
p ( )

URL: http://www.elsevier.nl/locate/entcs/volume82.html 10 pages

Introduction and Elucidation of the Quality of
Sagacity in the Extended Variable Precision

Rough Sets Model

Malcolm J. Beynon 1

Cardi� Business School, Cardi� University,

Colum Drive, Cardi�, CF10 3EU, Wales, UK

Abstract

This paper introduces the quality of sagacity measure in the extended variable

precision rough sets model - VPRSl;u. The need for this measure is a direct con-

sequence of the use of the associated l and u values. Moreover, di�erent levels of

miss-classi�cation are allowed in the classi�cation of objects to a decision class or

its compliment. This measure attempts to take this into account, by acknowledging

the classi�cation of an object to the compliment of a decision class, as an appropri-

ate (if not optimum) classi�cation of that object. A consequence of the analysis is

a discussion of the notion of open and closed worlds in VPRSl;u.

1 Introduction

The extended variable precision rough sets model (VPRSl;u) developed by

Katzberg and Ziarko [3] includes a general allowance for levels of miss-classi�cation

in an objects classi�cation. The associated l and u values de�ne the construc-

tion of certain set approximation regions which de�ne the possible classi�ca-

tion of objects. Importantly, the l and u values introduce di�erent levels of

allowed miss-classi�cation of an object to a decision class or its compliment.

The degree of dependency measure [3] acknowledges this aspect through

measures on the individual decision classes. A quality of classi�cation measure

concentrates on the objects classi�ed to a speci�c single decision class. To

include the classi�cation of objects to the compliment of a decision class, while

less warranted than the actual classi�cation of objects to a decision class it

does discern some classi�cation knowledge on objects otherwise not given a

classi�cation. Through the utilisation of a (l, u)-graph [1] the partition of

objects to each of the two di�erent types of classi�cation is elucidated.
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An initial measure augmenting the possible classi�cation of objects is in-
troduced, de�ned the quality of sagacity.2 Interpreting the classi�cation of an

object to the compliment of a decision class in two ways enables an informal
discussion on the notion of open and closed world in VPRSl;u.

2 Brief Description of Extended VPRS

Within a decision table there exists a set objects (U) each characterized
and classi�ed b y sets of condition (C) and decision (D) attributes respec-
tiv ely. VPRSl;u allows for probabilistic classi�cation b y utilising two control

parameters, de�ned lower (l) and upper (u) limits respectively, constrained
b y0 6 l < u 6 1. F romC and D, certain condition and decision equivalence

classes E(C) and E(D) respectively are constructed. With Z � U and P � C

three approximation regions are de�ned, �rstly the u-positive and l-negative
regions:

POSu(Z) =
[

fXi 2 E(P ) : Pr(Z=Xi) > ug;

NEGl(Z) =
[

fXi 2 E(P ) : Pr(Z=Xi) 6 lg;

where in each region Pr(Z /Xi) is a conditional probability estimate of Z given

Xi 2 E(P ). The POSu(Z) and NEGl(Z) regions represent the acceptability

of the membership of Xi as being likely or unlikely to belong to Z respectively

(subject to l and u). Where there is no acceptable likeliness, then the Xi is a

member of the (l; u)-boundary region, de�ned b y

BNRl;u(Z) =
[

fXi 2 E(P ) : l < Pr(Z=Xi) < ug:

That is, Xi 2 BNRl;u(Z) cannot be classi�ed to Z or the compliment of Z

with an acceptable error rate. Within VPRSl;u, the notion of the compliment
of Z (de�ned U � Z) is important since the utilisation of l and u values

means the possible classi�cation of an object to Z or U �Z is with respect to
di�erent lev elsof miss-classi�cation. The acknowledgement of this di�erence

in the levels of classi�cation (use of l and u) implies that classifying to the

compliment of Z is itself some form of classi�cation. It follows, the proportion
of the objects classi�ed to a decision class or its compliment can be represented

b ythe 
l;u(P;D) and 

l;u

C (P;D) values respectively, and given b y


l;u(P;D) =

card(
S

Xj2E(P )

fXij9 j Xi 2 POSu(Dj)g)

card(U)
;

and

2 The term sagacity implies wise or good judgement and signi�es the taking into account

of more than just classi�cation to a single decision class, but also to its compliment.

31



Beynon



l;u
C (P;D) =

card(
S

Xj2E(P )

fXij9j Xi 2 NEGl(Dj) and 8jXi =2 POSu(Dj)g)

card(U)
:

The 
l;u(P;D) expression is analogous to the quality of classi�cation ex-
pression in the variable precision rough set model - VPRS� with symmetrical
bound � [4]. That is, the proportion of objects of U in those condition classes
which are contained in a POSu(Dj) region. Whereas 
l;uC (P;D) is the pro-
portion of objects of U in condition classes which are not in any POSu(Dj)
regions, but in a NEG l(Dj) region.

Allowing the classi�cation of objects to the compliment of a decision class
then the quality of sagacity in the VPRSl;u case is next de�ned. With re-
spect to all the objects in the set U , the (l, u)-quality of sagacity (l; u)-QoS
(�l;u(P;D)) is giv enb y

�
l;u(P;D) = 1�

card(
T

Dj2E(D)

BNRl;u(Dj))

card(U)
:

The �l;u(P;D) measure represents the proportion of objects (possibly sub-
ject to a level of miss-classi�cation) which are classi�ed to a decision class or
the complement of a decision class. That is, subject to the l and u values
�
l;u(P;D) does not consider those objects, which cannot be included in any of

the POSu(Dj) and NEG l(Dj) regions. It is noted a connection between these

expressions is given b y
l;u(P , D) + 

l;u
C (P;D) = �

l;u(P;D).

3 Description of data

In this paper the wine data set is utilised, which consists of di�erent wines
derived from three di�erent cultivators (making up the decision classes D1, D2

and D3). Three (out of 13) condition attributes (see Table 1) and 40 (out of
178) di�erent wines (see Appendix A) are considered. Since all the attributes
are continuous in nature, for a VPRSl;u analysis, they need to be discretised
in to in tervals. Table 1 shows the results of the discretisation, found using
the minimum-entropy method [2]. The minimum-entropy method requires a
decision on the number of intervals to discretise each continuous attribute
in to; inthis case two in tervals were used (labelled 1 and 2).

In Table 1, the three condition attributes are each discretised in to two
intervals, also shown is the number of wines in each interval, now in categorical
form. The categorical descriptor values enable the set of objects to be included
in a number of condition and decision classes. In this case there are �ve
condition classes X1, X2, X3, X4 and X5 which include all the 40 wines (see
Table 2).

In Table 2 , the descriptor values identifying each object to a condition
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Table 1

Description of Condition attributes

Condition Attribute
In terval

1 2

c1 - Malic acid [0.8900, 2.6550], 25 [2.6550, 4.6100], 15

c2 - Ash [1.7000, 2.0400], 36 [2.0400, 2.8000], 4

c3 - Magnesium [11.2000, 19.800], 23 [19.8000, 25.5000], 17

class is giv en. The number of objects in each condition class are reported as

well as the number (and proportion) of these objects which are in each of the

three decision classes. The values at the bottom of each Dj column indicate

the number of objects (and proportions) in each decision class.

Table 2

Condition and decision classes in wine problem

Condition classes D1 � 1 D2 � 2 D3 � 3

X1 - fc1 = 1, c2 = 2, c3 = 1g, 12 4 (0.3333) 7 (0.5833) 1 (0.0833)

X2- fc1 = 1, c2 = 2, c3 = 2g, 9 7 (0.7778) 1 (0.1111) 1 (0.1111)

X3- fc1 = 2, c2 = 2, c3 = 2g, 8 2 (0.2500) 0 (0.0000) 6 (0.7500)

X4- fc1 = 2, c2 = 2, c3 = 1g, 7 1 (0.1429) 1 (0.1429) 5 (0.7142)

X5- fc1 = 1, c2 = 1, c3 = 1g, 4 0 (0.0000) 4 (1.0000) 0 (0.0000)

Decision classes 14 (0.3500) 13 (0.3250) 13 (0.3250)

4 (l, u)-graphs describing (l, u)-QoS in VPRSl;u

In this section (l, u)-graphs introduced in Beynon [1] see Fig.1, are produced

to aid in the elucidation of the descriptive measure (l, u)-QoS.

In Fig.1, the general (l, u)-graph is presented, and shows the domain of the

(l, u)-space is an equilateral triangle, its shape is go v ernedb y the constraint

0 6 l < u 6 1. A general point is described b y (l, u), for example in Fig.1

two choices of l and u values are shown, in the case when l = 0.1, u = 0.8

and l = 0.6, u = 0.7. In the subsequent (l, u)-graphs presented, regions of the

graph are identi�ed which have the same level of the measure being considered.

Before the (l, u)-QoS graphs are exposited, the partition of objects classi�ed

to a decision class or its compliment are described by the ordered list [
l;u(P ,

D), 
l;u

C
(P;D)] for the wine data set, and are reported in Fig.2 in the form of

regions of the (l, u)-graph with the same [
l;u(C, D), 
l;u

C
(P;D)] pair of values

(with the ordered lists showing actual n umbers of objects not proportions -

for proportions need divide each value b y40).
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Fig. 1. General (l, u)-graph

Fig. 2. (l, u)-graph showing regions of di�erent [
l;u(C;D), 

l;u
C (C;D)] values

T o illustrate the constructionof the 
l;u(C;D) and 

l;u
C (C;D) values iden-

ti�ed in regions of the (l, u)-graphs the speci�c case of l = 0.1 and u = 0.8 is

considered, and with respect to Table 2 are given b y



0:1;0:8(C;D) =

card(
S

Xj2E(C)

fXij9j such thatXi 2 POS0:8(Dj)g)

card(U)
=
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=
card(fX5g)

40
=

4

40

and



0:1;0:8
C (C;D) =

card(
S

Xj2E(C)

fX
i
j9

j
X

i
2 NEG0:1(Dj

) and 8
j
X

i
=2 POS0:8(Dj

)g)

card(U)

=

card(
S

Xj2E(C)

fX
i
jX

i
2 fX1; X3; X5g and X

i
=2 fX5gg)

40

=
card(fX1; X3g )

40
=

20

40

Hence (ignoring the divide b y 40 part) we get the ordered list [4, 20] as

shown in Fig.2. This interprets to; of the 40 wines, based on l = 0.1 and

u = 0.8 then 4 wines are able to be classi�ed to a single decision class and

20 only able to be classi�ed to the compliment of single decision classes. T o

combine these levels of classi�cation into a single measure then the (l; u)-QoS

measure is considered. With respect to the (l, u)-QoS �l;u(C;D), Fig.3 shows

the regions of the (l, u)-QoS graph with di�erent �l;u(C, D) values.

In Fig. 3 the (l, u)-QoS graph shows a large region with �l;u(C;D) = 1,

which signi�es all objects are classi�ed to a decision class or the compliment of

a decision class. Of particular interest is where �l;u(C;D) < 1, here the (l; u)-

range of the associated BNR
l;u
(�) regions is large - l and umostly towards 0 and

1 respectively . Indeed for the region �l;u(C;D) < 1, it satis�es u�l > 0:5 (with

u� l = 0:5 when u = 0:5833 and l = 0:0833). T o illustrate the construction of

the (l; u)-QoS graphs, the calculation of �0:1;0:8(C;D) with l = 0:1 and u = 0:8

(shown in Fig.3) is next given

�0:1;0:8(C;D) = 1�

card(
T

Dj2E(D)

BNR0:1;0:8(Dj
))

card(U)

= 1�
card(BNR0:1;0:8(D1) \BNR0:1;0:8(D2) \BNR0:1;0:8(D3))

card(U)

= 1�
card(([fX1; X2; X3; X4g) \ ([fX1; X2; X4g) \ ([fX2; X3; X4g))

card(U)

= 1�
card([fX2; X4g)

card(U)
= 1�

16

40
=

24

40
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Fig. 3. (l, u)-QoS graph with C = fc1, c2, c3g

This calculation also con�rms 
 0:1;0:8(C, D)+

0:1;0:8

C
(C;D) = �

0:1;0:8(C,D)

(as does comparison of Fig. 2 with Fig. 3 in general). Similar (l, u)-graphs

can be constructed for the (l, u)-QoS measure for subsets of the condition

attributes C: That is, the �
l;u(P , D) values for P � C, with three condition

attributes considered there exist six proper subsets to consider, see Fig. 4.

F ollo wing the approach in Beynon [1], in each of the six (l, u)-QoS graphs

in Fig. 4, the shaded regions show the subdomain of the (l, u) domain space

for which the subset of condition attributes is a (l, u)-reduct for this problem.

Understandably the region of unshaded area is near the top left corner of the

(l, u)-graph for which each BNR
l;u
(�) has a relatively large (l, u)-range. That

is, the l and u values associated with this area of the (l, u)-graph are near

their extreme values 0 and 1 respectively .The proportion of area (PoA
QoS

(�))

and proportion of discernibility (PoD
QoS

(�)) measures [1] associated with the

(l, u)-QoS measure are next identi�ed for each of the (l, u)-QoS graphs in

Fig. 4 , see T able 3.

Table 3

Description of Condition attributes

P fc1g fc2g fc3g fc1, c2g fc1,c3g fc2,c3g

PoA
QoS

(�) 0.8809 0.6945 0.7921 0.8821 0.9306 0.6953

PoD
QoS

(�) 0.9168 0.6945 0.7921 0.9093 0.9150 0.6953

In T able 3 thePoA
QoS

(�) and PoD
QoS

(�) values di�er for di�erent subsets

of the condition attributes. These values can be used to identify a possible

single (l, u)-reduct. With three condition attributes, (l, u)-reducts of di�erent

sizes can be identi�ed. F oreach di�erent size of possible (l, u)-reduct, from
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Fig. 4. (l, u)-QoS graphs for � l;u(P , D) with P � C = fc1, c2, c3g

T able3 the subsets fc1g and fc1,c3g hav e the largest PoAQoS(�) values from

amongst those subsets of condition attributes of the same size.

An inspection of the (l, u)-graph for �
l;u(fc1; c3g; D) shows it contains

shaded regions with �l;u(C, D) < 1, no other subset of condition attributes has

this shaded region. Hence in Table 3 this also eludes to why PoDQoS(fc1,c3g) >
PoAQoS(fc1,c3g) and not for any other subset of condition attributes.
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5 Conclusion

This paper introduces the degree of sagacity measure in VPRSl;u. One reason

for this inv estigation is the acknowledgement in the di�erent lev els of allowed

miss-classi�cation in the possible classi�cation of an object to a decision class

or its compliment. How important the notion of the classi�cation to the

compliment of a decision class needs to be elucidated.

In the wine problem considered here with three possible decision classes,

classi�cation to the compliment of a decision class could suggest classi�cation

to either of the other two decision classes. Should we conclude this or stop

at saying only it is the compliment of the decision class. This relates to the

notion of open and closed world cases. That is, in the open world case there

may exist other categories not included in the decision table in question - this

may be a sample decision table from a population. Hence only the compliment

of a decision class can be considered. The closed world case would allow the

next stage that the classi�cation is instead to one of the other decision classes

included in the decision table.

Within Dempster-Shafer theory (DST) the issue of open and closed worlds

is a conspicuous issue. That is, the extant literature of DST considers how

these two separate cases should be approached. The question here is can RST

incorporate formally the notion of open and closed world cases. In particular,

VPRSl;u with its added dimension of miss-classi�cation to the compliment of

a decision class may be one direction to consider this problem. Indeed with

an l value speci�c to the allowance of miss-classi�cation to the compliment of

a decision class its value could suggest whether open or closed world is being

considered.
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Appendix A

The discretised condition attribute values and decision attribute value for the

wine data are reported in Table 4.

Table 4

Condition and decision attribute values (in categorical form)

c1 c2 c3 d1 c1 c2 c3 d1 c1 c2 c3 d1

1 1 2 1 1 15 1 2 1 2 29 1 2 1 3

2 1 2 2 1 16 1 1 1 2 30 2 2 1 3

3 1 2 1 1 17 1 1 1 2 31 2 2 1 3

4 1 2 2 1 18 2 2 1 2 32 2 2 1 3

5 1 2 2 1 19 1 2 1 2 33 2 2 2 3

6 1 2 1 1 20 1 2 1 2 34 2 2 1 3

7 1 2 2 1 21 1 2 1 2 35 1 2 2 3

8 1 2 1 1 22 1 2 1 2 36 2 2 2 3

9 2 2 1 1 23 1 2 2 2 37 2 2 2 3

10 2 2 2 1 24 1 1 1 2 38 2 2 1 3

11 1 2 2 1 25 1 2 1 2 39 2 2 2 3

12 2 2 2 1 26 1 2 1 2 40 2 2 2 3

13 1 2 2 1 27 1 1 1 2

14 1 2 2 1 28 2 2 2 3
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