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Incorporation of proteins in biomimetic giant unilamellar vesicles (GUVs) is one of the hallmarks towards cell
models in which we strive to obtain a better mechanistic understanding of the manifold cellular processes. The
reconstruction of transmembrane proteins, like receptors or channels, into GUVs is a special challenge. This
procedure is essential to make these proteins accessible to further functional investigation. Here we describe a
strategy combining two approaches: cell-free eukaryotic protein expression for protein integration and GUV for-
mation to prepare biomimetic cell models. The cell-free protein expression system in this study is based on insect
lysates, which provide endoplasmic reticulum derived vesicles named microsomes. It enables signal-induced
translocation and posttranslational modification of de novo synthesized membrane proteins. Combining these
microsomes with synthetic lipids within the electroswelling process allowed for the rapid generation of giant
proteo-liposomes of up to 50 μm in diameter. We incorporated various fluorescent protein-labeled membrane
proteins into GUVs (the prenylated membrane anchor CAAX, the heparin-binding epithelial growth factor like
factor Hb-EGF, the endothelin receptor ETB, the chemokine receptor CXCR4) and thus presented insect micro-
somes as functional modules for proteo-GUV formation. Single-molecule fluorescence microscopy was applied
to detect and further characterize the proteins in the GUV membrane. To extend the options in the tailoring
cell models toolbox, we synthesized two different membrane proteins sequentially in the same microsome.
Additionally, we introduced biotinylated lipids to specifically immobilize proteo-GUVs on streptavidin-coated
surfaces. We envision this achievement as an important first step toward systematic protein studies on technical
surfaces.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
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1. Introduction

Cells are complex entities with a large variety of active and passive
components that serve tasks from defining the structural integrity of
the cell to the emergence of cell decision-making through complex
and intertwined signaling pathways. As of the sheer complexity our
knowledge about the detailed functioning of a cell is still at its infancy.
Following Feynman's challenge of “what I cannot create, I do not under-
stand” [1] the construction of cellular functionality into an artificial sys-
tem is a major challenge that will supposedly lead us to the learned
understanding of cellular behavior. In this endeavor well-controlled
experiments on biomimetic systems are the essential steps towards a
mechanistic understanding of cellular function (for reviews see [2–5]).

One of the simplest cellmodels, a giant unilamellar vesicle (GUV), con-
sists only of a spherical lipid bilayer enclosing an aqueous buffer that has a
size of up to several tens ofmicrometers in diameter.While GUVs already
extensively served as biomimetic models to study lipid-basedmembrane
processes [5], a whole new set of cellular functionality will become acces-
sible upon introduction of functional proteins that are part of cell-
signaling pathways into this well-characterized model system. Here, we
cense.
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concentrate on controlled incorporation of various membrane-anchored
and transmembrane proteins with an emphasis on G protein-coupled re-
ceptors (GPCRs). GPCRs aremembrane proteins of interest for both acade-
mia and the pharmaceutical industry as primary drug targets.

A protocol to produce pure lipid GUVs in sucrose solution has been
introduced in 1986 [6] and has become a standard preparation
technique since. Incorporation of transmembrane proteins into GUVs
however is non-trivial and requires specialized protocols that vary for
each protein. Early attempts to address a more ubiquitous approach
include detergent assisted protein insertion in the membrane of large
liposomes [7] in combination with fusogenic peptides [8], and the
electroswelling of preformed large proteo-liposomes [9,10]. Only re-
cently, cell-free protein expression systems based on Escherichia coli
(E. coli)were used to prepare small proteo-liposomes that spontaneous-
ly fuse with giant liposomes to achieve giant proteo-liposomes [11].
More research on the combination of both techniques, GUV preparation
and cell-free protein synthesis, so far focused on the role of vesicles as
reaction containers to encapsulate the protein synthesis machinery in
synthetic lipid or polymer membranes [12–14]. However, such E. coli-
based in vitro systems do not permit to produce mammalian proteins
that include posttranslational modifications like glycosylation without
e.g. the addition of exogenous enzymes to reengineer glycosylation
pathways [15].

In recent years manifold pro- and eukaryotic in vitro expression sys-
tems have been established providing the opportunity of well-defined
protein synthesis in a viable cell-independent manner. With these cell-
free techniques, the expression of a variety of cytotoxic [16,17] as well
as membrane spanning proteins (amongst others [18–22]/reviewed in
[23]) can be performedwithin a short time in a versatile fashion. In com-
parison to the common eukaryotic rabbit reticulocyte lysate supplement-
ed with canine pancreatic microsomal membranes, the insect cell-free
system used here provides endogenousmicrosomes. These are endoplas-
mic reticulum (ER) derived vesicular structures, enabling the co-
translational translocation of membrane proteins into the biological
membrane [24–26] in a well-oriented fashion. Furthermore, themethod-
ology allows for posttranslational modification such as glycosylation [22]
and lipidmodification [27]. Compared to commonmethods ofmembrane
protein integration into synthetic membranes or micelles, this method
does not require any detergent solubilization step.

Here we present the insect based cell-free system and its endoge-
nousmicrosomes in combinationwith a tailoredGUV formation process
asflexible tools for the expressionof a variety ofmembrane proteins in a
biological environment. Thus, we are able to build advancedmodel cells
that become accessible to quantitative biophysical interrogation such as
single-molecule microscopy.

2. Material and methods

2.1. DNA templates

Expression of the target protein Pro-Heparin-binding epithelial
growth factor like factor fused to an enhanced yellow fluorescent
protein (Hb-EGF-eYFP) was performed using a pIX3.0 based plasmid
template, whereas C-X-C chemokine receptor type 4 (CXCR4-eYFP)
and cyan fluorescent protein fused to a CaaX sequence (CFP-CaaX)
were synthesized via pcDNA3-vectors. The endogenous signal sequence
of Hb-EGF-eYFP was substituted by the Melittin signal sequence
(for DNA and peptide sequence see [28]).

The linear expression polymerase chain reaction (E-PCR) product of
Endothelin B receptor (ETB) was fused to an eYFP encoding gene
sequence. Regulatory sequences obligatory for cell-free expression
were added to the gene using three consecutive PCR reactions. First an
overlapping sequence for the eYFP fusion was added at the 3′ end of
the ETB-encoding sequence and the 5′ complementary sequence for
the addition of the regulatory sequences was introduced. In the second
PCR step, ETB was fused to the eYFP sequence and the sequence for the
addition of 3′ regulatory sequences was introduced. Finally, the E-PCR
product was completed in a third amplification reaction by the addition
of the final 5′ and 3′ regulatory sequences. PCR primers containing the
gene specific and regulatory sequences are listed in Table S1. The PCR
reactions were performed using High-Fidelity polymerase and appro-
priate puffer components from New England Biolabs according to the
manufacturer's instructions.

Linear PCR products and circular plasmid cDNA templates were
suitable for direct transcription and translation reactions.

2.2. Cell-free protein synthesis

Protein expression was performed in a linked transcription/
translation system [28]. Transcription reaction mixes contained
60 μg/mL plasmid DNA or 8 μg/mL E-PCR product, respectively. Tran-
scription was performed for 2 h at 37 °C in case of Hb-EGF-eYFP and
for 12 h in case of CXCR4-eYFP and ETB-eYFP. Transcription reaction
components were purchased from Qiagen (EasyXpress Insect Kit II).
The generated mRNA was purified using DyeEx spin columns (Qiagen)
according to the manufacturer's protocol. Lysates generated from
Spodoptera frugiperda (Sf21) cells were used for cell-free protein
synthesis in a batch-based mode. Standard lysate preparation was per-
formed as published previously [29]. The gentle disruption of the cells
during this procedure leads to the rearrangement of endogenous mem-
branous structures as the ER and their reconstitution as small vesicular
structures, called microsomes. The translation reaction contained 25%
(v/v) lysate, approximately 250 μg/mLprotein encodingmRNA, canonical
amino acids (200 mM), ATP (1.75 mM) and GTP (0.45 mM). Reaction
mixes for radioactive labeling contained additionally 14C leucine with a
final specific radioactivity of 46.2 dpm/pmol. Each protein of interest
was expressed separately for 90 min at 27 °C and analyzed as described
in the following passage. Fluorescent proteins for microscopic investiga-
tions were prepared in the absence of radiolabeled amino acids.

The synthesis of two different types of proteinswas performed in a se-
quential manner. After the initial translation of the first membrane pro-
tein, the reaction mixture was separated into vesicular and supernatant
fraction by centrifugation (16,000 ×g, 4 °C, 10 min). The vesicular frac-
tion contained the co-translationally translocated protein. The second
translation step was prepared by resuspending the vesicular fraction
from the initial translation reaction in a vesicle depleted translation reac-
tion mix. Protein synthesis was completed using mRNA coding for the
second membrane protein of interest. The translation reaction was per-
formed using standard conditions as previously described.

2.3. Protein separation and autoradiography

Membrane proteins were separated according to their molecular
mass using a Nu-PAGE SDS-PAGE system purchased from Life Technol-
ogies. 5 μL aliquots of standard translation mixes were acetone precipi-
tated at 4 °C and precipitates were centrifuged at 20,000 ×g for 10 min
Protein containing pellets were resuspended in 20 μL of 1× SDS sample
buffer. Subsequently sampleswere separated electro-phoretically using
10% Bis-Tris gels for 35 min at 200 V. Bis-Tris gelswere dried for 60 min
at 70 °C (Unigeldryer 3545D, Uniequip) and 14C leucine labeled mem-
brane proteins were visualized using the phosphor imaging technique
(Typhoon Trio+, Image Eraser, storage phosphor screens and cassettes,
ImageQuant TL software, GE Healthcare).

2.4. Quantification of de novo synthesized membrane proteins

Protein yield was determined using hot trichloroacetic acid (TCA)
precipitation and scintillation quantification. 3 mL of a 10% (v/v) TCA
solution containing 2% (w/v) casein hydrolysate were added to 5 μL of
the translation reaction mix containing 14C leucine labeled membrane
proteins. The translation mix was heated for 15 min at 80 °C followed
by subsequent cooling for 30 min at 4 °C. The precipitated proteins
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were separated and dried by filtration (filtration paper MN GF-3,
Macherey-Nagel). Filters were washed twice with 5% (v/v) TCA and ac-
etone. Proteins retained on the filter membrane were incubated with a
scintillation cocktail (Quicksafe A, Zinsser Analytic) for 1 h. In case of 14C
leucine labeled protein, the scintillation sample was analyzed with the
LS6500 scintillation counter (Beckman Coulter).

2.5. Electroswelling

Giant proteo-liposomes were swollen from target protein harboring
microsomes obtained from cell-free protein expression combined with
synthetic lipids. For that purpose, 1 μL of DOPC (1,2-dioleoyl-sn-
glycero-3-phosphocholine, Avanti Polar Lipids, USA) dissolved in chlo-
roform (2 mg/mL)was deposited on an ITO (indium tin oxide, Diamond
Coatings, UK) coated glass slide (25.8 mm × 25.8 mm × 0.2 mm) and
dried under vacuum for several hours. Subsequently, 1 μL of the micro-
some mixture was added and partially dried under flow of nitrogen. A
slice of PDMS (Polydimethylsiloxane) (Sylgard 184, 1:10, Dow Corning)
with a hole in the center, supported by thefirst ITO glass, served as a dis-
tance element forming the swelling chamber that was filled with PBS
(Gibco) or PBS supplemented with 200 mOsM/L sucrose (Life Technol-
ogies). The chamber was closed with another ITO glass slide and each
ITO glass was connected to the function generator (Hameg, Germany)
via a copper wire attached to the glass with the help of copper tape. In
a typical experiment a voltage of 4 V was applied at 500 Hz for 10 h.
A sketch of the experimental setup is depicted in SI Fig. S1.

2.6. Immobilization assay

The employed immobilization assay was based on the well-
established biotin–avidin interaction that is routinely being used for li-
posome targeting since the 1980th [30]. The DOPC mix mentioned in
the electroswelling experiment (Section 2.5) was supplemented with
10 mol% DOPE-biotin (1,2-dioleoyl-sn-glycero-3-phospho-ethanol-
amine-N-(cap biotinyl), Avanti Polar Lipids) to produce GUVs for the
immobilization assay. GUVs were swollen in the presence of PBS plus
200 mOsM/L sucrose and transferred to the glass-bottom observation
chamber filled with PBS plus 200 mOsM/L glucose (Life Technologies).
The glass was previously functionalized by incubation with 75 μM
BSA-biotin (Sigma) for 15 min and subsequent binding of 1 μM
streptavidin (Sigma) for 30 min Incubations were terminated by
washing with PBS. After the last washing step, PBS was exchanged for
PBS plus 200 mOsM/L glucose.

2.7. Single-molecule microscopy

The experimental setup for wide-field single-molecule imaging
has been described in detail previously [31]. In brief, the samples
were mounted onto an inverted microscope (Axiovert100, Zeiss,
Germany), equipped with a high-numerical aperture oil objective
(Plan-Apochromat, 100×, NA = 1.4, Zeiss, Germany) and a filter-set
suitable for eYFP (dichroic Z405/514/647/1064rpc, emission Z514/
647 m Chroma, USA). An argon-ion laser (Spectra Physics, USA) was
used in combination with an acusto-optical-tunable filter (AA Opto-
Electronics, France) to illuminate the sample at 514 nm and 2 kW/cm2
Fig. 1. Time lapse microscopy of lipid-assisted GUV electroswelling f
for 5 ms per frame. Movies of typically 1500 frames were recorded at
20 Hz on a liquid nitrogen cooled camera (Princeton Instruments,
USA). The region-of-interest was set to 50 × 50 pixels. The apparent
pixel-size was 202 nm.

For the two-color experiment (Fig. 4), we additionally used 405 nm
(Crysta laser, USA) to excite CFP fluorescence at 1.5 kW/cm2 for 5 ms
and replaced the dichroic by ZT458/514/594rpc (Chroma, USA). The
blue (CFP) and yellow (YFP) channel were recorded sequentially to
prevent potential crosstalk.

2.8. Single-molecule localization and tracking

In order to accurately localize themolecules of interest throughout a
recorded single-molecule movie, image processing was indispensable.
Details on background subtraction and noise treatment are published
elsewhere [5]. Each detected diffraction-limited spot was fitted with a
two-dimensional Gaussian function to localize themolecules of interest
with a precision of 35 nm. The obtained single-molecule positionswere
the starting point for single-particle tracking. The necessary steps to
generate trajectories have been described in detail in [5]. In brief, a
probabilistic algorithm is used to connect the positions of molecules in
two frames of a movie (frames i and j). A transitional matrix was built
up which includes the probabilities of all possible connections between
allmolecules in frames i and j. Trajectorieswere constructed byoptimiz-
ing for the combination of all connections with the highest total proba-
bility.We calculated the resultingmean squared-displacement (msd) as
a function of the time lag between the individual frames and subtracted
the offset originating from the limited localization precision as deter-
mined from the Gaussian fit: offset = msd(t = 0) = 4δ2, where δ de-
notes the one-dimensional localization precision. The corrected data
was fitted with a one-dimensional diffusion model to determine the
molecule's diffusion coefficientD in theGUVmembrane:msdcorr = 2Dt.

3. Results

Synthetic lipids (DOPC) were deposited on conducting ITO glass
below insect-based cell-free derivedmicrosomes. In comparison to ear-
lier work on GUV preparation from pure microsomes [27], incorpora-
tion of synthetic lipids greatly facilitated microsomal vesicle fusion
during electroswelling (from 30 h [27] down to 5 h; see Fig. 1).

Furthermore, the introduction of synthetic lipids allowed us to pro-
vide GUVs with additional functionality. E.g. we added lipids with a bi-
otinylated headgroup to achieve ‘sticky’ GUVs, that can be specifically
immobilized to designated loci, a requirement for any lab-on-a-chip
screening application. The strength of the immobilization was assayed
by hydrodynamic flow. As seen in SI Fig. S2 the vesicle was disturbed
by the hydrodynamic stress, whereas the basal part of the membrane
stayed in contact with the support ensuring that the GUV returned to
its initial position once the flow was removed.

We focused on the combination of cell-free protein synthesis to
incorporate the membrane protein of interest into the biological mem-
brane and GUV formation for vesicle enlargement while supporting the
membrane swelling with synthetic lipids. Starting from either plasmid
DNAor a linear PCR product, we successfully producedGUVs containing
various fluorescent protein-labeledmembrane proteins: themembrane
rom insect cell-free system based microsomes. Scale bar 75 μm.



Fig. 2. Qualitative and quantitative analysis of 14C-labled cell-free expressed membrane
proteins CFP-CaaX, Hb-EGF-eYFP, CXCR4-eYFP and ETB-eYFP. (a) Quantification of total
protein yields generated within a cell-free protein synthesis reaction, (b) autoradiograph
of target proteins separated by their molecular mass.
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anchored YFP-CaaX [27], the Pro-Heparin-binding epithelial growth
factor like factor (Hb-EGF-eYFP) harboring a single transmembrane
domain (1 TMD) and two examples of G-protein coupled receptors
exhibiting seven transmembrane domains: (7 TMD) the Endothelin B
receptor (ETB-eYFP) and the C-X-C chemokine receptor type 4
(CXCR4-eYFP). For that purpose, we pre-synthesized the membrane
protein into themicrosomes and used themicrosomes as target protein
harboringmodules for theGUV swelling process. To assess the efficiency
of the cell-free expression method we performed radiolabeling of the de
novo synthesized protein in the crude translation reaction mixture. We
complemented these results by single-molecule imaging of the fluores-
cently labeled target proteins in the GUV membrane to estimate the
final concentration of cell-free synthesized protein in the cell models.
The total yields of the de novo cell-free protein synthesis were in the
range of 4–8 μg/mL (Fig. 2(a)) and the autoradiograph of the molecular
mass separatedmembrane proteins showed distinct bands at the expect-
ed molecular masses (see Fig. 2(b)). Side products of smaller molecular
mass, mainly observed in the ETB expression reaction may have been re-
sult of partial expression or degradation of the full length protein.

As an independentmethod to assess protein localization, potential di-
merization and incorporation into the vesicle bilayer, single-molecule im-
aging was performed. We focused on the equatorial plane of the GUVs
such that proteins in the GUV membrane appeared along the perimeter
of a circle as depicted in Fig. 3 for the example of Hb-EGF-eYFP. See SI
Fig. 3. Single molecule imaging of Hb-EGF-eYFP in the GUV membrane. (a) Sketch. (b) The wh
positions detected during one movie. Scale bar 2 μm. Note that (a) is not to scale.
Fig. S3 for single-molecule snapshots of GUVs exhibiting ETB-eYFP and
CXCR4-eYFP. We observed individual, mobile, diffraction limited fluores-
cence signals that had the characteristics of individual YFP-fusion proteins
[32]. Molecules were localized with a precision of 35 nm and the overlay
of all positions recovers the outline of the GUV Fig. 3(c).

We recorded movies of 1–8 · 104 individual proteins on
22–50 GUVs to determine the mobility of the single transmembrane
Hb-EGF-eYFP as well as the seven transmembrane CXCR4-eYFP and
ETB-eYFP in the membrane of giant vesicles, respectively. In agreement
with the predicted free-diffusion behavior, the msd increased linearly
with the time between observations (see SI Fig. S4).

After correction for the limited localization precision, a linear fit to
the data yielded an experimental diffusion constant, DHb-EGF,exp., of
(3.7 ± 0.2) μm2/s, DCXCR4,exp. = DETB,exp., of (2.7 ± 0.1) μm2/s. This
range of diffusion constants were predicted given that the membrane
consisted of a mixture of ‘natural’ ER membrane and synthetic lipids
(membrane proteins in synthetic vesicles 1–10 μm2/s [8,10,33,34],
membrane proteins in cell membranes (0.1–0.01) μm2/s [35–38]).

To determine the amount of target protein in the proteo-GUVs after
the electroswelling process, we estimated the number of integrated
targetmembrane proteins, n, from the number, N, of singlemolecules de-
tected per movie. Taking into consideration the limits of the observation
volume (focal plane ≈ 1 μm) and the length of amovie (75 s), for an ex-
emplary GUVwith r = 5 μm, only 20% of the GUV surface is observed. In-
dividual molecules with D ≈ 3 μm2/s may reappear inside the
observation volume on average 3 times. Thus, we conclude n = N/0.6.
The estimate is a lower boundary, because during recording single mole-
cule tend to bleach at a higher rate than they recover and sometimes pre-
bleaching of GUVwas necessary to allow for single-molecule imaging.We
tracked approximately 250 proteins/GUV for the 7 TMD receptors and ap-
proximately 850 proteins/GUV for the 1 TMD Hb-EGF-eYFP (Table 1).

In a next step towardsmore complex systemswe combined two dif-
ferent proteins in the same GUV, subsequent to sequential synthesis of
each protein into the same set of microsomes. Here, we present data
on CFP-CaaX and Hb-EGF-eYFP as an example. Dual channel single-
molecule microscopy clearly revealed that both proteins were present
simultaneously in the same GUV (Fig. 4).
4. Discussion

Amajor advantage of our approach to produce giant proteoliposomes
from a combination of in vitro protein synthesis and electroswelling is its
versatility. The methodology can be easily applied to a wide range
of structurally and functionally divergent membrane proteins. Pre-
synthesis of the target proteins enables the directed integration of
membrane proteins, carrying a signal sequence for the process of co-
translational translocation, into the membranes of the ER-based
microsomes.

The detailed mobility analysis as presented above was further used
to assess the oligomerization state of the receptors in the GUVs. The
ite arrows highlight two single Hb-EGF-eYFP molecules. (c) Overlay of all single-molecule

image of Fig.�2
image of Fig.�3


Table 1
Estimation of the number of cell-free expressed membrane proteins per GUV, n, from the
number, N, of single molecules detected per movie. The limiting parameters are observa-
tion volume (focal plane ≈ 1 μm)and the length of amovie (75 s). For an exemplary GUV
with r = 5 μm, only 20% of the GUV surface was observed, but individual molecules with
D ≈ 3 μm2/s may reappear inside the observation volume on average 3 times. Thus
n = N/0.6; ±standard deviation.

Protein N n

Hb-EGF-eYFP 520 ± 310 850
ETB-eYFP 150 ± 60 250
CXCR4-eYFP 160 ± 90 250

Table 2
Diffusions constants of transmembrane proteins in GUV membranes. Comparison of ex-
perimental (exp.) values and theoretical (theo.) predictions according to the Saffman–
Delbrück model; ±standard deviation.

Hb-EGF exp. 1 TMD theo. CXCR4 exp. ETB exp. 7 TMD theo.

D[μm2/s] 3.7 ± 0.2 4.0 2.7 ± 0.1 2.7 ± 0.1 3.1
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Saffman–Delbrück model [39] gives a relation to calculate the diffusion
constant D of a cylinder with radius a in a membrane with viscosity μ
surrounded by a medium with viscosity μ′, but it can provide only an
asymptotic solution for a certain range of cylinder size and viscosities
of the membrane and ambient media [40]:

D ¼ kBTb ; with b ¼ 1
4πμh

log
μh
μ ′a

−γ
� �

ð1Þ

where kB denotes the Boltzmann's constant, T the temperature, b the
mobility, and h the membrane thickness.

To test whether these conditions are fulfilled in the given experi-
mental setting, we used the argument by Petrov and Schwille [41]:

εb1 ; with ε ¼ 2aμ ′

μh
ð2Þ

where ε denotes the reduced radius. ε was calculated for Hb-EGF-eYFP
(aHb-EGF = 0.6 nm; structural information about the radius of the trans-
membrane domain of Hb-EGF-eYFP was retrieved by modeling the
known amino acid sequence [42] on an α helix using the software
Swiss pdb Viewer.) diffusing in a GUV membrane (h = 5 nm)
consisting of a mixture of synthetic and natural lipids (μ ≈ 0.1 Pa s),
surrounded by an aqueous solution (μ′ = 0.001 Pa s), yielding
ε = 0.0024. For this calculation we had to estimate the hybrid mem-
brane viscosity: taking into consideration measurements on various
synthetic [43] and life cell membranes [44,45], we assume that
μ = 100 μ′, with μ′ = 1 mPa s.

The comparison of the experimentally measured diffusion constant of
the single pass transmembrane protein Hb-EGF-eYFPwith the theoretical
prediction by Saffman and Delbrück (see Eq. (1)) yields D1TMD,theo =
4.0 μm2/s. DHb-EGF,exp = 3.7 ± 0.2 μm2/s (see Table 2).

The Saffman–Delbrück model predicts a logarithmic scaling law of
the diffusion constant, D, as a function of the transmembrane domain
radius, a. Thus, starting from the measured value for Hb-EGF-eYFP
(DHb-EGF,exp. = 3.7 ± 0.2 μm2/s, aHb-EGF = 0.6 nm) the diffusion con-
stant of CXCR4 with seven transmembrane domains (a7TMD = 1.7 nm
[46]) can be calculated: D7TMD,theo. = 3.1 μm2/s. The theoretical
prediction slightly overestimates the measurements on CXCR4-eYFP:
DCXCR4,exp. = 2.7 ± 0.1 μm2/s (Table 2). If we start from the measured
Fig. 4. GUV exhibiting twomembrane proteins: CFP-CaaX and Hb-EGF-eYFP. (a) Sketch. (b) CF
over 1500 frames of a single-molecule movie. The scale bar is 5 μm and valid for (b) and (c). N
diffusion constant and back-calculate the corresponding size of the
diffusing object, we get aCXCR4 = 3.2 nm. This result indicates that the
CXCR4 receptormight appear in a dimeric configuration, as has been re-
ported for various G protein-coupled receptors [47]. This result might
also be transferrable to the ETB receptor, although the exact structural
data to prove this point are missing.

Comparison of the experimentally measured diffusion constant
of the single pass transmembrane protein Hb-EGF-eYFP with the
theoretical prediction by Saffman and Delbrück (see Eq. (1)) yields
D1TMD,theo. = 4.0 μm2/s and thus good agreementwith the experimen-
tal result DHb-EGF,exp. = 3.7 ± 0.2 μm2/s.

The combination of different membrane proteins into the same set
of GUVs opens the opportunity to study interactions between functional
pairs of proteins in the near future, e.g. GPCR interactions in a vesicle
based cell model.

In general, the fact that the measured protein diffusion constants
were closer to the values reported for synthetic membranes indicates
that the membrane of the hybrid vesicles presented here comprises
mainly of the supplemented synthetic lipid DOPC while the natural ER
membrane lipids were negligible. However, the hybrid character of
the formed proteo-GUVs consists of cell-free expressed membrane
proteins residing in a largely synthetic membrane. With this we were
able to establish a flexible and adaptable method for studies of difficult
to express membrane proteins on well-defined GUVs.

In this context, the synthesis of activemembrane proteins, as GPCRs,
is of major interest for future structural and functional studies. An
outstanding milestone in this field was the determination of the high-
resolution three-dimensional structure of a β-Adrenergic receptor
interacting with its ligand. The protein expression for this study was
based on an insect cell culture over-expression system [48]. However,
the expression of sufficient amounts of such complex membrane
proteins in viable cells is still challenging due to cytotoxic effects and
protein aggregation. To overcome these problems cell-free expression
systems have become an applicable tool for membrane protein
expression. Only recently, cell-free protein expression systems based
on E. coli lysates were combined with synthetic lipids to prepare small
proteo-liposomes or nanodiscs harboring different GPCRs, e.g. the ETB
receptor. These proteo-liposomes and nanodiscs were used to study
protein–ligand interactions [49]. Eukaryotic cell-free protein expression
systems in combination with the immobilization of hybrid-GUVs, the
method assignment presented in our publication, provide a basis
for the reconstitution of complex membrane protein pathways and
P channel. (c) YFP channel. The presented fluorescence images are mean images averaged
ote that (a) is not to scale.

image of Fig.�4
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their study on fixed GUVs in a well-defined and cell independent
surrounding.

5. Conclusions

In this study we present a homogeneous insect-based expression
system that provides membrane protein yields up to several μg/mL
and that permits to construct biological functionality into giant synthet-
ic vesicles. Endogenous insect microsomal vesicles form the basis for
directed membrane protein integration as well as posttranslational
modification. Within our procedure, the microsomes serve as flexible
and adaptable functional modules carrying the membrane proteins of
interest. In contrast to fully synthetic GUVs, the hybrid GUVs generated
in this study consisted of synthetic lipids as well as microsomal mem-
brane proteins. Thus they are an intermediate between fully synthetic
models and biological systems for the study of biophysical problems.
Based on the ability of the cell-free system to express versatile types
of lipid anchored proteins as well as integral membrane proteins, such
as GPCRs, our methodology offers the future perspective to reconstitute
entire signal transduction pathways for ligand detection and protein–
protein interaction studies that will result in a fundamentalmechanistic
understanding of membrane–protein interactions and cell regulation.
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