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h i g h l i g h t s

• Phase diagrams and compensation temperatures are examined for the mixed spin-2 and spin-5/2 Ising system with two single-ion
anisotropies.

• The mean-field theory based on the Bogoliubov inequality for the Gibbs free energy is examined for the system.
• The Landau expansion of the free energy in the order parameter is obtained to describe the phase diagrams.
• The tricritical behavior is examined.
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a b s t r a c t

We study the effect of two different single-ion anisotropies in the phase diagram and in the
compensation temperature of mixed spin-2 and spin-5/2 Ising ferrimagnetic system. We
employed the mean-field theory based on the Bogoliubov inequality for Gibbs free energy.
We use the Landau expansion of free energy in the order parameter to describe the phase
diagram. In the temperature versus single-ion anisotropy plane the phase diagram displays
tricritical behavior. The critical and compensation temperatures increase with increasing
values of the single-ion anisotropies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the last five decades, the Ising model has been one of the most largely used models to describe critical behavior of
several systems in nature. It is important to stress that in condensed matter theory it is relevant to describe the critical
behavior and thermodynamic properties of a variety of physical systems (including disordered systems, spins glass, random
field Ising systems, etc.). Recently, several extensions have beenmade in the spin-1/2 Isingmodel to describe a wide variety
of systems. For example, themodels consisting ofmixed spinswith differentmagnitudes are interesting extensions, forming
the so-called mixed-spin Ising class.

Indeed, the discovery of molecular-based (MB) magnetic materials [1] has been one of the advances in modern
magnetism. Many MB magnetic materials have two types of magnetic atoms regularly alternating which exhibit
ferrimagnetism. In this context, a good description of their physical properties is given by means of mixed-spin
configurations. Additionally, the interest in studying magnetic properties of molecular-based ferrimagnetic magnetic
materials is due to their reduced translational symmetry rather than to their single-spin counterparts, since they consist
of two interpenetrating sublattices. In this sense, Kaneyoshi et al. [2,3] have studied the magnetic properties as well as the
influence of a single ion anisotropy in the compensation temperature (T ) of bipartite molecular-based ferrimagnet. They
considered two problems, the first is that of a two-dimensional ferromagnetic Ising system composed of ferrimagnetically
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ordered chains with alternating atoms of spin-1/2 and spin-S(S > 1/2) by using Ising spin identities and the differential
operator technique. In the second case a diluted spin-2 and spin-5/2 ferrimagnetic Ising system was investigated on the
basis of the effective-field theory with correlations. On other hand, Drillon et al. [4] analyze the thermodynamic behavior
of an exchange-coupled linear system with two alternating spin sublattices, showing that a bimetallic complex chain like
MnNi(EDTA)6H2O is a good example of an experimental realization of themixed-spin system. Thus, ferrimagneticmaterials
are of great interest due to their possible technological applications and from a fundamental point of view. As discussed
above, these materials are modeled by mixed-spin Ising model that can be built up by infinite combinations of different
spins, where the pairs constituted by spins with values small are the simplest ((spin-1/2, spin-1), (spin-1/2, spin-3/2),
(spin-1, spin-3/2), (spin-2, spin-3/2), (spin-2, spin-5/2), and so on).

Noteworthy, there are many studies onmixed-spin Ising systems aiming to explain the physical properties of disordered
systems. This interesting topic has been a great challenge in statistical mechanics. In this regard, in the last years there has
been great interest in the study of magnetic properties of systems formed by two sublattices with different spins and crystal
field interactions [5]. One of the earliest and simplest type of these models was the mixed-spin Ising system consisting of
spin-1/2 and spin-S (S > 1/2) in an uniaxial crystal field [6,7]. However, from a pure theoretical point of view, such systems
have been widely studied by a variety of approaches, e.g., effective-field theory [8–17], mean-field approximation [18–20],
renormalization-group technique [21], numerical simulation based on Monte-Carlo [22–32] and, finally, exact solutions
for the mixed spin-1 and spin-S Ising model in an uniaxial crystal field [33–38]. More recent interest is to extend such
investigations into a more general mixed-spin Ising model with one constituent spin-1 and, in the simplest case, the other
constituent spin-3/2. In this context, Abubrig et al. [39] presented amean-field theory study to elucidate crystal field effects
in the phase diagram of mixed spin-1 and spin-3/2 Ising configurations. Interestingly, they have found some outstanding
new features in the T -dependence of both total and sublattice magnetizations.

In this paper, we study the effect of two different single-ion anisotropies in the phase diagram as well as in the
compensation temperature of the mixed spin-2 and spin-5/2 Ising ferrimagnetic system. This case (the mixed spin-2 and
spin-5/2 Ising ferrimagnetic system with two crystal-field interactions) primarily was studied on the Bethe lattice by using
the exact recursion equations [40,41]. On the other hand, we employed the mean-field theory based on the Bogoliubov
inequality for Gibbs free energy to describe the phase diagram. Thus, even knowing the limitation of the mean field theory,
it is still an adequate starting point, and produces a very simple way to understand the possible critical behavior of physical
systems. The paper is organized as follows: In Section 2, the model is introduced and analytical expressions for free-energy
and equations of state are obtained. In addition, we derive the Landau expansion of free energy in the order parameter. In
Section 3,wedescribe our theoretical results anddiscuss the phase diagramand the compensation temperature dependence.
Finally, in Section 4 we present our conclusions.

2. The model and calculation

The mixed-spin ferrimagnetic Ising system consists of two interpenetrating square sublattices (A and B) with spin
SA = 0, ±1, ±2 and spin SB = ±1/2, ±3/2, ±5/2. In each site of the lattice there is a single-ion anisotropy (DA in the
sublattice A and DB in the sublattice B) acting on the spins S = 2 and spins S = 5/2 at the lattice sites. The system is
described by the following model Hamiltonian:

H = −J

⟨i,j⟩

SAi S
B
j − DA


i∈A

(SAi )
2
− DB


j∈B

(SBj )
2, (1)

where the first term represents the interaction between the nearest neighbor spins at sites i, j located on sublattices A, B,
respectively. J is the magnitude of the spin–spin interaction, and the sum is over all nearest neighbor pairs of spins. The
second and third terms represent the single-ion anisotropies at all points of the sublattices A and B. The sums are performed
over N/2 spins of each sublattice.

In order to derive analytical expressions for free energy and equations of state, we employ the variational method based
on the Bogoliubov inequality for Gibbs free energy [42], which reads

G(H) ≤ G0(H0) + ⟨H − H0(η)⟩0 = Φ(η). (2)

Here, G(H) is the free energy of H , and G0(H0) is the free energy of a trial Hamiltonian H0(η) depending on variational
parameters. ⟨· · ·⟩0 denotes a thermal average over the ensemble defined by H0(η). To facilitate the calculations, we choose
the simplest trial Hamiltonian, which is given by

H0 = −


i∈A


DA(SAi )

2
+ ηASAi


−


j∈B


DB(SBj )

2
+ ηBSBj


, (3)

where ηA and ηB are variational parameters related to two different spins configurations. Within this approach we obtain
the free energy and the equations of state (i.e., sublattice magnetization per sitemA and mB):

g = −
1
2β

ln [2 exp(4βDA) cosh(2βηA) + 2 exp(βDA) cosh(βηA) + 1]
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−
1
2β
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
2 exp


25
4

βDB


cosh


5
2
βηB


+ 2 exp


9
4
βDB


cosh


3
2
βηB


+ 2 exp


1
4
βDB


cosh


1
2
βηB


−

1
2
JzmAmB +

1
2
ηAmA +

1
2
ηBmB, (4)

where β = 1/kBT . The sublattice magnetizations per sitemA andmB are defined bymA = ⟨SAi ⟩0 and mB = ⟨SBj ⟩0, thus

mA =
2 sinh(2βηA) + exp(−3βDA) sinh(βηA)

cosh(2βηA) + exp(−3βDA) cosh(βηA) +
1
2 exp(−4βDA)

, (5)

and

mB =
1
2


exp(−6βDB) sinh

 1
2βηB


+ 3 exp(−4βDB) sinh

 3
2βηB


+ 5 sinh

 5
2βηB


exp(−6βDB) cosh

 1
2βηB


+ exp−4βDB cosh

 3
2βηB


+ cosh

 5
2βηB

 
. (6)

Minimizing the free energy in terms of the variational parameters ηA and ηB, we obtain
ηA = JzmB ηB = JzmA, (7)

where z is the coordination number. Hence, we find the generic mean-field equations (4)–(7), which provide the magnetic
properties of our ferrimagnetic system. Since these Eqs. (5)–(7) have in general several solutions for the pair (mA,mB), the
stable phase will be the one which minimizes the free energy. The detailed phase diagram is determined numerically, but
some features of the phase diagram can also be obtained analytically. Close to the second-order phase transition our solution
can vary from an ordered state (mA ≠ 0 and mB ≠ 0) to a disordered state (mA = 0 and mB = 0). Given the fact that the
magnetizationsmA and mB are very small, we therefore expand the Eqs. (4)–(6) to obtain a Landau-like expansion:

g = A0 + A2m2
A + A4m4

A + A6m6
A + · · · , (8)

where the expansion coefficients are given by

A0 = −
1
2β

ln[(1 + ya + xa)(zb + yb + xb)], (9)

A2 =
1
2β


t2

4
a1 −

t2

8
a2 −

t4

32
a21b1


, (10)

A4 =
1
2β


t4

768
a21c1 +

t3

192
c2a1a2 +

t2

96
c3


, (11)

A6 =
1
2β


t4

11520


c4 +

6
t
c5


+ t5


2a2

18423
c2(3a21 − a3) −

c5
7680

a2a1


+

t7c2
18432


a4 − 3a31a

2
2


+

t8

245760
c6


, (12)

with t = βJz, and

a1 =
zb2 + 9zb1 + 25
zb2 + zb1 + 1

, a2 =
4xa + ya

xa + ya + 1
, b1 =

25xb + 9yb + zb
xb + yb + zb

,

a3 =
zb2 + 81zb1 + 625

zb2 + zb1 + 1
, a4 =

16xa + ya
xa + ya + 1

, b2 =
625xb + 81yb + zb

xb + yb + zb
, (13)

a5 =
zb2 + 729zb1 + 15625

zb2 + zb1 + 1
, a6 =

64xa + ya
xa + ya + 1

, b3 =
15625xb + 729yb + zb

xb + yb + zb
, (14)

c1 =
t4

8
a21(3a

2
2 − a4), c2 =

t3

2
(3a21 − a3), c3 =

t2

4
(3b21 + 4a3 − 12a21 − b2), (15)

c4 =
t2

4
(−b3 + 15b1b2 − 30 − b1), c5 =

t3

4
(−15a3a1 + a5 + 30a31), (16)

c6 =
t4

12
(−a6a61 − 30(a2a21)

3
+ 15a2a4a61), (17)

where
xa = 2e4βDA; ya = 2eβDA; zb2 = e−6βDB; zb1 = e−4βDB ,

xb = 2e
25
4 βDB; yb = 2e

9
4 βDB; zb = 2e

1
4 βDB; t = zJβ. (18)
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3. Results and discussions

The phase diagrams below are constructed according to the following routine: (i) numerical solutions for A2 = 0 and
A4 > 0 provide second-order transition lines. (ii) A2 = 0, A4 = 0 and A6 > 0 determine the tricritical points. (iii) The
first-order transition lines are determined by comparing the corresponding Gibbs free energies of the various solutions of
Eqs. (5) and (6) for the pair (mA, mB). Moreover, we have also observed that A6 > 0 in the full T ,DA,DB space. We also note
that the coefficients A2, A4 and A6, in Landau expansion, are even functions of J , thus the critical behavior should be the same
for both cases ferromagnetic (J > 0) and ferrimagnetic (J < 0).

For the particular caseDA = DB = 0, the critical temperature is determined by takingmA → 0 andmB → 0, orA2 = 0 and
DA = DB = 0, giving kBTc/Jz = 2.4152. This value is qualitatively in agreement with estimates derived from effective-field
theory with correlations (EFT) in the honeycomb lattice [3,5], and with the values of mean-field approximation (MFA) [3]
for minor spins.

3.1. The ground-state solution

The ground-state phase diagram (see Fig. 1) is determined from the Hamiltonian (1) by comparing the ground-state
energies of different phases. At zero temperature, the structure of the ground state of our system consists of two disordered
phases and six ordered phases with different values of {mA,mB, qA, qB}, corresponding to ordered ferrimagnetic phases:

O1 =


−2,

5
2
, 4,

25
4


, O2 =


−2,

3
2
, 4,

9
4


, O3 =


−2,

1
2
, 4,

1
4


,

O4 =


−1,

5
2
, 1,

25
4


O5 =


−1,

3
2
, 1,

9
4


, O6 =


−1,

1
2
, 1,

1
4


,

and the disordered phases by

D1 =


0,

5
2
, 0,

25
4


D2 =


0,

3
2
, 0,

9
4


,

where qA = ⟨(SAi )
2
⟩ and qB = ⟨(SBi )

2
⟩. The energies are given by

E1 = −


5
2
Jz + 2DA +

25
8

DB


, E2 = −


3
2
Jz +

1
2
DA +

25
8

DB


, E3 = −


1
2
Jz + 2DA +

1
8
DB


,

E4 = −


5
4
Jz +

1
2
DA +

25
8

DB


, E5 = −


3
4
Jz +

1
2
DA +

9
8
DB


, E6 = −


1
4
Jz +

1
2
DA +

1
8
DB


.

3.2. Phase diagram

The phase diagrams (Figs. 2 and 3) are analyzed in the (DA/z |J| , kBT/z|J|) and (DB/z |J| , kBT/z|J|) planes, where we
follow the routine described at the beginning of this section.

In Fig. 2, we display the phase diagram of kBT/z|J| versus DA/z|J| for selected values of DB/z|J|. At high temperatures,
for all positive and negative values of DB/z|J| within large range values of DA/z|J|, the phase diagram shows only second-
order phase transitions, which are indicated by solid lines. For values of DB/z|J| > 2.5, all second-order lines end up in the
same tricritical point given by (kBTt/z|J| = 1.1313,DA/z|J| = −2.3300). However, for values of DB/z|J| < −2.5 at low
temperatures, all second-order lines end up at the same tricritical point given by (kBTc/z|J| = 0.2243,DA/z|J| = −0.4667).
A heavy dotted curve connects these two tricritical points (kBTc/z|J| = 1.1313,DA/z|J| = −2.3300) and (kBTc/z|J| =

0.2243,DA/z|J| = −0.4667). This curve separates the region with second and first-order phase transitions. In the low
temperature regime and for all values of DA/z|J| and DB/z|J|, the phase transitions are found to be of first-order type. Thus,
in this phase space (DA/z |J| , kBT/z|J|), the system presents tricritical behavior. Additionally, the phase diagram shows
that when DB/z |J| → +∞, the mixed spin Ising system behaves like a two-level system since the spin-5/2 behaves like
SB = ±5/2. Nevertheless, in case that DB/z |J| → −∞, the SB = ±5/2 states are suppressed and the system is equivalent
to a mixed spin-1/2 and spin-2 Ising model. Thus, this is the reason why the coordinates of the tricritical point in the
limit of large positive DB/z |J| are higher than those for large negative DB/z |J|. For the special case with equal anisotropic
fields (DA/z |J| = DB/z |J| = 0) the critical temperature is kBTc/z|J| = 2.4152, and the location of the tricritical point is
kBTt/z|J| = 0.8458,DA/z|J| = −1.5537, for coordination number of lattice z.

In Fig. 3, we show the phase diagram of kBT/z|J| versus DB/z|J| for various values of DA/z|J|. In the case of DA/z|J| >
−0.4716 the phase transitions are only of second-order type (solid lines) for all values of DB/z|J|. Here, the critical
temperatures increase with DB/z|J| and DA/z|J|. Notice that in the range 0.4716 > DA/z|J| > −2.300, the phase
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Fig. 1. Ground-state phase diagram of the mixed spin-2 and spin-5/2 Ising ferrimagnetic system with two different single-ion anisotropies DA/z|J|
and DB/z|J|. The six ordered phases are represented by O1 =


−2, 5

2 , 4, 25
4


, O2 =


−2, 3

2 , 4, 9
4


, O3 =


−2, 1

2 , 4, 1
4


, O4 =


−1, 5

2 , 1, 25
4


,

O5 =

−1, 3

2 , 1, 9
4


, O6 =


−1, 1

2 , 1, 1
4


, D1 =


0, 5

2 , 0, 25
4


, D2 =


0, 3

2 , 0, 9
4


.

Fig. 2. Phase diagram in the (DA/z|J|, kBT/z|J|) plane for the mixed-spin Ising ferrimagnet with the coordination number z, for several values of DB/z|J|.
The solid and light dashed lines, respectively, indicate second- and first-order phase transitions, while the heavy dashed line represents the positions of
tricritical points.

transitions are of second-order type in the high temperature region (solid lines) and of first-order (light dashed lines) at
low temperatures. A heavy dotted curve of tricritical points separates the second- from the first-order transition lines.

One additional interesting feature shown in Fig. 3 refers to the fact that the phase transitions are only of first-order for
DA/z|J| < −2.300. All lines that start below the heavy dotted line will necessarily be of first-order type. As seen, in this
space (DB/z|J|, kBT/z|J|), the system presents tricritical behavior.

These results may be compared to those obtained in Ref. [18], which apparently has a problem in their Eq. (4) and
consequently in Eq. (8). These problems led to very different phase diagrams at finite temperatures.

3.3. Compensation temperature

The present mixed-spin system can exhibit compensation points. In order to clarify this property, we will consider the
case of J < 0. The sign of the sublattice magnetizations are different since we are taking into account the fact that in the
ferrimagnetic phase the system consists of two interpenetrating square sublattices (A and B) with spin-2 and spin-5/2. It is
plausible that the magnetization of the sublattices cancel out at temperatures lower than the critical temperature. So, the
total magnetization per site M = (mA + mB)/2 is zero, in spite of the fact that mA ≠ 0 and mB ≠ 0. This implies that we
have compensation points in a characteristic temperature Tcomp with Tcomp < Tc . Fig. 4 shows the sublattice magnetizations
mA (dashed lines) andmB (solid lines) for DB = 0.0 and T = 2.5 (a), T = 2.25 (b), and T = 2.0 (c). The intersection between
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Fig. 3. Phase diagram in the (DB/z|J|, kBT/z|J|) plane for the mixed-spin Ising ferrimagnet with the coordination number z, for several values of DA/z|J|.
The solid and light dashed lines, respectively, indicate second- and first-order phase transitions, while the bold dashed line shows the positions of tricritical
points.

Fig. 4. The dependence of the sublattice magnetizations mA (dashed lines) and mB (solid lines) for DB = 0.0 and T = 2.5 (a), T = 2.25 (b), and
T = 2.0 (c).

the dashed and the solid line indicates the compensation point. At this point the total magnetization has zero value with
sublattice magnetizations being different from zero (mA ≠ 0 and mB ≠ 0), as clearly seen in Fig. 4.

In Fig. 5, we present the diagram Tc and Tcomp versus DA/z|J| for selected values of DB/z|J|. The diagram shows that there
are compensation points in the range 0.6335 > DB/z|J| > −2.5 and for DA/z |J| > −0.625. Compensation points are
indicated by dotted lines, while solid lines indicate the critical temperature. The inset in Fig. 5 exhibits some compensation
points for DB/z |J| = −2.5. On the other hand, the Fig. 6 exhibits the diagram Tc and Tcomp versus DB/z|J| for selected values
of DA/z|J|. This figure confirms our results shown in Fig. 5, i.e., there is a compensation temperature in the range between
0.6335 > DB/z|J| > −2.5 and DA/z |J| > −0.625.

4. Conclusions

In summary, we have studied the effect of two different single ion anisotropies in the phase diagram and in the
compensation temperature of the mixed spin-2 and spin-5/2 ferrimagnetic Ising system by using the mean field theory
based on the Bogoliubov inequality. The phase diagrams are shown in the critical temperature versus single ion anisotropies
plane. The system presents tricritical behavior, i.e., the second-order phase transition line is separated from the first-order
transition line by a tricritical point. Additionally, we have also observed regions of compensation temperatures. Therefore,
we predict that such a system may exhibit tricritical behavior and compensation temperatures due to the two different
single ion anisotropies.
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Fig. 5. The critical Tc and compensation Tcomp temperatures as a function of the single-ion anisotropy DA/z|J|, and for different values of DB/z|J|. The solid
and dotted curves represent the critical temperature and compensation temperature, respectively. The inset shows a magnification of the region closed
where the compensation and critical temperatures are together for DB/z |J| = −0.625.

Fig. 6. The critical Tc and compensation Tcomp temperatures as a function of the single-ion anisotropy DB/z|J|, and for several values of DA/z|J|. The solid
and dotted curves represent the critical temperature and compensation temperature, respectively.
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