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Given a graph G, its edges are said to be exactly x-coloured if we have a surjec-
tive map from the edges to some set of colours of size x. Erickson considered the
following statement which he denoted P(c, m): if the edges of K|��the complete
graph on vertex set N��are exactly c-coloured, then there exists an infinite complete
subgraph of K| whose edges are exactly m-coloured. Ramsey's Theorem states that
P(c, m) is true for m=1 and all c�1, and can easily be used to show that P(c, m)
holds when m=2 and c�2. Erickson conjectured that P(c, m) is false whenever
c>m�3. We prove that given m�3 there exists an integer C(m) such that P(c, m)
is false for all c�C(m). � 1999 Academic Press

1. INTRODUCTION

The classical result of Ramsey [6] for colourings of infinite graphs can
be stated in the following way.

Theorem 1. Let c�1 be a positive integer and suppose that we have a
c-colouring of the edges of the complete graph whose vertex set is N, i.e., a
function

2: N(2) � [1, ..., c].

Then there is an infinite complete subgraph all of whose edges have the same
colour.
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This theorem has inspired very many generalizations and further ques-
tions. Some of this work concerns the existence of particular monochromatic
structures, but one might also take some m>1 and search for substruc-
tures where exactly m colours are used. In [2] M. Erickson formulated
such a problem in the form of a proposition P(c, m), for positive integers
c, m:

P(c, m). If the edges of a countably infinite complete graph K| are
exactly c-coloured, then there exists a countably infinite complete subgraph
H of K| whose edges are exactly m-coloured.

Of course, a graph G is said to be exactly x-coloured (x # N) if the
colouring map from E(G) to some set of colours of size x is surjective. As
usual we denote the vertex set of a graph V(G) and we denote the edge set
E(G).

The case m=1 of P(c, m) is, of course, just Ramsey's Theorem, and
P(c, m) trivially holds in the case c=m. Erickson [2] observed that a fairly
straightforward application of Ramsey's Theorem also enables one to show
that P(c, m) is true in the case m=2 (provided c�2; of course P(c, m) is
false if c<m). Erickson [2] found counterexamples to P(c, m) in many
other cases and he conjectured that the only cases for which P(c, m) holds
are those just described. In other words, he conjectured that P(c, m) is true
if and only if

(1) m=1, or

(2) m=2 and c�2, or

(3) c=m�3.

It is not too difficult to produce various families of counterexamples to
P(c, m), each family sustaining the conjecture of Erickson for a significant
range of values for c and m. The principal difficulty in proving the conjec-
ture seems to be that one family of counterexamples will cover values with
a certain property, and another family will cover values with some quite
unrelated property. Even if we put together several such families of coun-
terexamples, there always seem to be some parameter values which are not
covered.

We are not able to give a complete solution to the conjecture. However,
we do obtain counterexamples to P(c, m) which are significantly different
from those obtained before; with the aid of random methods we are then
able to extend these counterexamples to show that for each m�3, P(c, m)
is false for all sufficiently large c.
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In Section 2 of this paper we will describe our main new method for con-
structing counterexamples. This will enable us to prove the following result.

Theorem 2. Suppose that c>m�3 are positive integers. Let n, p, k and
q be the unique natural numbers such that

c=\n
2++2& p and 0� p�n&2,

m=\k
2++2&q and 0�q�k&2.

Then, if p� p mod 6, or p=0, or q=0, then P(c, m) is false.

As we indicate at the beginning of Section 4, it is possible to extend our
methods constructively to cover certain other cases. In Section 3, we turn
our attention to random colourings. These colourings are closely related to
the constructive colourings of Section 2 and we are almost able to fill in the
gaps in Theorem 2. We prove the following:

Theorem 3. Suppose that m�3 is a positive integer. Then there exists
an integer C(m) such that P(c, m) is false for all c�C(m).

Before we proceed with the specific counterexamples of Section 2, we
describe a very general way of giving colourings, which essentially reduces
the problem of colouring an infinite graph to the colouring of finite graphs.
We take a complete subgraph of K| with n vertices, Kn , and we colour the
edges and vertices of this Kn using all the colours 1, ..., c&1, and perhaps
also using the colour c. We use this colouring to induce an exact c-colour-
ing of K| as follows. All the edges of Kn receive their assigned colour. All
edges of the form vw, where v # V(Kn) and w # V(K|)"V(Kn) receive the
colour of v. All the edges of K|&Kn receive the colour c. Now we see that
any infinite complete subgraph of K| must use the colour c, and it also
uses the colours of the edges and vertices of whatever complete subgraph
of Kn it contains. Actually, it is not too hard to see that if there is a coun-
terexample to P(c, m) then a subgraph of it must give a counterexample
that is induced by a finite graph colouring in this way: given any coun-
terexample, one can find a complete finite subgraph Kn in which all c
colours are used; n applications of the pigeonhole principle, followed by
Ramsey's Theorem, yield a complete infinite subgraph which is obtained
from Kn in the way described above.

In order to illustrate this we give an example (we will use numbers to
represent colours in all figures we give):
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We can easily check by testing that the colouring in this example is a
counterexample to P(4, 3). But how can we check colourings systematically
to see whether they are counterexamples or not? We shall restrict our
attention to colourings with a special structure, for which we are able to
answer this question.

2. THE CONSTRUCTION OF COUNTEREXAMPLES

This section implicity includes a proof of Theorem 2.
We shall describe two closely related general strategies for obtaining

colourings, which we shall call type I and type II. Recall that in order to
induce an exact c-colouring on the edges of K| , we colour the edges and
vertices of some Kn with either c&1 or c colours.

Type I. We choose the minimum n # N such that ( n
2)+2�c. So we

have

c=\n
2++2& p,

where 0� p�n&2. We then colour the vertices of Kn with colour 1, and
use the ( n

2)& p colours strictly between 1 and c for the edges of Kn . Of these
colours, a total of p will be used twice and the remaining colours will only
be used on one edge. The final colour, colour c, is of course used to colour
all those edges which are not incident with any vertex of Kn , as described
at the end of the introduction.

In order to specify the colouring completely, we must say how the p pairs
of edges��where both edges of the pair have the same colour��are
arranged. Before we turn to this matter in detail, we describe the other type
of colouring which we use.
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Type II. We write c in the form

c=\n$
2++1& p$,

with 0� p$�n$&2 (so, unless p=0 above, n$=n and p$= p&1). We then
colour the vertices of Kn$ with colour c (the same colour used for the edges
not incident with Kn$) and use the remaining ( n$

2 )& p$ colours to colour the
edges of Kn$ . Similarly to type I colourings, we will have p$ pairs of edges,
with both edges of each pair having the same colour, and all the remaining
edges having different colours.

It may seem that the difference between type I and type II colourings is
so slight that it is of very little interest. As we shall see, however, this very
small flexibility is crucial.

Before explaining in detail how we arrange the pairs in such a way as to
give useful colourings, we give a simple example of a type I colouring:

This example shows a counterexample to P(7, 4). We have 7=( 4
2)

+2&1 so p=1. Any infinite complete subgraph containing only two ver-
tices of K4 will only have three colours; any infinite complete subgraph
containing three vertices of K4 must have five colours (it cannot contain
the pair) so no subgraph has exactly four colours.

More generally, suppose we have a colouring of K| based on, for example,
a type I colouring of Kn . We say that a particular set of vertices, V, spans
a pair if both edges of that pair are contained in the complete subgraph
induced by V. Our counterexamples are based on the following critical
observations. If V is the vertex set of any infinite complete subgraph
and V contains exactly l vertices of Kn then the subgraph will have
exactly

\ l
2++2& pV
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colours, where pV is the number of pairs spanned by V. Now throughout
our discussion of type I colourings we will write m in the form

m=\k
2++2&q,

with 0�q�k&2. We can see that if we have a type I colouring and we
choose an infinite complete subgraph containing only k&1 vertices of Kn

(i.e., l�k&1) then we will not have as many as m colours. If we can
arrange our pairs in such a way that any group of k+1 vertices spans no
more than k&1+q pairs, then we ensure that any infinite complete sub-
graph containing k+1 vertices of Kn contains more than m colours. Then
the only way that we can obtain exactly m colours will be to use k vertices,
so our task will be to arrange the pairs in such a way that no group of k
vertices spans precisely q pairs.

Similar observations can be made for a type II colouring of Kn$ , which
we address in more detail in due course. For now, however, we turn to the
details of how we arrange the pairs in our type I colourings.

We describe four configurations for the pairs and show, in each case, for
which values of p and q the configuration provides a counterexample to
P(c, m). There is a central idea running through all these configurations: a
group of either two or three pairs can be arranged in such a way that they
are all spanned by a particular set of four vertices, but none of the pairs
is spanned by any three of those vertices. So, for instance, if p#0 (mod 3)
(which, henceforth, we denote simply p#0 (3)) then we can arrange all the
p pairs in groups of 3; if q�0(3) then no subgraph can contain exactly q
pairs.

From the preceding comments, one can see that which arrangement of
pairs we use depends on the values of p and q modulo 6. The values of n
and k are not important but we must bear in mind that p can be as large
as n&2 and in all cases we wish to arrange the p pairs in such a way that
no group of k+1 vertices contains more than k&1+q pairs.

Each description of a configuration is accompanied by a figure.
It is easy to see how to generalize the special configuration for p=6 in

Fig. 1 to represent all values for p with p#0 or 2 or 4 (6). If n is even then
we can get as many as n&2 pairs. If n is odd then, since p is even, we need
at most n&3 pairs ( p�n&2 and hence �n&3), which we can indeed
construct. So each p#0 or 2 or 4 (6) with p�n&2 can be represent by
configuration 1.

If q is odd then no complete subgraph contains exactly q pairs. We also
observe that any set of k+1 vertices spans at most k&1 pairs and there-
fore has too many colours. Hence we have counterexamples to P(c, m) for
all values p and q with p#0, 2 or 4 (6) and q#1, 3 or 5 (6).
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FIG. 1. Configuration 1.

In configuration 2, we use copies of K4 to produce 3 pairs in such a way
that any set of vertices spans either 0 pairs or all 3 pairs. Then we link the
K4 graphs in a chain as shown in Fig. 2. This configuration enables us to
represent all values of p with p#0 or 3 (6). For that we have to check
whether n vertices are enough to produce exactly p=n&2 pairs. If n#1 (3)
we can construct as many as n&1 pairs in the above way; for n#2 (3) we
get as many as n&2 pairs so again this is enough. If n#0 (3) then we can
only obtain n&3 pairs; since, however, we are assuming p#0 (3) and
p�n&2 we see that in fact p�n&3, so the construction is fine.

Now we claim that these type I configuration 2 colourings produce
counterexamples to P(c, m) for p and q with p#0 or 3 (6) and q#1, 2, 4,
or 5 (6). Indeed, we see that in any complete subgraph the number of pairs
is divisible by three, so cannot be equal to q. Furthermore, if we take k+1
vertices we obtain too many colours because we get at most k pairs which
is no more than the limit discussed above of k&1+q (using the fact that
in these cases, q�1).

Configuration 3 (Fig. 3) is the same as configuration 2 except that we
add another pair to reach other congruence classes for p. As a consequence
we can only have complete subgraphs with 3r or 3r+1 pairs (r # N0 ,
where, for clarity, N0 denotes the natural numbers including 0). Hence we
cannot obtain exactly q pairs for q#2 or 5 (6). As in previous cases, it is

FIG. 2. Configuration 2.
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FIG. 3. Configuration 3.

straightforward to check that we can always fit in p pairs in such a way
that any complete subgraph with k+1 vertices has too many colours.
Therefore, this configuration supplies us with type I colourings which are
counterexamples to P(c, m) for p#1 or 4 (6) and q#2 or 5 (6).

In configuration 4, we use configuration 2 to construct 3r (r # N0) pairs.
At the end we add 2 pairs by using 2 vertices which are not used so far for
building pairs and two vertices which belong to pairs (see Fig. 4). With the
help of configuration 4 we represent all values for p#2 or 5 (6).

It is again easy to check that p=n&2 pairs can be constructed: since
p#2 (3), n#1 (3). We would get n&1 pairs by configuration 2 by using
n vertices. If we only use n&2 vertices we can get n&4 pairs. Now we add
another two pairs with the help of the ``free'' vertices. We conclude that
n&2 pairs are constructible in a configuration 4 colouring.

Much as before we can see that configuration 4 allows us to find coun-
terexamples in all cases with p#2 or 5 (6) and q#1 or 4 (6).

Table I summarizes all results which we get by a type I colouring of Kn

using configurations 1�4. The numbers in the table stand for repre-
sentatives of the equivalence classes modulo 6. Recall that we always have
q, p�0. A cross in the table means that this case is covered by one of the
configurations above.

FIG. 4. Configuration 4.
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TABLE I

p
q

0 1 2 3 4 5

0
1 _ _ _ _ _
2 _ _ _ _
3 _ _ _
4 _ _ _ _
5 _ _ _ _ _

We now turn to the subject of type II colourings. Recall that for a type II
colouring we express c in the form

c=\n$
2++1& p$,

with 0� p$�n$&2. Let us also express m in a similar way,

m=\k$
2 ++1&q$,

with 0�q$�k$&2. Of course, if p>0 and q>0, then we simply have
n$=n, k$=k, p$= p&1, and q$=q&1.

Once again we must arrange pairs in a certain way, and we can do this
with configurations 1�4. It is not hard to see what new cases this enables
us to cover. For example, by precisely the same argument as that used
for type I colourings, a type II colouring using configuration 1 will cover
those cases where p$#0, 2 or 4 (6) and q$#1, 3 or 5 (6). Provided p>0
and q>0 then this is equivalent to the condition that p#1, 3 or 5 (6) and
q#0, 2 or 4 (6). More generally, if the values of p$ and q$ modulo 6 (rather
than p and q) correspond to a cross in Table I, then that case is covered
by a type II colouring using configurations 1�4. It is a simple matter to
check that all the cases where p� p (6), p>0, and q>0 are covered by
either a type I or type II colouring.

We note, furthermore, that if p<q then we have a trivial counter-
example: however we arrange p pairs then no subgraph can possibly have
q pairs; it is easy to check that we can arrange p pairs in such a way that
no set of k+1 vertices spans more than k&1+q pairs, so we obtain a
counterexample to P(c, m). In particular, the case p=0, q>0 is easily
covered. So except for the case q=0, we have covered all cases where
p�q (6).

We now complete the proof of Theorem 2 by constructively giving coun-
terexamples which cover any case where q=0 (and c>m�3). We do this
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not only for completeness, but also to indicate some new techniques for
covering cases where p#q (6). Note that��in contrast to our other results
and all the counterexamples given in [2]��here we are proving, for certain
values of m, that P(c, m) is false for all c>m.

We will use a type II colouring in order to prove the case q=0 for all
p�0. The corresponding formulas for m and c are m=( k+1

2 )+1&(k&1)
(which equals ( k

2)+2&0); c=( n
2)+1&( p&1) except when p=0, in which

case we have c=( n+1
2 )+1&(n&1).

Our aim is to generalize the distribution of the pairs as given in
the following example for n=7 where p>0 (note that there are p&1
pairs):

We will consider the cases p=0 and p>0 separately. Recall that in order
to give a type II colouring, we need only specify a colouring, 2, of the
edges of a finite complete graph.

Case 1 ( p=0). Let Kn+1 have vertex set V1=[x1 , ..., xn+1]; we define
an edge-colouring by 2(x1 xi)=i&1 for 2�i�n, 2(xixi+1)=i&2 for
3�i�n and 2(x2xn+1)=n&1. There are c&1&(n&1) colours left to
colour ( n+1

2 )&2(n&1)=c&1&(n&1) edges in Kn+1 . So every remaining
edge receives a different colour. Observe that we produce n&1 pairs.

Case 2 ( p>0). Let V2=[x1 , ..., xp+2] be a set of p+2 vertices taken
from the vertex set of Kn (recall that p+2�n). We define an edge-colour-
ing of Kn in which the vertices of V2 span p&1 pairs: let 2(x1xi)=i&1 for
2�i� p and 2(xi xi+1)=i&2 for 3�i� p+1. Once again every remain-
ing edge in Kn receives a different colour.

For both colourings it is easily seen that if we pick exactly k+1 vertices
then we can obtain at most k&2 pairs, and hence will have too many
colours. We will certainly have too few colours if we only have k vertices
so we do indeed have the required counterexamples to P(c, m) for q=0
with p�0.
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3. RANDOM COUNTEREXAMPLES

In this section we use random graph techniques to extend the coun-
terexamples of the previous section and thereby prove Theorem 3 which
was stated in the introduction. Before getting down to the details, we
describe the general approach.

In the previous section we expressed c and m in the following way:

c=\n
2++2& p with 0� p�n&2,

m=\k
2++2&q with 0�q�k&2.

We were able to prove that P(c, m) is false except when p#q (6); we
were also able to prove it to be false when p=0 or q=0.

Now consider alternative representations for c :

c=\n+1
2 ++2&( p+n)=\n+2

2 ++2&( p+2n+1).

If p#q (6) then either p+n or p+2n+1 (or both) is not congruent to
q modulo 6. This suggests that we might be able to find some counter-
examples by working with Kn+1 or Kn+2 and including p+n or p+2n+1
pairs respectively. Indeed, this turns out to be a fruitful approach but there
is an obvious difficulty to overcome. The configurations given in the pre-
vious section are only valid when the number of pairs does not exceed
n&2. Once we have included more pairs, it is rather difficult to arrange
them in such a way that no group of k+1 vertices spans more than
k+q&1 pairs, which was an important requirement.

In this section we show how to use a certain random arrangement to
place a large number of pairs (we need up to about 3n) in a useful way,
with no group of k+1 vertices spanning too many pairs. For a fixed m,
this random arrangement will provide counterexamples for all sufficiently
large c. The detailed calculations concerning the random placement of pairs
are contained in the proof of Lemma 4. In order to motivate the lemma,
recall that our general strategy is to place pairs mostly in groups of two or
three (in fact, we shall see that in this section it will be sufficient just to use
groups of two). Each such group is specified primarily by the selection of
a group of four vertices, so we are really concerned with the selection of a
number of groups of four vertices from the graph. As well as requiring that
no group of k+1 vertices should contain too many such groups, we also
wish to ensure that no two such groups have more than one vertex in
common: if they have two vertices in common than we may wish the
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corresponding edge to be a member of two pairs at the same time! With
these considerations in mind, we now state and prove our main lemma.

Lemma 4. Suppose :�0, l # N. Then _N(=N(:, l )) # N such that if
n�N and t=W:nX, then we can find sets A1 , ..., At # [n] (4) such that

i{ j O |Ai & Aj |�1 (3.0)

and, for all V # [n](l ),

*[1�i�t : Ai /V]�Wl�3X&1. (3.1)

Proof. We select a random collection of 4-sets by choosing each
member of [n] (4) independently with probability

p :=
24(:+1)

(n&1)(n&2)(n&3)
.

We denote this random collection by A ; the size of A is binomially dis-
tributed and has mean exactly (:+1) n ( p was chosen for this reason). We
will show that if n is large enough then there is a positive probability that
A is such that the desired collection can be obtained from A by discarding
a few of its members.

To begin our calculations, we observe that with large probability, A has
cardinality at least (:+1�2) n. All we need to know in fact is that

P( |A|�(:+1�2) n) � 0 as n � �. (3.2)

Since |A| has mean (:+1) n and standard deviation less than
- (:+1) n, (3.2) follows from as simple a tool as Chebyshev's inequality.
Of course, using a normal approximation we can see that we can expect the
probability in (3.2) to be exponentially small and a little work with prob-
ability generating functions enables one to obtain an exact exponential
bound. The application of Theorem 7(i) in [1] (p. 13) gives a better
exponential bound; for :�5 (which will comfortably hold in our applica-
tion of the lemma) it gives

P( | |A|&(:+1) n|�(1�2) n)�2e&n�12(:+1)2
- (:+1)�n.

With condition (3.0) in mind, we now turn to the question of how many
(unordered) pairs of distinct elements of A intersect in two or more points.
We denote the collection of all such pairs by X, so

X=[[A, B] # A(2) : |A & B|�2].
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Given any 4-set, there are less then ( 4
2)( n&2

2 )=3(n&2)(n&3) other 4-sets
which intersect it in two or more points. So we can bound the total number
of unordered pairs of elements of [n](4) which intersect in two or more
points:

|[[A, B] : A, B # [n](4), |A & B|�2]|�3(n&2)(n&3) \n
4+<2

=
n(n&1)(n&2)2 (n&3)2

16
.

Each of the unordered pairs just counted has probability p2 of being in
X. Hence

E( |X| )�
n(n&1)(n&2)2 (n&3)2

16
p2

=36
n

n&1
(:+1)2. (3.3)

One has to remove at most |X| sets from A to obtain a collection
satisfying condition (3.0). We would like to have to remove no more than
(1�2) n 4-sets; a simple application of (3.3) gives

P( |X|�(1�2) n)�
72(:+1)2

n&1
. (3.4)

One should be able to greatly improve on (3.4) with some work, but this
crude bound will suffice for our purposes.

For our final calculation we need to bound the probability that there is
some l-set which contains Wl�3X or more of the members of A. Suppose
that V # [n](l ). Given a collection of Wl�3X members of V (4), the probability
that they are all in A is of course pWl�3X. So

P( |V (4) & A|�Wl�3X)=P \ .
[B�V (4) : |B|=Wl�3X]

[B�A]+
� :

[B�V (4) : |B| =Wl�3X]

P(B�A)

=\ ( l
4)

Wl�3X+\
24(:+1)

(n&1)(n&2)(n&3)+
Wl�3X

�
#

(n&3) l ,

where # depends on l and : but not on n.
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Now, given V # [n](l ), the event SV :=[A : |V (4) & A|<Wl�3X] is a
monotone decreasing event (or a down-set) in the usual sense that it is
downward closed: if A1 �A2 and A2 # SV , then A1 # SV . By Harris's
Inequality ([4]; see also [5]) any two decreasing events are positively
correlated: the probability of their intersection is at least as great as the
product of their probabilities. Combining this result with the preceding
bound we have

P(\V # [n] (l ), SV holds)=P \ ,
V # [n](l )

SV +
�\1&

#
(n&3) l+( n

l )

� e&#�l ! as n � �. (3.5)

To piece together the information so far obtained we refer to the following
three conditions:

(i) |A|>(:+1�2) n,

(ii) |X|<(1�2) n,

(iii) \V # [n](l ), |V (4) & A|<Wl�3X.

Equations (3.2) and (3.4) show that (i) and (ii) (respectively) are satisfied
with probability arbitrarily close to 1 provided n is sufficiently large. Equa-
tion (3.5) shows that (iii) is satisfied with probability bounded away from
zero.

Hence for n sufficiently large, A has a positive probability of satisfying
all three conditions; i.e., for some A all three hold.

Now condition (ii) ensures that by removing no more than (1�2) n mem-
bers of A we obtain a collection satisfying condition (3.0). Condition (i)
ensures that the collection still has at least :n members, so by removing
further sets, if necessary, we have exactly t=W:nX sets. Condition (iii) still
holds after removal of some sets, so (3.1) holds and we have the required
collection of 4-sets. K

Having proved Lemma 4, we are now in a position to move straight to
a proof of our principal result.

Proof of Theorem 3. Let m�3 be given. We wish to show that for suf-
ficiently large c, the statement P(c, m) is false. As usual we write m in the
form

m=\k
2++2&q with 0�q�k&2.
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If q=0 then we know that P(c, m) is false for all c>m (by Theorem 2).
So we may assume that q�1 (and hence k�3).

Let N=N(3�2, k+1) in the sense of the statement of Lemma 4 (i.e.,
:=3�2 and l=k+1). We shall show that if c�( N&2

2 )+2 (and c>m) then
there is a counterexample to P(c, m). Given such a c we express it as

c=\n
2++2& p with 0� p�n&2.

In light of Theorem 2 we may assume p�1 and that p#q (6). We note
that the lower bound on c ensures that n�N&1.

All of the necessary counterexamples will be obtained by arranging pairs
in a manner rather similar to configuration 1 of Section 2, which was used
in the case when p is even and q is odd. We can write m in the form

m=\k
2++=&q*,

with ==1 or 2 chosen in such a way that q* is odd. Let us now write c as

c=\n
2++=& p~ ;

note that if ==1 then q is even, hence (as p#q (6)) p�2 so p~ �1. There-
fore, whatever the value of =, 1� p~ �n&2.

Now, since p~ +2n+1 is even, we may rewrite c as

c=\n*
2 ++=& p* with p* even,

by taking n*=n+2 and p*= p~ +n+(n+1) (if n were odd, we could also
take n*=n+1 and p*= p~ +n).

If ==2 then we will use a type I colouring and if ==1 we use a type II
colouring. In either case we shall take advantage of the fact that p* is even
and q* is odd to give an exact c-colouring in which the pairs are arranged
in groups of two, as follows.

We consider the graph Kn* with vertex set [n*]. Since n*�N(3�2, k+1)
and p*�3n* (and p* is even) we can apply Lemma 4 to obtain sets
A1 , ..., Ap*�2 satisfying (3.0) and (3.1) (with l=k+1). To each set Ai we
associate two pairs of edges in an obvious way: we arrange the vertices of
Ai in an arbitrary order, v1 , v2 , v3 , v4 and take [v1v2 , v3 v4] as one pair and
[v1v4 , v2v3] as the other. Property (3.0) from the statement of Lemma 4
ensures that no edge is part of two such pairs. As before, the two edges of
any pair both receive the same colour, but apart from that any two edges
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in Kn* get distinct colours, and all the edge colours are taken from the set
[1, ..., c&1]. All the vertices receive the same colour, and this colour is dif-
ferent from the colours used on any of the edges. If ==2 this is colour 1
(this means we have a type I colouring) and if ==1 the vertices get colour
c (a type II colouring). This colouring of the edges and vertices of Kn*

induces a colouring of the edges of an infinite complete graph in the usual
way (described at the end of the introduction).

It is now a straightforward matter to check that we have a counter-
example to P(c, m). If we take a complete infinite subgraph which contains
k&1 vertices of Kn* then we cannot possibly have as many as m colours.
If we have k+1 vertices of Kn* then condition (3.1) ensures they span
strictly less than (k+1)�3 of the 4-sets Ai , so we have less then 2(k+1)�3
pairs and hence too many colours. Finally if we take exactly k vertices then
we need q* pairs, which is impossible since q* is odd and any set of vertices
must span an even number of pairs. K

We close this section with a couple of remarks about the proof. It is easy
to see that the conclusion of Lemma 4 cannot hold for values of n which
are not much larger than l. Therefore, even if we could prove the Lemma
constructively it would not be possible to extend it to find counterexamples
for all the open cases of P(c, m): some new idea is required. The proof of
Lemma 4 could be simplified a little (essentially avoiding the use of the
positive correlations result) to give a slightly weaker conclusion, with
l�3&1 replaced by l�3. This would still be sufficient to prove Theorem 3,
but we have chosen to give as strong a result as possible in the (perhaps
vain) hope that it lays a better groundwork for further developments.

4. RELATED PROBLEMS AND REMARKS

The constructions of Section 2 left open all the cases when p#q (6)��
except when q=0��and Section 3 filled the gaps only in the cases when c
is large (relative to m). It is possible to construct counterexamples to cover
some further special cases, but we are not able to completely cover even
one of the six diagonal cases ( p#q (6)) of Table I. We remark, without
giving details, that we have counterexamples for the cases where p=q,
for q # [1, 2, 3, k&2, k&3, k&4, k&5] and any value of p, and when
n& p<k&q.

There are a number of interesting variations of P(c, m). Perhaps the
most natural is to ask if we can find some complete subgraph, not
necessarily infinite, which is exactly m-coloured. In the Ramsey case��when
m=1��this is, of course, a rather dull question, but for m>1 it becomes
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non-trivial. To be precise, we formulate the following proposition
F (n, c, m):

F (n, c, m). For every exact c-colouring of the edges of Kn , there exists
a complete subgraph of Kn whose edges are exactly m-coloured.

To be of any interest at all, n must satisfy the condition ( n
2)�c

(otherwise there is no exact c-colouring on E(Kn) so F (n, c, m) is trivially
true for all m). The most natural case is probably when n is taken to be
arbitrarily large, or equivalently (via the usual compactness arguments) n
is replaced by |.

We note that F (n, c, m) is trivially true for c=m and for m=1. In the case
m=2 we can see that for each c�2, for all n�R(c; c) (where R(c; c) denotes
the Ramsey number for finding a monochromatic Kc and using c colours)
F (n, c, 2) holds: given an exact c-colouring of Kn pick a monochromatic
subgraph Kl of largest order (so n>l�c) and suppose without loss of
generality that this subgraph is coloured orange. Let x # V(Kn)"V(Kl). If
some edge from x to Kl is orange then by maximality of l we may pick an
edge from x to Kl with a different colour and thereby obtain a 2-coloured
triangle. Otherwise, all edges from x to Kl have a colour other than orange
and by the pigeonhole principle we can find two such edges with the same
colour and hence a 2-coloured triangle.

With a little more care one can establish that F (n, c, m) holds if c�3
and all m ; we omit the proof for brevity. It is not hard to see, however,
that F (n, c, m) and, indeed, F (|, c, m), are false in a lot of cases, and the
counterexamples of Section 2 can be useful here too. However, there are
many more gaps than there were in Section 2, due to the simple fact that
our spare colour��colour c of Section 2��which was used on all the edges
not incident with the vertices of Kn , is not guaranteed to appear in finite
subgraphs. We do not feel we are close to proving anything analogous to
Theorem 3 for the proposition F (n, c, m).

Canonical Ramsey Theory (see e.g., [3], pp. 111�116) provides results
about colourings when infinitely many colours are used, and one can also
investigate a version of proposition P(c, m) in this case.

I(m). For every colouring of the edges of K| with infinitely many
colours there exists a finite complete subgraph of K| whose edges are
exactly m-coloured.

Since we can colour all edges of K| with different colours we know that
I(m) is false unless m is of the form ( k

2) for some k. The cases k=1 and
k=2 are trivial, and we can also prove I(3) using the same proof as for
F (n, c, 3); note that although we can guarantee some complete subgraph
with exactly three colours, we cannot guarantee a triangle with three
colours. Although we have not been able to prove a precise structure
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theorem, the condition that K| does not contain a 3-coloured triangle
place quite significant restrictions on the colouring; note, for instance, that
under this condition any complete subgraph on n vertices contains at most
n&1 colours.

More generally, we have been unable to determine whether I(( k
2)) holds

for any k>3, or whether much can be deduced about the colouring if one
knows that no Kk uses ( k

2) colours.
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