d energies and (c) transformed U � d curve for a ¼ 1.



Fig. 5. Incorporation of the approach into a method for continuous energy and damage calculations.
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9. The total equivalent energy UeðtsÞ is gained from
Eq. (21).

10. The Prandtl spring-slider model is loaded by the total equiv-
alent energy UeðtsÞ and the back stresses UdjðtsÞ on individual
springs are calculated as
UdjðtsÞ ¼ max UeðtsÞ � uj; min UeðtsÞ þ uj;
djðTs�1Þ
djðTsÞ Udjðts�1Þ

� �� �
:

ð30Þ
11. The contribution of each spring-slider segment to the cyclic
damage evolution is given by
DjðtsÞ ¼ djðTsÞUdjðtsÞ ð31Þ

and the damage operator DðtsÞ representing the cyclic damage evo-
lution as
DðtsÞ ¼
Xnu
j¼1

DjðtsÞ: ð32Þ



Fig. 6. Discretisation of U � d curve and spring-slider model with fictive yield
energies (ordinate axis) used to calculate accumulated fatigue damage (abscissa
axis) for one temperature division.

Fig. 7. Uniaxial load history for node 321. A fragment of a mechanical component
(shown as a meshed solid block in reversal points) is arbitrarily loaded in the
vertical direction (uz). The total displacement |u| is given in colours. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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12. Accumulated fatigue damage Df ðtsÞ is expressed as the vari-
ation of the damage operator over time as
Df ðtsÞ ¼
Xs
i¼1

jDðtiÞ � Dðti�1Þj: ð33Þ
Compared to the conventional energy calculation, the proposed
method does not involve integration so it is more time efficient,
which is particularly beneficial if FE models with a vast number
of nodes and elements and longer load histories are being anal-
ysed. Considering the path independence of the energy, only the
reversal points can be used for the energy calculation. In this case
however, the nonlinear information between reversal points is
irretrievable. As the strain and complementary energies always
form a rectangular shape in space, the procedure is valid for any
arbitrary nonlinear elastic material response.
Fig. 8. Multiaxial load history for node 321. A fragment of a mechanical component
(shown as a meshed solid block in reversal points) is arbitrarily loaded in all
directions (ux, uy, uz). The total displacement |u| is given in colours. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Numerical examples and discussion

A solid block (Fig. 7), representing a fragment of an arbitrary
mechanical component, consisting of 4500 brick elements and
5376 nodes, has been chosen to illustrate the method presented
in Section ‘‘Continuous energy and damage calculations”. The
material used for numerical examples is a blend of filled natural
rubber, poly-butadiene rubber and styrene-butadiene rubber, syn-
thesised via free-radical polymerisation as an emulsion in water. It
is used in industry as a part of the composite that is used for pro-
ducing air spring bellows. For further details on the material used
in this study the reader is referred to [8,32]. A two-parameter
Mooney–Rivlin material model [8] has been used to describe the
nonlinear elastic stress–strain response of the rubber in a finite
element calculation. The r� e curve and the e� N curve with its
energy equivalent U � d curve are given in Fig. 4. Two load histo-
ries have been considered: a uniaxial load history (Fig. 7), to give
a simple demonstration of how the method might be used and to
illustrate the relation with the uniaxial SWT parameter; and a mul-
tiaxial load history (Fig. 8) to give a fuller numerical example
demonstrating the ability of the method. Node 321 and element
286, both indicated in Fig. 7, have been chosen for fatigue analysis
for both load histories. For simplicity, a constant temperature of
25 �C is assumed throughout.
The base of the block is fixed in its normal direction whereas the
block can freely move in either transverse direction. The top side of
the block is loaded with displacements in normal and/or transverse
directions as shown in Figs. 7 and 8. The displacements of node 321
which represent the variable load history are also given in Figs. 7
and 8.

The calculated stress–strain histories, and the corresponding
principal values and the energy calculation are given in Figs. 9–
12. Whilst the convention on sorted principal stresses
r1 P r2 P r3 is used here, it is not mandatory. Principal stresses
and strains in element 286 are given in Fig. 9 for the uniaxial case
and in Fig. 10 for the multiaxial case. The energy variation and the



Fig. 9. Energy calculation for the uniaxial load history. Stresses, strains and their origins together with the mean stresses, stress amplitudes and the total principal energies
with their origins are calculated for t ¼ i; i ¼ 1;2; . . . ;8 s. The number of circles represents the number of steps performed in the analysis.
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predicted damage of the chosen component are given in Fig. 11 for
the uniaxial case and in Fig. 12 for the multiaxial case.

An initial comparison of Figs. 9 and 10 shows that more steps
are needed for a multiaxial load history FE analysis to converge
than for the uniaxial case (the number of circles in Figs. 9 and 10
represents the number of steps performed in the analysis). Dis-
placements which are transverse to the loading direction occur
in the uniaxial load case as a consequence of Poisson’s ratio, but



Fig. 10. Energy calculation for the multiaxial load history. Stresses, strains and their origins together with the mean stresses, stress amplitudes and the total principal
energies with their origins are calculated for t ¼ i; i ¼ 1;2; . . . ;8 s. The number of circles represents the number of steps performed in the analysis.
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produce no additional stresses in the material. In the multiaxial
load case however, displacements in the lateral directions will pro-
duce additional normal and shear stresses. In the uniaxial case,
only one principal stress is strongly expressed; that is the
maximum principal stress in tension between time intervals of 0
to 3 and 7 to 8 s and the minimum principal stress in compression
between 3 to 7 s. In the multiaxial case all three principal stresses
will simultaneously occur depending on the loading.



Fig. 11. Energy variation and fatigue damage calculation for the uniaxial load
history.

Fig. 12. Energy variation and fatigue damage calculation for the multiaxial load
history.
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The origins for stresses, strains and equivalent energies shown
in Figs. 11 and 12, allow a visual check of the mean and amplitude
calculation. The first principal stress r1 in Fig. 9 increases from 0 to
1 s whereas its origin ro;1 decreases for the same amount in the
opposite direction as an alternating cycle is assumed at the begin-
ning. To confirm this it can be seen that the amplitude ra;1 is rising
from 0 to 1 s whereas the mean stress rm;1 remains at zero. There is
a reversal point at 1 s so r1 starts decreasing from here on and the
origin ro;1 is set to the value of r1 at 1 s. At 2 s the origin ro;1 is set
to the value of r1 at 2 s as r1 starts increasing again. When the first
principal stress r1 exceeds its value at 1 s, a closed loop starting at
2 s is obtained so the material follows the original path which
started at the beginning (t ¼ 0). Consequently the origin jumps
to the opposite side, the stress amplitude increases and the mean
stress value is set to 0. Similar behaviour is noticed throughout
the history for the first, second and third principal directions. Fur-
thermore, the stress, strain and equivalent energy calculations for
the multiaxial load history given in Fig. 10 follow this same beha-
viour, i.e. bigger closed loops of the first principal stress are
obtained just before 3, 6 and 8 s and bigger closed loops of the third
principal stress are obtained just before 3 and 7 s. Jumps in origins
of stresses and equivalent energies may occur during the ampli-
tude and mean calculation as is observed for the first principal
stress r1 between 4 and 5 s (Fig. 9). The reason for the jumps of ori-
gins lies in the strain-dependence of reversal points as the strain is
their driving quantity [26], and it has been shown that by knowing
the reversal points of the strain alone allows for the identification
of not only the strain amplitude, but also the mean stress and the
stress amplitude. Here this also applies to the calculation of the
principal energy amplitude and principal mean energy. When e1
starts decreasing at 4 s in Fig. 9, its origin lies at the level of e1 at
4 s so the origins of r1 and Ue;1 also lie at their respective values
of r1 and Ue;1 at 4 s. But when e1 reaches a reversal point before
5 s, a small nested cycle is closed and the origin is therefore shifted
to the previous reversal point, in this case to the one at 3 s. Accord-
ing to the strain-driven reversal points the origins of r1 and Ue;1 at
this particular moment also change to the values of the reversal
points at 3 s.

From Figs. 11 and 12 it can be seen that the equivalent energy of
the block increases or decreases not only depending on the product
of the principal stresses and strains, but also the mean stress influ-
ence. On the contrary, the accumulated fatigue damage Df always
increases and is therefore a good indicator of the damaged state
of the block. In the uniaxial case where the second and for some
time the third principal stresses remain at zero, though the princi-
pal strains vary throughout the analysed load history, the equiva-
lent energy as a product of these quantities remains zero and
does not contribute to the total damage. The fatigue damage in
the uniaxial case is therefore only due to either the first principal
stress and strain when the solid is loaded in tension; or the third
principal stress and strain when loaded in compression. This is in
accordance with uniaxial stress–strain theory.

In the multiaxial case however, the second and the third princi-
pal strains are not merely a consequence of the block contracting
during loading but also actively producing stresses as the solid is
loaded in all directions. Higher loads also cause higher damage
which can easily be seen by comparing the stress, strain, energy
and damage jumps between 6 and 7 s with the remainder of the
loading for the uniaxial case in Figs. 9 and 11 and between 2 to
3 s and 6 to 7 s for the multiaxial case in Figs. 10 and 12.

The influence of the mean stress level can be noted in Figs. 11
and 12. Two limit contributions are depicted, with a ¼ 0 (no mean
stress correction, thin lines) and a ¼ 1 (mean stress correction,
thick lines). If no mean stress is considered, smaller fluctuations
of the energy variations Ue are observed as compared to the con-
sidered mean stress correction. But if the mean stress is not consid-
ered for the determination of the U � d curve (Fig. 4), the
amplitudes become more influential. Therefore more than 5 times
higher fatigue damage is observed if the mean stress is not consid-
ered throughout the calculation in both, the uniaxial and the mul-
tiaxial case. Furthermore, the simulated multiaxial history would
cause approximately 35% more damage compared to the simulated
uniaxial history. Setting a between 0 and 1 changes the amount of
accumulated fatigue damage.
Conclusions

The approach presented here enables energy-based fatigue
damage calculations including the mean stress effect that resem-
bles the equivalent uniaxial approach with the Smith–Watson–Top
per or the Bergmann damage parameter. If the mean stress effect is
not considered, the approach produces the same result as the con-
ventional energy-based approach but in a significantly shorter
time as the calculation rests on the subtraction of two energy
states rather than the integration process between them. The mean
stress effect is considered with the parameter a. Numerical exam-
ples show high dependence of the fatigue damage on the consider-
ation of the mean stress effect in both uniaxial and multiaxial
cases. Further validations of the method are on-going.



Fig. 13. Pseudo code illustrating the continuous total energy calculation.
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Appendix A. Equivalence with the SWT parameter

If the total equivalent principal strain energy amplitude of a
load cycle Wae;p consists of the principal strain energy amplitude
Wa;p and the mean principal strain energy Wm;p, the following rela-
tion holds

Wae;p ¼ Wa;p þWm;p: ðA:1Þ
By the definition of strain energy in Eq. (3) and assuming a con-

stant temperature it can be shown that the principal strain energy
amplitude can be calculated as

Wa;p ¼ Wa;pðea;qÞ ¼
Z ea;q

0
ra;pdea;q ¼T¼const

Z ea;q

0
Dppqqea;qdea;q

¼ 1
2
Dppqqea;qea;q ¼ 1

2
ra;pea;q ðA:2Þ

and the mean principal strain energy as

Wm;p ¼ Wm;pðeqÞ ¼ 1
4

Z em;qþea;q

em;q�ea;q
rpdeq ¼T¼const 1

4

Z em;qþea;q

em;q�ea;q
Dppqqeqdeq

Wm;p ¼ 1
8
Dppqq em;q þ ea;q

� �2 � em;q � ea;q
� �2� 	

Wm;p ¼ 1
8
Dppqq e2m;q þ 2em;qea;q þ e2a;q � e2m;q � 2em;qea;q þ e2a;q

� 	� 	
Wm;p ¼ 4

8
Dppqqem;qea;q

Wm;p ¼ 1
2
rm;pea;q:

ðA:3Þ
With dea;p and dea;q being interchangeable integration variables

and p; q ¼ 1;2;3, Eqs. (A.2) and (A.3) can then be rewritten as

Wa;p ¼ 1
2
ra;pea;p ðA:4Þ

and

Wm;p ¼ 1
2
rm;pea;p ðA:5Þ

The total equivalent principal strain energy amplitude accord-
ing to the general expression in Eq. (A.1) is thus

Wae;p ¼ 1
2
ra;pea;p þ 1

2
rm;pea;p ðA:6Þ

which is equal to the Smith–Watson–Topper mean stress criterion
given by Eq. (16), rearranged and divided by 2.

Appendix B. Method for continuous total equivalent energy
calculation

Steps 6–9 of the method for calculating the continuous total
equivalent energy as presented in Section ‘‘Continuous energy
and damage calculations” are given in Fig. 13. The strain reversal
points are calculated prior to initiation of the counters p, i, and j
in lines 1 and 3. The counters represent the current principal direc-
tion, time instant and the number of reversal points in the resi-
duum, respectively. The maximum absolute principal strain emax;p

is also initiated.
Next, for every principal direction in line 2 all the data points in

the load history in line 4 are processed. When a data point is pro-
cessed it is moved to the residuum.
If the number of reversal points in residuum j > 2, line 5 is
checked to see whether residuum strains eresj�2;p, eresj�1;p, eresj;p and strain
epðtiÞ form a rainflow cycle [33]. If a rainflow cycle is not found
then the Clormann–Seeger cycle [34] is searched for in line 13. If
j 6 2 nor a rainflow cycle, nor a Clormann–Seeger cycle is found,
line 17 is checked to see if epðtiÞ has exceeded the current maxi-
mum absolute principal strain – this condition is always fulfilled
for the first point in the load history (emax;p ¼ 0). If none of the
above conditions is met, strain origin eo;pðtiÞ, stress origin ro;pðtiÞ
and the origin of total equivalent principal energy Uo;pðtiÞ are set
to the jth residuum in line 20. The amplitude and mean values of
stress and strain are determined in line 22. If the maximum stress
in line 23,

rmax;pðtiÞ ¼ rm;pðtiÞ þ jra;pðtiÞj; ðB:1Þ

is greater than zero, the total equivalent principal energy amplitude
in line 27 equals

Uae;pðtiÞ ¼ signðea;pðtiÞÞðUa;p þ aUm;pÞ ðB:2Þ

otherwise Uae;pðtiÞ ¼ 0 in line 29. The total equivalent principal
energy in line 31 referring to time ti is then

Ue;pðtiÞ ¼ Uo;pðtiÞ þ 2Uae;pðtiÞ: ðB:3Þ
Logical operator S is a switch that defines which point repre-

sents the origin in a given time instant. If it is set to false in line
32, line 33 is checked as to whether epðtiÞ is a reversal point. The
first and last points in the load history are also treated as reversal
points. If epðtiÞ is a reversal point, then j is incremented and resi-
duum strain eresj;p , residuum stress rres

j;p and residuum total equiva-

lent principal energy Ures
j;p are set to the i� th values in line 34.

After all the data points have been processed, the total equivalent
energy is calculated in line 43.
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