
R

Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Artificial Intelligence 155 (2004) 93–146

www.elsevier.com/locate/artint

Lifelong Planning A*

Sven Koenig a,∗, Maxim Likhachev b, David Furcy c

a Computer Science Department, USC, Los Angeles, CA 90089, USA
b School of Computer Science, CMU, Pittsburgh, PA 15213, USA

c College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received 15 April 2002; received in revised form 9 October 2003

Abstract

Heuristic search methods promise to find shortest paths for path-planning problems faster than
uninformed search methods. Incremental search methods, on the other hand, promise to find shortest
paths for series of similar path-planning problems faster than is possible by solving each path-
planning problem from scratch. In this article, we develop Lifelong Planning A* (LPA*), an
incremental version of A* that combines ideas from the artificial intelligence and the algorithms
literature. It repeatedly finds shortest paths from a given start vertex to a given goal vertex while
the edge costs of a graph change or vertices are added or deleted. Its first search is the same as
that of a version of A* that breaks ties in favor of vertices with smaller g-values but many of the
subsequent searches are potentially faster because it reuses those parts of the previous search tree
that are identical to the new one. We present analytical results that demonstrate its similarity to A*
and experimental results that demonstrate its potential advantage in two different domains if the
path-planning problems change only slightly and the changes are close to the goal.
 2004 Published by Elsevier B.V.
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1. Overview

Artificial intelligence has investigated search methods that allow one to solve path-
planning problems in large domains. Most of the research on search methods has studied
how to solve one-shot path-planning problems. However, many artificial intelligence
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systems have to adapt their plans continuously to changes of the world or their models

of the world. In these cases, the original plan might no longer apply or might no longer
be good. In this case, one needs to replan for the new situation [1]. Examples of practical
significance include the aeromedical evacuation of injured people in crisis situations [2]
and air campaign planning [3]. Similarly, one needs to solve a series of similar path-
planning problems if one wants to perform a series of what-if analyses or if the cost of
planning operators, their preconditions, or their effects change over time because they are
learned or refined. Consequently, search is often a repetitive process. In this situation,
many artificial intelligence systems replan from scratch, that is, solve the path-planning
problems independently. However, this can be inefficient in large domains with frequent
changes and thus severely limits their responsiveness or the number of what-if analyses
that they can perform, which is often unacceptable. This problem becomes even more
severe when changes occur during planning. Fortunately, the changes to the path-planning
problems are usually small. For example, planes might no longer be able to land on a
particular airfield for the aeromedical evacuation example. This suggests that a complete
recomputation of the best plan can be wasteful since some of the previous search results
can be reused. This is what incremental search methods do. Notice that the terminology
is unfortunately somewhat problematic since the term “incremental search” also refers to
both on-line search and search with limited look-ahead [4].

Although incremental search methods are not widely used in artificial intelligence,
different researchers have developed incremental versions of uninformed search methods,
mostly in the algorithms literature. Incremental search methods, such as DynamicSWSF-
FP [5], reuse information from previous searches to find shortest paths for series of
similar path-planning problems potentially faster than is possible by solving each path-
planning problem from scratch. Heuristic search methods, such as A* [6], on the other
hand, are widely used in artificial intelligence. They use heuristic knowledge in the form
of approximations of the goal distances to focus the search and find shortest paths for
path-planning problems potentially faster than uninformed search methods.

In this article, we develop Lifelong Planning A* (LPA*), a replanning method that is
an incremental version of A*.1 We chose its name in analogy to “lifelong learning” [7]
because it reuses information from previous searches. (Other researchers use the term
continual planning for the same concept.) LPA* repeatedly finds shortest paths from a
given start vertex to a given goal vertex in a given graph as edges or vertices are added
or deleted or the costs of edges are changed, for example, because the cost of planning
operators, their preconditions, or their effects change from one path-planning problem
to the next. LPA* generalizes both DynamicSWSF-FP and A* and promises to find
shortest paths faster than these two search methods individually because it combines their
techniques. It is easy to understand, easy to analyze, and easy to optimize. Its first search
is the same as that of a version of A* that breaks ties among vertices with the same f-value
in favor of smaller g-values but the subsequent searches are potentially faster because it
reuses those parts of the previous search tree that are identical to the new search tree, and

1 The artificial intelligence planning literature actually distinguishes between replanning and plan reuse.
Replanning attempts to retain as many plan steps of the previous plan as possible. Plan reuse does not have
this requirement. Strictly speaking, LPA* is a plan reuse method rather than a replanning method.
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uses an efficient method for identifying these parts. This can reduce the search time if large

parts of the search trees are identical, for example, if the path-planning problems change
only slightly and the changes are close to the goal. LPA* can also handle changes to the
graph during its search and can be extended to inadmissible heuristics, more efficient tie-
breaking criteria, and nondeterministic graphs [8].

In the following, we first describe the path-planning problems that LPA* solves. Second,
we explain why it is possible to take advantage of information from previous searches.
Third, we describe LPA* and how it takes advantage of this information, both in the
abstract and for a concrete example. Fourth, we prove properties about its behavior,
in particular its correctness, its close similarity to A*, its efficiency in terms of vertex
expansions, and several other properties that help one to understand how it operates. Fifth,
we explain how to optimize it. Finally, we evaluate it experimentally and apply it to both
simple route planning and symbolic planning.

2. Notation

Lifelong Planning A* (LPA*) solves the following path-planning problems: It applies
to path-planning problems on known finite graphs whose edge costs increase or decrease
over time. (Such cost changes can also be used to model edges or vertices that are added
or deleted.) S denotes the finite set of vertices of the graph. succ(s)⊆ S denotes the set of
successors of vertex s ∈ S. Similarly, pred(s)⊆ S denotes the set of predecessors of vertex
s ∈ S. 0 < c(s, s′) � ∞ denotes the cost of moving from vertex s to vertex s′ ∈ succ(s).
LPA* always determines a shortest path from a given start vertex sstart ∈ S to a given goal
vertex sgoal ∈ S, knowing both the topology of the graph and the current edge costs. We
use g∗(s) to denote the start distance of vertex s ∈ S, that is, the cost of a shortest path
from sstart to s. The start distances satisfy the following relationship:

g∗(s)=
{

0 if s = sstart,

mins ′∈pred(s)(g
∗(s′)+ c(s′, s)) otherwise. (1)

To motivate and test LPA*, we use a special case of these search problems that is
easy to visualize. We apply LPA* to route planning in known eight-connected gridworlds
with cells whose traversability changes over time. They are either traversable (with cost
one) or untraversable. LPA* always determines a shortest path between two given cells of
the gridworld, knowing both the topology of the gridworld and which cells are currently
untraversable. This is a special case of the path-planning problems on eight-connected
gridworlds whose edge costs are either one or infinity. As an approximation of the distance
between two cells, we use the maximum of the absolute differences of their x and y

coordinates. These heuristics are for eight-connected gridworlds what Manhattan distances
are for four-connected gridworlds.
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3. Lifelong Planning A*: overview
Path-planning problems can be solved with traditional graph-search methods, such as
breadth-first search, if they update the shortest path every time some edge costs change.
They typically neither take advantage of available heuristics nor reuse information from
previous searches. The following example, however, shows that taking advantage of these
sources of information can potentially be beneficial individually and even more beneficial
when they are combined.

Consider the gridworlds of size 15 × 20 shown in Fig. 1. The original gridworld is
shown on top and the changed gridworld is shown at the bottom. We assume that one can
squeeze through diagonal obstacles, which is simply an artifact of how we generated the
underlying graphs from the gridworlds. The traversability of only a few cells has changed.
In particular, three blocked cells became traversable (namely, A6, D2, and F5) and three
traversable cells became blocked (namely, B1, C4, E3). Thus, two percent of the cells
changed their status but the obstacle density remained the same. The figure shows the
shortest paths in both cases. The shortest path changed since one cell (C4) on the original
shortest path became blocked. The new shortest path is one step longer than the old one.

Once the start distances of all cells are known, one can easily trace back a shortest
path from the start cell to the goal cell by always greedily decreasing the start distance,
starting at the goal cell. This is similar to how A* traces the shortest path back from sgoal

to sstart using the search tree it has constructed. Thus, we only need to determine the start
distances. The start distances are shown in each traversable cell of the original and changed
gridworlds. Those cells whose start distances in the changed gridworld have changed from
the corresponding ones in the original gridworld are shaded gray.

We investigate two different ways of decreasing the search effort for determining the
start distances for the changed gridworld.

• First, some start distances have not changed and thus need not be recomputed. This
is what DynamicSWSF-FP [5] does. DynamicSWSF-FP, as originally stated, searches
from the goal vertex to all other vertices and thus maintains estimates of the goal
distances rather than the start distances. It is a simple matter of restating it to search
from the start vertex to all other vertices. Also, to calculate a shortest path from the
start vertex to the goal vertex not all distances need to be known even for uninformed
search methods. To make DynamicSWSF-FP more efficient and thus avoid biasing
our experimental results in favor of LPA*, we changed the termination condition
of DynamicSWSF-FP so that it stops immediately after it is sure that it has found
a shortest path from the start vertex to the goal vertex. The modified version of
DynamicSWSF-FP is an incremental version of breadth-first search.

• Second, heuristic knowledge, in the form of approximations of the goal distances,
can be used to focus the search and determine that some start distances need not be
computed at all. This is what A* [6] does.

We demonstrate that the two ways of decreasing the search effort are orthogonal by
developing LPA* that combines both of them and thus is potentially able to replan faster
than either DynamicSWSF-FP or A*.



S. Koenig et al. / Artificial Intelligence 155 (2004) 93–146 97

Original eight-connected gridworld
Changed eight-connected gridworld

Fig. 1. Simple gridworld.

Fig. 2 shows in gray those cells whose start distances each of the four search methods
recomputes. (To be precise: It shows in gray the cells that each of the four search methods
expands.) During the search in the original gridworld, DynamicSWSF-FP computes the
same start distances as breadth-first search during the first search and LPA* computes
the same start distances as A*. (This is only guaranteed if the search methods break ties
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Original eight-connected gridworld
Changed eight-connected gridworld

Fig. 2. Performance of search methods in the simple gridworld.
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suitably.) During the search in the changed gridworld, however, both incremental search

(DynamicSWSF-FP) and heuristic search (A*) individually decrease the number of start
distances that need to be recomputed compared to breadth-first search, and together (LPA*)
decrease this number even more. Note that LPA* updates only a subset of those start
distances that are incorrect (either because they have changed or never been calculated).
We will prove this property in the analytical section.

To illustrate the behavior of LPA*, we use the route-planning example in the eight-
connected gridworld shown in Figs. 3–5. The cells are either traversable or blocked, and
their traversability changes over time. LPA* always determines a shortest path from start

Fig. 3. An example: first search.
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Fig. 4. An example: second search.

Fig. 5. An example: principle behind LPA*.

cell A3 to goal cell F0. The upper left gridworld in Fig. 3 shows the true start distances in
the upper left corners of the cells and the heuristics in their lower right corners.

We first illustrate the main principle behind LPA*. LPA* maintains two estimates of
the start distance of each cell, namely a g-value and an rhs-value. The g-values directly
correspond to the g-values of an A* search. The rhs-values are one-step lookahead values
based on the g-values and thus potentially better informed than the g-values. Their name
comes from DynamicSWSF-FP where they are the values of the right-hand sides (rhs) of
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grammar rules. The rhs-value of the start cell is zero. The rhs-value of any other cell is the

minimum over all of its neighbors of the g-value of the neighbor and the cost of moving
from the neighbor to the cell in question. Consider, for example, the g-values given in the
left gridworld in Fig. 5. The rhs-value of cell A0 is three, namely the minimum of the g-
value of cell A1 plus one and the g-value of cell B1 plus one. Thus, the g-value of cell A0
equals its rhs-value. We call such cells locally consistent. This concept is important because
all g-values are equal to the respective start distances iff all cells are locally consistent.

Now assume that one is given the g-values in the left gridworld in Fig. 5, and it is
claimed that they are equal to the start distances. There are at least two different approaches
to verify this. One approach is to perform a complete search to determine the start distances
and compare them to the g-values. Another approach is to check that all cells are locally
consistent, that is, that their g-values are equal to their rhs-values, which is indeed the
case. Thus, the g-values are indeed equal to the start distances. Both approaches need the
same amount of time to confirm this. Now assume that cell D1 becomes blocked as shown
in the right gridworld in Fig. 5, and it is claimed that the g-values in the cells remain
equal to the start distances. Again, there are at least two different approaches to verify
this. One approach is to perform again a complete search to determine the start distances
and compare them to the g-values. The second approach is again to check that all cells are
locally consistent. Since the g-values remain unchanged, each g-value continues to be equal
to the corresponding rhs-value unless the rhs-value has changed which is only possible if
the blockage status of at least one neighbor of the corresponding cell has changed. Thus,
one needs to check only whether the cells close to changes in the gridworld remain locally
consistent, that is, cells C1 and E1. It turns out that cell C1 remains locally consistent
(its g-value and rhs-value are both three) but cell E1 has become locally inconsistent (its
g-value is five but its rhs-value is now six). Thus, not all g-values are equal to the start
distances. (This does not mean that all g-values except the one of cell E1 are equal to
the start distances.) Note that the second approach now needs less time than the first one.
Furthermore, the second approach provides a starting point for replanning. One needs to
work on the locally inconsistent cells since all cells need to be locally consistent in order
for all g-values in the cells to be equal to the start distances. Locally inconsistent cells thus
provide a starting point for replanning. However, LPA* does not make every cell locally
consistent. Instead, it uses heuristics to focus its search and updates only the g-values that
are relevant for computing a shortest path. This is the main principle behind LPA*.

Iterations 1–10 in Fig. 3 trace the behavior of the first search of LPA*. Each gridworld
shows the g-values of the cells at the beginning of an iteration. LPA* maintains a priority
queue that always contains exactly the locally inconsistent cells. These are the cells whose
g-values LPA* potentially needs to update to make them locally consistent. The priorities
of the cells in the priority queue are pairs that are compared according to a lexicographic
ordering. The first component of the key roughly corresponds to the f-value used by A*,
and the second component roughly corresponds to the g-value used by A*. Cells in the
priority queue are shaded and their keys are given below their g-values. LPA* always
recalculates the g-value of the cell (“expands the cell”) with the smallest key in the priority
queue (shown with a bold border in the figure). This is similar to A* that always expands
the cell with the smallest f-value in the priority queue. The initial g-values are all infinity.
LPA* always removes the cell with the smallest key from the priority queue. If the g-
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value of the cell is larger than its rhs-value, LPA* sets the g-value of the cell to its

rhs-value. Otherwise, LPA* sets the g-value to infinity. LPA* then recalculates the rhs-
values of the cells potentially affected by this assignment, checks whether the cells become
locally consistent or inconsistent, and (if necessary) removes them from or adds them to
the priority queue. It then repeats this process until it is sure that it has found a shortest
path. LPA* expands the cells in the same order during the first search as an A* search that
breaks ties among cells with the same f-value in favor of smaller g-values. One can then
trace back a shortest path from the start cell to the goal cell by starting at the goal cell and
always greedily decreasing the start distance. Any way of doing this results in a shortest
path from the start cell to the goal cell. Since all costs are one, this means moving from F0
(6) via E1 (5), D1 (4), C1 (3), B1 (2), and A2 (1) to A3 (0), as shown in the bottom right
gridworld. Moving in the opposite direction then results in a shortest path from cell A3 to
cell F0.

Now assume that cell D1 becomes blocked. Iterations 1–8 in Fig. 4 trace the behavior of
the second search of LPA*. Note that the new blockage changes only three start distances,
namely the ones of cells D1, E1, and F0. This allows LPA* to replan a shortest path
efficiently even though the shortest path from the start cell to the goal cell changed
completely. This is an advantage of reusing parts of previous plan-construction processes
(in the form of the g-values) rather than adapting previous plans, at the cost of larger
memory requirements. In particular, not only can the g-values be used to determine a
shortest path but they can also be more easily reused than the shortest paths themselves.
The number of cells in our example is too small to result in a large advantage over an A*
search but in the experimental section we will report more substantial savings in larger
gridworlds.

4. Lifelong Planning A*: details

So far, we have given some intuition about how LPA* works. We now explain the
details. LPA* is an incremental version of A* that applies to the same finite path-planning
problems as A*. It shares with A* the fact that it uses nonnegative and consistent heuristics
h(s) [9] that approximate the goal distances of the vertices s to focus its search. Consistent
heuristics obey the triangle inequality h(sgoal) = 0 and h(s) � c(s, s′) + h(s′) for all
vertices s ∈ S and s′ ∈ succ(s) with s 
= sgoal. For example, the heuristics that we used
in the context of the gridworlds, (namely the maximum of the absolute differences of the x
and y coordinates of a cell and the goal cell) are consistent. LPA* reduces to a version of
A* that breaks ties among vertices with the same f-value in favor of smaller g-values when
LPA* is used to search from scratch and to a version of DynamicSWSF-FP that applies to
path-planning problems and terminates earlier than the original version of DynamicSWSF-
FP (as described above) when LPA* is used with uninformed (that is, zero) heuristics.
These statements assume that A* and DynamicSWSF-FP break ties among vertices with
the same f-values suitably.2

2 To be precise: LPA* differs from DynamicSWSF-FP only in the calculation of the priorities for the vertices
in the priority queue (line {01} in the pseudo code in Fig. 6) and the termination condition {09}. DynamicSWSF-
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The pseudocode uses the following functions to manage the priority queue: U.TopKey() returns the smallest priority of all

vertices in priority queue U . (If U is empty, then U.TopKey() returns [∞;∞].) U.Pop() deletes the vertex with the smallest
priority in priority queue U and returns the vertex. U.Insert(s, k) inserts vertex s into priority queue U with priority k. Finally,
U.Remove(s) removes vertex s from priority queue U .

procedure CalculateKey(s)
{01} return [min(g(s), rhs(s))+ h(s);min(g(s), rhs(s))];
procedure Initialize()
{02} U = ∅;
{03} for all s ∈ S rhs(s) = g(s)= ∞;
{04} rhs(sstart)= 0;
{05} U.Insert(sstart, [h(sstart);0]);
procedure UpdateVertex(u)
{06} if (u 
= sstart) rhs(u)= mins′∈pred(u)(g(s

′)+ c(s′, u));
{07} if (u ∈ U) U.Remove(u);
{08} if (g(u) 
= rhs(u)) U.Insert(u,CalculateKey(u));

procedure ComputeShortestPath()
{09} while (U.TopKey() <̇CalculateKey(sgoal) OR rhs(sgoal) 
= g(sgoal))

{10} u= U.Pop();
{11} if (g(u) > rhs(u))
{12} g(u)= rhs(u);
{13} for all s ∈ succ(u) UpdateVertex(s);
{14} else
{15} g(u)= ∞;
{16} for all s ∈ succ(u)∪ {u} UpdateVertex(s);

procedure Main()
{17} Initialize();
{18} forever
{19} ComputeShortestPath();
{20} Wait for changes in edge costs;
{21} for all directed edges (u, v) with changed edge costs
{22} Update the edge cost c(u, v);
{23} UpdateVertex(v);

Fig. 6. Lifelong Planning A*.

4.1. Lifelong Planning A*: the variables

LPA* maintains an estimate g(s) of the start distance g∗(s) of each vertex s. The
initial search of LPA* calculates the g-values of each vertex in exactly the same order
as A*. LPA* then carries the g-values forward from search to search. LPA* also maintains
a second kind of estimate of the start distances. The rhs-values are one-step lookahead
values (based on the g-values) that always satisfy the following relationship (Invariant 1)
according to Lemma A.1 in Appendix A:

rhs(s)=
{

0 if s = sstart,

mins ′∈pred(s)(g(s
′)+ c(s′, s)) otherwise. (2)

A vertex is called locally consistent iff its g-value equals its rhs-value. This concept
is similar to satisfying the Bellman equation for undiscounted deterministic sequential
decision problems [10]. If all vertices are locally consistent then all of their g-values satisfy

FP calculates the key of vertex s as k(s)= min(g(s), rhs(s)). LPA* calculates the same key when it is used with
uninformed heuristics. In that case, the first and second components of the key are identical and only the first
component needs to be used. The termination condition of the original version of DynamicSWSF-FP is “while
(U 
= ∅)”.
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g(s)=
{

0 if s = sstart, (3)
mins ′∈pred(s)(g(s
′)+ c(s′, s)) otherwise.

A comparison to Eq. (1) shows that all g-values are equal to their respective start
distances. Thus, the g-values of all vertices equal their start distances iff all vertices are
locally consistent. This concept is important because one can then trace back a shortest
path from sstart to any vertex u by always moving from the current vertex s, starting at
u, to any predecessor s′ that minimizes g(s′) + c(s′, s) until sstart is reached (ties can be
broken arbitrarily). However, LPA* does not make every vertex locally consistent. Instead,
it uses the heuristics to focus the search and updates only the g-values that are relevant for
computing a shortest path.

A* maintains an OPEN and a CLOSED list. The CLOSED list allows A* to avoid
vertex reexpansions. LPA* does not maintain a CLOSED list since it uses local consistency
checks to avoid vertex reexpansions. The OPEN list is a priority queue that allows A*
to always expand a fringe vertex with a smallest f-value. LPA* also maintains a priority
queue for this purpose. Its priority queue always contains exactly the locally inconsistent
vertices (Invariant 2) according to Lemma A.2. The keys of the vertices in the priority
queue roughly correspond to the f-values used by A*, and LPA* always recalculates the
g-value of the vertex (“expands the vertex”) in the priority queue with the smallest key.
This is similar to A* that always expands the vertex in the priority queue with the smallest
f-value. By expanding a vertex, we mean executing {10–16} (numbers in brackets refer to
line numbers in Fig. 6). The key k(s) of vertex s is a vector with two components:

k(s)= [
k1(s); k2(s)

]
, (4)

where k1(s) = min(g(s), rhs(s))+ h(s) and k2(s) = min(g(s), rhs(s)) {01}. The priority
of a vertex in the priority queue is always the same as its key (Invariant 3) according
to Lemma A.3. Keys are compared according to a lexicographic ordering. For example,
a key k(s) is less than or equal to a key k′(s), denoted by k(s)�̇k′(s), iff either
k1(s) < k′

1(s) or (k1(s) = k′
1(s) and k2(s) � k′

2(s)). The first component of the keys
k1(s) corresponds directly to the f-values f (s) := g∗(s) + h(s) used by A* because
both the g-values and rhs-values of LPA* correspond to the g-values of A* and the h-
values of LPA* correspond to the h-values of A*.3 The second component of the keys
k2(s) corresponds to the g-values of A*. LPA* always expands the vertex in the priority
queue with the smallest k1-value, which corresponds to the f-value of an A* search,
breaking ties in favor of the vertex with the smallest k2-value, which corresponds to the
g-value of an A* search. This is similar to A* that always expands the vertex in the
priority queue with the smallest f-value, breaking ties towards smallest g-values. The
resulting behavior of LPA* and A* is also similar. The keys of the vertices expanded
by LPA* are nondecreasing over time according to Theorem 1. This is similar to A*
where the f-values of the expanded vertices are also nondecreasing over time (since
the heuristics are consistent), and—if A* breaks ties among vertices with the same f-
values in favor of smaller g-values—[f (s);g(s)] is also nondecreasing over time (since

3 It turns out that using only the first component of the keys as priority is insufficient to imply Theorem 4 and
thus insufficient to guarantee the efficiency of LPA* in terms of vertex expansions.
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all children of an expanded vertex have strictly larger g-values than the expanded vertex

itself).

4.2. Lifelong Planning A*: the algorithm

LPA* is shown in Fig. 6. The main function Main() first calls Initialize() to initialize the
path-planning problem {17}. Initialize() sets the initial g-values of all vertices to infinity
and sets their rhs-values according to Eq. (2) {03–04}. Thus, initially sstart is the only
locally inconsistent vertex and is inserted into the otherwise empty priority queue with a
key calculated according to Eq. (4) {05}. This initialization guarantees that the first call to
ComputeShortestPath() performs exactly an A* search, that is, expands exactly the same
vertices as A* in exactly the same order, provided that A* breaks ties among vertices with
the same f-values suitably. Note that, in an actual implementation, Initialize() only needs
to initialize a vertex when it encounters it during the search and thus does not need to
initialize all vertices up front. This is important because the number of vertices can be
large and only a few of them might be reached during the search. LPA* then waits for
changes in edge costs {20}. To maintain Invariants 1–3 if some edge costs have changed,
it calls UpdateVertex() {23} to update the rhs-values and keys of the vertices potentially
affected by the changed edge costs as well as their membership in the priority queue if
they become locally consistent or inconsistent, and finally recalculates a shortest path {19}
by calling ComputeShortestPath(), that repeatedly expands locally inconsistent vertices in
order of their priorities {10}.

A locally inconsistent vertex s is called locally overconsistent iff g(s) > rhs(s). When
ComputeShortestPath() expands a locally overconsistent vertex {12–13}, then it sets the
g-value of the vertex to its rhs-value {12}, which makes the vertex locally consistent.
A locally inconsistent vertex s is called locally underconsistent iff g(s) < rhs(s). When
ComputeShortestPath() expands a locally underconsistent vertex {15–16}, then it simply
sets the g-value of the vertex to infinity {15}. This makes the vertex either locally consistent
or overconsistent. If the expanded vertex was locally overconsistent, then the change of its
g-value can affect the local consistency of its successors {13}. Similarly, if the expanded
vertex was locally underconsistent, then it and its successors can be affected {16}. To
maintain Invariants 1–3, ComputeShortestPath() therefore updates the rhs-values of these
vertices, checks their local consistency, and adds them to or removes them from the priority
queue accordingly {06–08}.

LPA* expands vertices until sgoal is locally consistent and the key of the vertex to expand
next is no less than the key of sgoal. This is similar to A* that expands vertices until it
expands sgoal at which point in time the g-value of sgoal equals its start distance and the
f-value of the vertex to expand next is no less than the f-value of sgoal. If g(sgoal) = ∞
after the search, then there is no finite-cost path from sstart to sgoal. Otherwise, one can
trace back a shortest path from sstart to sgoal by always moving from the current vertex s,
starting at sgoal, to any predecessor s′ that minimizes g(s′)+ c(s′, s) until sstart is reached
(ties can be broken arbitrarily) according to Theorem 5. This is similar to what A* can do
if it does not use backpointers.
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5. Analytical results
We now present some properties of LPA* that provide insight into how it works and
show that it terminates, is correct, similar to A*, and efficient in terms of vertex expansions.
The proofs of all theorems are given in Appendix A.

One of the most fundamental theorems for explaining the operation of LPA* is the next
one about the order in which LPA* expands vertices.

Theorem 1. The keys of the vertices that ComputeShortestPath() selects for expansion
on line {10} are monotonically nondecreasing over time until ComputeShortestPath()
terminates.

Theorem 1 allows one to prove several properties of ComputeShortestPath(). For
example, consider a locally consistent vertex whose key is less than U.TopKey(), that
is, the smallest key of any locally inconsistent vertex. Its g-value can change only when
it is expanded again. Consequently, its key cannot increase and must remain less than
U.TopKey() since U.TopKey() is monotonically nondecreasing according to Theorem 1.
Thus, the vertex cannot be expanded again. The next theorem proves that this remains true
for locally consistent vertices whose keys are less than or equal to U.TopKey().

Theorem 2. Let k = U.TopKey() during the execution of line {09}. If vertex s is locally
consistent at this point in time with k(s) �̇k, then it remains locally consistent until
ComputeShortestPath() terminates.

Now assume that ComputeShortestPath() expands a locally overconsistent vertex.
ComputeShortestPath() sets the g-value of the vertex to its rhs-value {12}. This does
not change its rhs-value nor its key but makes it locally consistent. Consequently, the
vertex satisfies the conditions of Theorem 2 and thus remains locally consistent until
ComputeShortestPath() terminates, which proves the next theorem.

Theorem 3. If a locally overconsistent vertex is selected for expansion on line {10}, then
it is locally consistent the next time line {09} is executed and remains locally consistent
until ComputeShortestPath() terminates.

5.1. Termination and correctness

Theorem 3 implies that ComputeShortestPath() expands any locally overconsistent
vertex at most once until it terminates. Now assume that ComputeShortestPath() expands
a locally underconsistent vertex. ComputeShortestPath() sets the g-value of the vertex to
infinity {15}. This makes the vertex either locally consistent or overconsistent. Since the
g-value of a vertex changes only when it is expanded, the vertex cannot become locally
underconsistent before it is expanded again. Thus, if the vertex is expanded again, it is
expanded as locally overconsistent and, as just argued, is then not expanded again until
ComputeShortestPath() terminates. Thus, ComputeShortestPath() expands each vertex at
most twice and therefore terminates.
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Theorem 4. ComputeShortestPath() expands each vertex at most twice, namely at most

once when it is locally underconsistent and at most once when it is locally overconsistent,
and thus terminates.

All theorems stated so far hold for the termination condition of ComputeShortestPath()
{09} and the modified termination condition “while U is not empty”. ComputeShortest-
Path() with the latter termination condition terminates when all vertices are locally consis-
tent and thus when the g-values of all vertices equal their start distances. In this case, one
can trace back a shortest path from sstart to any vertex s′′ by always moving from the cur-
rent vertex s, starting at s′′, to any predecessor s′ that minimizes g(s′)+ c(s′, s) until sstart

is reached (ties can be broken arbitrarily). However, the modified termination condition
expands too many vertices since one only needs to find a shortest path from sstart to sgoal.
For example, Theorem 2 shows that, if the goal vertex is locally consistent during the exe-
cution of line {09} and its key is less than or equal to U.TopKey(), then it remains locally
consistent until ComputeShortestPath() terminates. Thus, its g-value no longer changes.
The g-value of the goal vertex equals its start distance after ComputeShortestPath() with
the modified termination condition terminates. Thus, it was equal to its start distance since
its last expansion. This implies that the g-value of the goal vertex also equals its start dis-
tance after ComputeShortestPath() with the actual termination condition {09} terminates.
Furthermore, one can show that, if the goal vertex is locally consistent during the execution
of line {09} and its key is less than or equal to U.TopKey(), that is, after ComputeShortest-
Path() with the actual termination condition {09} terminates, then one can find a shortest
path from sstart to sgoal in exactly the same way as stated for the modified termination
condition, which proves the next theorem.

Theorem 5. After ComputeShortestPath() terminates, one can trace back a shortest path
from sstart to sgoal by always moving from the current vertex s, starting at sgoal, to any
predecessor s′ that minimizes g(s′) + c(s′, s) until sstart is reached (ties can be broken
arbitrarily).

5.2. Similarity to A*

In Section 4, we pointed out strong algorithmic similarities between LPA* and A*. The
next theorems show additional similarities between LPA* and A*.

Theorem 4 already showed that ComputeShortestPath() expands each vertex at
most twice. This is similar to A*, that expands each vertex at most once. Thus,
ComputeShortestPath() returns after a number of vertex expansions that is at most twice
the number of vertices.

The next three theorems show that ComputeShortestPath() expands locally overcon-
sistent vertices in a way very similar to how A* expands vertices. The next theorem, for
example, shows that the first component of the key of a locally overconsistent vertex at the
time ComputeShortestPath() expands it is the same as the f-value of the vertex. The second
component of its key is its start distance.
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Theorem 6. Whenever ComputeShortestPath() selects a locally overconsistent vertex s for

expansion on line {10}, then its key is k(s) =̇ [f (s);g∗(s)].

Theorem 1 showed that ComputeShortestPath() expands vertices in order of monoton-
ically nondecreasing keys. Thus, Theorem 6 implies that ComputeShortestPath() expands
locally overconsistent vertices in order of monotonically nondecreasing f-values and ver-
tices with the same f-values in order of monotonically nondecreasing start distances.
A* has the same property provided that it breaks ties in favor of vertices with smaller
start distances.

Theorem 7. ComputeShortestPath() expands locally overconsistent vertices s with finite
f-values in the same order as A* (possibly except for vertices with the same [f (s);g∗(s)]
keys), provided that A* always breaks ties among vertices with the same f-values in favor
of vertices with the smallest start distances and in case of remaining ties expands sgoal last.

Note, however, that most of the vertices expanded by A* are usually not expanded by
ComputeShortestPath(). The next theorem shows that ComputeShortestPath() expands at
most those locally overconsistent vertices whose f-values are less than the f-value of the
goal vertex and those vertices whose f-values are equal to the f-value of the goal vertex
and whose start distances are less than or equal to the start distance of the goal vertex. A*
has the same property provided that it breaks ties in favor of vertices with smaller start
distances. (Theorem 11 points out a related similarity of LPA* and A*.)

Theorem 8. ComputeShortestPath() expands at most those locally overconsistent vertices
s with [f (s);g∗(s)] �̇ [f (sgoal);g∗(sgoal)].

The next theorem shows that the search tree of LPA* contains the search tree of A*.
This is not surprising since LPA* finds shortest paths and every search method that finds
shortest paths has to expand at least the vertices that A* with the same heuristics expands,
except possibly for some vertices whose f-values are equal to the f-value of the goal vertex
[9].

Theorem 9. LPA* shares with A* the following property for sgoal and all vertices s that A*
expands (possibly except for vertices with [f (s);g∗(s)] = [f (sgoal);g∗(sgoal)]), provided
that A* always breaks ties among vertices with the same f-values in favor of vertices
with the smallest start distances and its g-values are assumed to be infinity if A* has
not calculated them: The g-values of these vertices s equal their respective start distances
after termination and one can trace back a shortest path from sstart to them by always
moving from the current vertex s′, starting at s, to any predecessor s′′ that minimizes
g(s′′)+ c(s′′, s′) until sstart is reached (ties can be broken arbitrarily).

5.3. Efficiency

We now show that LPA* can expand fewer vertices than suggested by Theorem 4. The
next theorem shows that LPA* is efficient because it performs incremental searches and
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thus calculates only those g-values that have been affected by cost changes or have not

been calculated yet in previous searches.

Theorem 10. ComputeShortestPath() does not expand any vertices whose g-values were
equal to their respective start distances before ComputeShortestPath() was called.

Our final theorem shows that LPA* is efficient because it performs heuristic searches
and thus calculates only the g-values of those vertices that are important to determine
a shortest path. Theorem 8 has already shown how heuristics limit the number of locally
overconsistent vertices expanded by ComputeShortestPath(). The next theorem generalizes
this result to all locally inconsistent vertices expanded by ComputeShortestPath().

Theorem 11. ComputeShortestPath() expands at most those vertices s with [f (s);g∗(s)] �̇
[f (sgoal);g∗(sgoal)] or [fold(s);gold(s)] �̇ [f (sgoal);g∗(sgoal)], where gold(s) is the g-
value and fold(s) = gold(s) + h(s) is the f-value of vertex s directly before the call to
ComputeShortestPath().

More informed heuristics are larger and thus [f (s);g∗(s)] and [fold(s);gold(s)] are
larger. This implies that fewer vertices s satisfy [f (s);g∗(s)] �̇ [f (sgoal);g∗(sgoal)] or
[fold(s);gold(s)] �̇ [f (sgoal);g∗(sgoal)] =̇ [g∗(sgoal), g

∗(sgoal)] and can get expanded by
ComputeShortestPath() according to the previous theorem.

Note, however, that incremental search is not more efficient than search from scratch
in the worst case [11]. Replanning with LPA* can best be understood as transforming the
A* search tree of the old search problem to the A* search tree of the new one. This results
in some computational overhead since parts of the old A* search tree need to be undone.
It also results in computational savings since other parts of the old A* search tree can be
reused. The larger the overlap between the old and new A* search trees, the more efficient
replanning with LPA* tends to be compared to using A* to create the new search tree from
scratch. To be more precise: It is not only important that the trees are similar but most start
distances of its vertices have to be the same as well. LPA* can be less efficient than A* if
the overlap between the old and new A* search trees is small. Note also that LPA* needs
about the same amount of memory as A* since it needs to remember the previous search
tree. Therefore, the search trees need to fit in memory, which is a realistic assumption,
for example, when searching maps in robotics, computer gaming, or network routing, in
addition to the application discussed in the second part of this article.

6. Optimizations of Lifelong Planning A*

There are several ways of optimizing LPA*, including modifying the termination
condition of ComputeShortestPath() {09}. As stated, ComputeShortestPath() terminates
when the goal vertex is locally consistent and its key is less than or equal to U.TopKey().
However, ComputeShortestPath() can also terminate when the goal vertex is locally
overconsistent and its key is less than or equal to U.TopKey(). To understand why this
is so, assume that the goal vertex is indeed locally overconsistent and its key is less than
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or equal to U.TopKey(). Then, its key must be equal to U.TopKey() since U.TopKey() is

the smallest key of any locally inconsistent vertex. Thus, ComputeShortestPath() could
expand the goal vertex next, in which case it would set its g-value to its rhs-value. The
goal vertex then becomes locally consistent according to Theorem 3, its key is less than
or equal to U.TopKey(), and ComputeShortestPath() thus terminates. At this point in time,
the g-value of the goal vertex equals its start distance. Thus, ComputeShortestPath() can
already terminate when the goal vertex is locally overconsistent and its key is less than
or equal to U.TopKey(). In this case, the goal vertex is not expanded. Its rhs-value equals
its start distance but its g-value is not updated and thus does not equal its start distance.
However, the procedure for tracing back a shortest path from the start vertex to the goal
vertex does not depend on the g-value of the goal vertex and thus can be used unchanged.
If the rhs-value of the goal vertex is infinity then there is no path from the start vertex to
the goal vertex. This optimization avoids expanding all vertices whose keys are the same
as the key of sgoal, which could potentially be a large number of vertices.

In the following, we describe several other simple ways of optimizing LPA* that do
not change which vertices LPA* expands or in which order it expands them. The resulting
version of LPA* is shown in Fig. 7.

• A vertex sometimes is removed from the priority queue and then immediately
reinserted with a different key. For example, a vertex can be removed on line {07}
and then be reentered on line {08}. In this case, it is often more efficient to leave the
vertex in the priority queue, update its key, and only change its position in the priority
queue {08’}.

• When UpdateVertex() on line {13} computes the rhs-value for a successor of a locally
overconsistent vertex it is unnecessary to take the minimum over all of its predecessors.
It is sufficient to compute the rhs-value as the minimum of its old rhs-value and the
sum of the new g-value of the locally overconsistent vertex and the cost of moving
from the locally overconsistent vertex to the successor {19’}. The reason is that only
the g-value of the locally overconsistent vertex has changed. Since it decreased, it can
only decrease the rhs-value of the successor.

• When UpdateVertex() on line {16} computes the rhs-value for a successor of a locally
underconsistent vertex, the only g-value that has changed is the g-value of the locally
underconsistent vertex. Since it increased, the rhs-value of the successor can only be
affected if its old rhs-value was based on the old g-value of the locally underconsistent
vertex. This can be used to decide whether the successor needs to be updated and its
rhs-value needs to be recomputed {26’}.

• The second and third optimizations concern the computations of the rhs-values of the
successors after the g-value of a vertex has changed. Similar optimizations can be made
for the computation of the rhs-value of a vertex after the cost of one of its incoming
edges has changed {38’,43’}.

• Finally, we introduce new variables p(s) that satisfy the invariants rhs(s)= g(p(s))+
c(p(s), s) for all vertices s to avoid some calculations. For example, we can now
write “if (s 
= sstart AND p(s) = u)” {24’} instead of the more cumbersome similar
“if (s 
= sstart AND rhs(s)= g(u)+ c(u, s))”.
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The pseudocode uses the following functions to manage the priority queue: U.Top() returns a vertex with the smallest priority

of all vertices in priority queue U . U.TopKey() returns the smallest priority of all vertices in priority queue U . (If U is empty,
then U.TopKey() returns [∞;∞].) U.Insert(s, k) inserts vertex s into priority queue U with priority k. U.Update(s, k) changes
the priority of vertex s in priority queue U to k. (It does nothing if the current priority of vertex s already equals k.) Finally,
U.Remove(s) removes vertex s from priority queue U .

procedure CalculateKey(s)
{01’} return [min(g(s), rhs(s))+ h(s);min(g(s), rhs(s))];
procedure Initialize()
{02’} U = ∅;
{03’} for all s ∈ S

{04’} rhs(s)= g(s) = ∞;
{05’} p(s)= NULL;
{06’} rhs(sstart)= 0;
{07’} U.Insert(sstart , [h(sstart);0]);
procedure UpdateVertex(u)
{08’} if (g(u) 
= rhs(u) AND u ∈U) U.Update(u,CalculateKey(u));
{09’} else if (g(u) 
= rhs(u) AND u /∈ U) U.Insert(u,CalculateKey(u));
{10’} else if (g(u) = rhs(u) AND u ∈ U) U.Remove(u);

procedure ComputeShortestPath()
{11’} while (U.TopKey() <̇CalculateKey(sgoal) OR rhs(sgoal) > g(sgoal))

{12’} u= U.Top();
{13’} if (g(u) > rhs(u))
{14’} g(u)= rhs(u);
{15’} U.Remove(u);
{16’} for all s ∈ succ(u)
{17’} if (rhs(s) > g(u)+ c(u, s))

{18’} p(s)= u;
{19’} rhs(s)= g(u)+ c(u, s);
{20’} UpdateVertex(s);
{21’} else
{22’} g(u)= ∞;
{23’} for all s ∈ succ(u) ∪ {u}
{24’} if (s 
= sstart AND p(s)= u)

{25’} p(s)= arg mins′∈pred(s)(g(s
′)+ c(s′, s));

{26’} rhs(s)= g(p(s))+ c(p(s), s);
{27’} UpdateVertex(s);
procedure Main()
{28’} Initialize();
{29’} forever
{30’} ComputeShortestPath();
{31’} Wait for changes in edge costs;
{32’} for all directed edges (u, v) with changed edge costs
{33’} cold = c(u, v);
{34’} Update the edge cost c(u, v);
{35’} if (cold > c(u, v))
{36’} if (rhs(v) > g(u)+ c(u, v))

{37’} p(v)= u;
{38’} rhs(v)= g(u)+ c(u, v);
{39’} UpdateVertex(v);
{40’} else
{41’} if (v 
= sstart AND p(v)= u)

{42’} p(v)= arg mins′∈pred(v)(g(s
′)+ c(s′, v));

{43’} rhs(v)= g(p(v))+ c(p(v), v);
{44’} UpdateVertex(v);

Fig. 7. Lifelong Planning A* (optimized version).

Also, we have not included two optimizations in the pseudocode because they make it
somewhat messy. One optimization is to initialize the data structures of vertices only when
the vertices are encountered during the search rather than up front in Initialize(). The other
optimization is to continue the while-loop of ComputeShortestPath() only if the heuristic
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value of the vertex with the smallest key in the priority queue is finite. This is similar to

A* that can terminate if it is about to expand a vertex with an infinite f-value. The second
optimization was not used in the experimental evaluation of LPA*.

7. Extensions of Lifelong Planning A*

The costs of edges can change during replanning. In this case, it can be more efficient to
take the changed edge costs into account before ComputeShortestPath() terminates than to
wait until it does. This requires one to modify ComputeShortestPath() so that it continues
to maintain Invariants 1–3, which can be done by processing all edges with changed edge
costs before the while loop in ComputeShortestPath() iterates, by copying lines {21–23}
and inserting them directly after line {16} into the while loop. In this case, Theorem 5
continues to hold but some of the other theorems might not, including Theorem 4. For
example, a vertex that has already been expanded twice and thus is locally consistent can,
after each change of edge costs, again become locally inconsistent and thus be expanded
up to two more times. On the other hand, a vertex that is locally inconsistent can, after a
change of edge costs, become locally consistent and thus might not get expanded at all.

8. Experimental evaluation

We now compare breadth-first search, A*, DynamicSWSF-FP, and the optimized
version of LPA* experimentally. We use DynamicSWSF-FP with the same optimizations
that we developed for LPA*, to avoid biasing our experimental results in favor of LPA*.
We study two versions of A*, namely one that breaks ties among vertices with the same f-
value in favor of vertices with smaller g-values (A* version 1), just like LPA*, and one
that breaks ties among vertices with the same f-value in favor of vertices with larger
g-values (A* version 2), which tends to result in fewer vertex expansions. The priority
queues of all search methods were implemented as binary heaps. Since all search methods
determine shortest paths, we need to compare their total search time until a shortest path
has been found. To this end, we measure their actual runtimes ti (in milliseconds), run on
a Pentium 1.7 MHz PC. Since the runtimes are machine dependent, they make it difficult
for others to reproduce the results of our performance comparison. We therefore also use
two performance measures that both correspond to common operations performed by the
search methods and thus heavily influence their runtimes, yet are machine independent:
the total number of vertex expansions ve (that is, updates of the g-values, similar to
backup operations of dynamic programming for sequential decision problems), and the
total number of heap percolates hp (exchanges of a parent and child in the heap). Note that
we count two vertex expansions, not just one vertex expansion, if LPA* expands the same
vertex twice, to avoid biasing our experimental results in favor of LPA*.

We performed experiments with four-connected gridworlds of size 51×51 with directed
edges between adjacent cells. We use the Manhattan distances as heuristics for the cost of
a shortest path between two cells for both A* and LPA*, that is, the sum of the absolute
differences of their x- and y-coordinates. We generate one hundred gridworlds. The start
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and goal cells are drawn with uniform probability from all cells for each gridworld. All

edge costs are either one or two with uniform probability. We then change each gridworld
five hundred times in a row by selecting 0.6 percent of the edges (with replacement) and
assigning them random costs. After each change, the search methods recompute a shortest
path. Fig. 8 reports the average over the one hundred gridworlds for each search method
and the three performance measures (per replanning episode). Both versions of A* perform
about equally well; the tie-breaking rule does not make a difference in our gridworlds.

We also performed experiments with four-connected gridworlds of size 51 × 51 with
obstacles. We again use the Manhattan distances as heuristics for the cost of a shortest path
between two cells, generate one hundred gridworlds, and draw the start and goal cells with
uniform probability from all cells for each gridworld. Each cell is blocked with 20 percent
probability. Blocked cells have neither incoming nor outgoing edges but there exist edges
from unblocked cells to adjacent unblocked cells. Their costs are one. We then change
each gridworld five hundred times in a row by randomly selecting eight unblocked cells
and making them blocked, and randomly selecting eight blocked cells and making them
unblocked. Thus, the obstacle density remains unchanged but about 0.6 percent of the cells
change their blockage status. After each of the changes, the search methods recompute
a shortest path. Fig. 9 reports the average over the one hundred gridworlds for each
search method and the three performance measures (per replanning episode). A* version
2 outperforms A* version 1 in these gridworlds because there are often multiple shortest

uninformed search heuristic search

complete search Breadth-First Search A* Version 1 (A* Version 2)
ve = 1240.04 ve = 307.93 (255.58)
hp = 5232.67 hp = 2021.92 (2059.81)
ti = 0.249 ti = 0.083 (0.077)

incremental search DynamicSWSF-FP LPA*
ve = 104.91 ve = 23.71
hp = 491.08 hp = 212.43
ti = 0.036 ti = 0.015

Fig. 8. Comparison of search methods in gridworlds with random edge costs.

uninformed search heuristic search

complete search Breadth-First Search A* Version 1 (A* Version 2)
ve = 1124.23 ve = 241.77 (103.33)
hp = 3612.74 hp = 1003.50 (820.79)
ti = 0.226 ti = 0.064 (0.040)

incremental search DynamicSWSF-FP LPA*
ve = 91.47 ve = 15.56
hp = 482.87 hp = 137.68
ti = 0.039 ti = 0.018

Fig. 9. Comparison of search methods in gridworlds with random obstacles.
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paths and a large number of cells on these paths have f-values that are equal to the f-value

of the goal cell. A* version 1 expands all of these cells, whereas A* version 2 expands
only those cells on one of the shortest paths. Thus, it appears to be a disadvantage that
LPA* breaks ties in the same way as A* version 1. However, the fact that LPA* finds all
shortest paths during the first planning episode speeds up replanning when some of them
get blocked, and LPA* outperforms even A* version 2 in the long run. This suggests that
tie-breaking might become less important as the number of replanning episodes increases.

Both tables confirm the observations made in Section 3. Each of the three performance
measures is improved when going from an uninformed to a heuristic search and from
a complete to an incremental search, although this is not guaranteed in general. LPA*
outperforms the other search methods according to all performance measures. Thus,
combining lifelong and heuristic searches can indeed speed up replanning. Note, however,
that the exact number of vertex expansions and heap percolates depends on low-level
implementation and machine details, for example, how the graphs are constructed from
the gridworlds and in which order successors are generated when vertices are expanded.
Similarly, the differences in runtime depend on the instruction set of the processor, the
optimizations performed by the compiler, and the data structures used for the priority
queues. For example, LPA* needs more time per vertex expansion than both versions
of A* but the resulting difference in runtime could potentially be decreased in favor of
LPA* by optimizing LPA* by “unrolling” its code into code for the first iteration and
code for all subsequent iterations and then deleting all unnecessary code from the code for
the first iteration. Similarly, LPA* needs fewer heap percolates than both versions of A*
but the resulting difference in runtime can be decreased in favor of A* by using buckets to
implement the priority queues rather than heaps. For example, the runtime of A* decreased
from 0.083 and 0.077 milliseconds to 0.035 milliseconds in the experiment of Fig. 8 when
we implemented A* with buckets and a simple FIFO tie-breaking strategy within buckets.

We also performed more detailed experiments that compare LPA* with the two versions
of A*. We use again four-connected gridworlds with directed edges between adjacent cells,
as in the first experiment. We report the probability that the cost of the shortest path changes
to ensure that the edge cost changes indeed change the shortest path sufficiently often.
A probability of 33.9 percent, for example, means that the cost of the shortest path changes
on average after 2.96 planning episodes. For each experiment, we report the runtime (in
milliseconds) averaged over all first planning episodes (#1) and over all planning episodes
(#2). We also report the speedup of LPA* over A* version 2 in the long run (#3), that is,
the ratio of the runtimes of A* version 2 and LPA* averaged over all planning episodes.
Since LPA* expands the same vertices during the first search as A* version 1 but expands
them more slowly, its first search is always slower than that of A* version 1, which in turn
often expands more vertices and then is slower than A* version 2. During the subsequent
searches, however, LPA* often expands fewer vertices than both versions of A* and is thus
faster than them. We therefore also report the replanning episode after which the average
total runtime of LPA* is smaller than the one of A* version 2 (#4), in other words, the
number of replanning episodes that are necessary for one to prefer LPA* over A* version
2. For example, if this number is one, then LPA* solves one planning problem and one
replanning problems together faster than A* version 2.
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Experiment 1. In the first experiment, the size of the gridworlds is 101 × 101. We change

the number of edges that get assigned random costs before each planning episode. Fig. 10
shows our experimental results. The smaller the number of edges that get reassigned
random costs, the less the search space changes and the larger the advantage of LPA*
in our experiments. The average runtime of the first planning episode of LPA* tends to be
larger than the one of both versions of A* but the average runtime of the following planning
episodes tends to be so much smaller (if the number of edges that get reassigned random
costs is sufficiently small) that the number of replanning episodes that are necessary for
one to prefer LPA* over A* is one. Although our tabulated results do not show this, the
average runtime of LPA* can also be larger than the one of A*, for example, if a larger
number of edges change their cost.

Experiment 2. In the second experiment, the number of edges that get reassigned random
costs before each planning episode is 0.6 percent. We change the size of the square
gridworlds. Fig. 11 shows our experimental results. The smaller the gridworlds, the larger
the advantage of LPA* in our experiments, although we were not able to predict this effect.
This is an important insight since it implies that LPA* does not scale well in our gridworlds
(although part of this effect could be due to the fact that more edges get reassigned random
costs as the size of the gridworlds increases and this time is included in the runtime
averaged over all planning episodes). We therefore devised the third experiment.

edge cost changes path cost changes A* version 1 A* version 2 LPA*
#1 and #2 #1 and #2 #1 #2 #3 #4

0.2% 3.0% 0.302 0.299 0.386 0.029 10.370× 1
0.4% 7.9% 0.340 0.336 0.419 0.067 5.033× 1
0.6% 13.0% 0.365 0.362 0.453 0.108 3.344× 1
0.8% 17.6% 0.410 0.406 0.499 0.156 2.603× 1
1.0% 20.5% 0.373 0.370 0.434 0.174 2.126× 1
1.2% 24.6% 0.414 0.413 0.476 0.222 1.858× 1
1.4% 28.7% 0.470 0.468 0.539 0.282 1.657× 1
1.6% 32.6% 0.504 0.500 0.563 0.332 1.507× 1
1.8% 32.1% 0.479 0.455 0.497 0.328 1.384× 1
2.0% 33.8% 0.401 0.394 0.433 0.315 1.249× 1

Fig. 10. Experiment 1.

gridworld size path cost changes A* version 1 A* version 2 LPA*
#1 and #2 #1 and #2 #1 #2 #3 #4

51 × 51 7.3% 0.083 0.077 0.098 0.015 5.032× 1
76 × 76 10.7% 0.206 0.201 0.258 0.050 3.987× 1

101 × 101 13.0% 0.348 0.345 0.437 0.104 3.315× 1
126 × 126 16.2% 0.681 0.690 0.789 0.220 3.128× 1
151 × 151 17.7% 0.917 0.933 1.013 0.322 2.900× 1
176 × 176 21.5% 1.499 1.553 1.608 0.564 2.753× 1
201 × 201 22.9% 1.781 1.840 1.898 0.682 2.696× 1

Fig. 11. Experiment 2.
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80% of edge cost changes are � 25 cells away from the goal

gridworld size path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

51 × 51 13.5% 0.091 0.084 0.115 0.014 6.165× 1
76 × 76 23.9% 0.195 0.189 0.245 0.028 6.661× 1

101 × 101 33.4% 0.302 0.295 0.375 0.048 6.184× 1
126 × 126 42.5% 0.691 0.696 0.812 0.084 8.297× 1
151 × 151 48.5% 0.864 0.886 0.964 0.114 7.808× 1
176 × 176 55.7% 1.308 1.353 1.450 0.156 8.683× 1
201 × 201 59.6% 1.613 1.676 1.733 0.202 8.305× 1

80% of edge cost changes are � 50 cells away from the goal
gridworld size path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

51 × 51 8.6% 0.092 0.086 0.115 0.017 5.138× 1
76 × 76 15.7% 0.195 0.190 0.247 0.039 4.822× 1

101 × 101 23.2% 0.310 0.304 0.378 0.072 4.235× 1
126 × 126 31.3% 0.696 0.702 0.812 0.130 5.398× 1
151 × 151 36.2% 0.875 0.896 0.959 0.173 5.166× 1
176 × 176 44.0% 1.331 1.372 1.458 0.242 5.664× 1
201 × 201 48.3% 1.636 1.689 1.742 0.313 5.398× 1

80% of edge cost changes are � 75 cells away from the goal
gridworld size path cost changes A* version 1 A* version 2 LPA*

#1 and #2 #1 and #2 #1 #2 #3 #4

76 × 76 12.1% 0.201 0.196 0.250 0.047 4.206× 1
101 × 101 17.5% 0.312 0.306 0.391 0.088 3.499× 1
126 × 126 26.0% 0.699 0.703 0.818 0.175 4.012× 1
151 × 151 28.8% 0.881 0.893 0.972 0.225 3.978× 1
176 × 176 36.8% 1.331 1.370 1.438 0.319 4.301× 1
201 × 201 40.1% 1.670 1.728 1.790 0.408 4.236× 1

Fig. 12. Experiment 3.

Experiment 3. In the third experiment, the number of edges that get reassigned random
costs before each planning episode is again 0.6 percent. We change both the size of the
square gridworlds and how close the edges that get reassigned random costs are to the goal
cell. 80 percent of these edges leave cells that are close to the goal cell. Fig. 12 shows our
experimental results. Now, the advantage of LPA* no longer decreases with the size of the
gridworlds. The closer the edge cost changes are to the goal cell, the larger the advantage
of LPA* in our experiments. This is an important insight since it suggests to use LPA*
when most of the edge cost changes are close to the goal cell.

To summarize, in some situations LPA* is more efficient than A* not only in terms
of vertex expansions but also in terms of runtime. However, these situations need to
get characterized better. Also, the efficiency of LPA* and A* depends on low-level
implementation and machine details, and the results of the comparison thus might have
been different for different implementations or hardware environments. For example, LPA*
needs more than one replanning episode to outperform A* if the number of edges that
get reassigned random costs before each planning episode is less than 1.0 percent and
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does not outperform A* at all if the number of edges that get reassigned random costs

before each planning episode is 1.0 percent or more in the experiment of Fig. 10 when we
implemented A* with buckets and a simple FIFO tie-breaking strategy within buckets but
left the implementation of LPA* unchanged. One problem of making fair comparisons is
that A* and LPA* perform very different basic operations and thus cannot be compared
using proxies, such as the number of vertex expansions. Another problem is that the
search spaces of incremental search methods can be relatively small (for example, when
searching maps for computer gaming) and their scaling properties are thus less important
than implementation and machine details. Therefore, we are only willing to conclude from
our experiments that incremental heuristic search is a promising technology that needs to
get investigated further.

9. An application to symbolic planning

Obvious applications of LPA* include search in the context of transportation or
communication networks, for example, route planning for cars under changing traffic
conditions and for packages on computer networks with changing load conditions. For
example, in “most of today’s commercial routers, this recomputation is done by deleting
the current SPT [shortest-path tree] and recomputing it from scratch by using the well
known Dijkstra algorithm” [12] although it has recently been discovered in the networking
literature that DynamicSWSF-FP can be used to update routing tables as the congestion
of links changes [12,13]. In this section, however, we apply LPA* to more complex path-
planning problems, namely to symbolic planning problems. LPA* applies to replanning
problems where edges or vertices are added or deleted, or the costs of edges are changed,
for example, because the cost of planning operators, their preconditions, or their effects
change from one path-planning problem to the next. We first describe how to apply LPA*
to symbolic planning and then present experimental results. Our goal is not to develop
a full scale symbolic replanner but rather to evaluate LPA* in an additional domain and
provide some insight into its properties.

9.1. Heuristic search-based replanning with Lifelong Planning A*

Heuristic search-based planners perform a heuristic forward or backward search in the
space of world states to find a path from the start vertex to a goal vertex. They were
introduced in [14] and [15] and are now very popular. Several of them entered the second
planning competition at AIPS-2000, including HSP 2.0 [16], FF [17], GRT [18], and AltAlt
[19].

Many heuristic search-based planners solve STRIPS-planning problems with ground
planning operators. We use LPA* in the same way. Such STRIPS-planning problems
consist of a set of propositionsP that are used to describe the states and planning operators,
a set of ground planning operators O , the start state I ⊆ P , and the partially specified
goal G ⊆ P . Each planning operator o ∈ O has a cost cost(o) > 0, a precondition list
Prec(o) ⊆ P , an add list Add(o) ⊆ P , and a delete list Delete(o) ⊆ P . The STRIPS-
planning problem induces a path-planning problem that consists of a set of states (vertices)
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2P , a start state I , a set of goal states {X ⊆ P | G ⊆ X}, a set of actions (directed edges)

{o ∈O | Prec(o)⊆ s} for each state s ⊆ P where action o transitions from state s ⊆ P to
state s − Delete(o)+ Add(o)⊆ P with cost cost(o). All paths (plans) from the start state
to any goal state are solutions of the STRIPS planning problem. The shorter the path, the
higher the quality of the solution.

LPA* performs a forward search in the space of world states using the consistent hmax -
heuristic that was first developed in the context of HSP [16]. The heuristic values are
calculated by solving a relaxed version of the planning problem, where one recursively
approximates (by ignoring all delete lists) the cost of achieving each goal proposition
individually from the given state and then combines the estimates to obtain the heuristic
value of the given state. In the following, we explain the calculation of the heuristic values
in detail. We use gs(p) to denote the approximate cost of achieving proposition p ∈ P

from state s ⊆ P , and gs(o) to denote the approximate cost of achieving the preconditions
of planning operator o ∈ O from state s ⊆ P . HSP defines these quantities recursively. It
defines for all s ⊆ P , p ∈ P , and o ∈ O (the minimum of an empty set is defined to be
infinity):

gs(p)=
{

0 if p ∈ s,

mino∈O|p∈Add(o)[cost(o)+ gs(o)] otherwise, (5)

gs(o)= max
p∈Prec(o)

gs(p). (6)

Then, the heuristic value hmax(s) of state s ∈ S can be calculated as hmax(s) =
maxp∈G gs(p). These heuristics are consistent and thus allow LPA* to find shortest plans.

Unfortunately, LPA* cannot be used completely unchanged for heuristic search-based
replanning. There are three issues that need to be addressed, resulting in SHERPA
(Speedy HEuristic search-based RePlAnner) [20]. Fig. 13 shows the unoptimized version
of SHERPA that can be optimized as outlined in Section 6.

• First, the pseudocode shown in Fig. 6 initializes all vertices up front. This is impossible
for symbolic planning since the state space is too large to fit in memory. We address
this issue by initializing vertices and edges only when they are encountered during the
search.

• Second, the pseudocode iterates over all predecessors of a vertex to determine its
rhs-value on line 6 in Fig. 6. However, it is difficult to determine the predecessors
of vertices for symbolic planning. (Switching the search direction does not help
since LPA* and thus SHERPA sometimes needs to iterate over all predecessors and
sometimes over all successors of a vertex.) We address this issue as follows: Whenever
a vertex is expanded, SHERPA generates all of its successors and for each of them
remembers that the expanded vertex is one of its predecessors. Thus, at any point in
time, SHERPA has those predecessors of a vertex available that have been expanded
at least once already and thus have potentially finite g-values. We then change the
pseudocode to iterate only over the cached predecessors of the vertex (instead of all
of them) when it calculates the rhs-value of the vertex. This does not change the
calculated rhs-value since the g-values of the other predecessors are infinite.
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The pseudocode uses the following functions to manage the priority queue: U.TopKey() returns the smallest priority of all
vertices in priority queue U . (If U is empty, then U.TopKey() returns [∞;∞].) U.Pop() deletes the vertex with the smallest
priority in priority queue U and returns the vertex. U.Insert(s, k) inserts vertex s into priority queue U with priority k. Finally,
U.Remove(s) removes vertex s from priority queue U .

The pseudocode assumes that sstart does not satisfy the goal condition (otherwise the empty plan is optimal). Furthermore,
sgoal is a special symbol that does not correspond to any vertex.

procedure CalculateKey(s)
{01”} return [min(g(s), rhs(s))+ h(s);min(g(s), rhs(s))];
procedure Initialize()
{02”} rhs(sstart)= 0;
{03”} g(sstart)= ∞;
{04”} h(sstart)= the heuristic value of sstart ;
{05”} pred(sstart)= succ(sstart)= ∅;
{06”} operators = ∅;
{07”} U = ∅;
{08”} U.Insert(sstart,CalculateKey(sstart));

procedure UpdateVertex(u)
{09”} if (u 
= sstart) then rhs(u)= mine∈pred(u)(g(source(e))+ cost(e));
{10”} if (u ∈U) then U.Remove(u);
{11”} if (g(u) 
= rhs(u)) then U.Insert(u,CalculateKey(u));

procedure ComputeShortestPath()
{12”} while (U.TopKey() <̇CalculateKey(sgoal) OR rhs(sgoal) 
= g(sgoal))

{13”} u= U.Pop();
{14”} if (u is expanded for the first time AND u 
= sgoal) then
{15”} for all ground planning operators o whose preconditions are satisfied in u:
{16”} if (o /∈ operators) then
{17”} operators = operators ∪ {o};
{18”} edges(o)= ∅;
{19”} s = the vertex that results from applying o;
{20”} if (vertex s satisfies the goal condition) then s = sgoal ;
{21”} if (s is encountered for the first time) then
{22”} rhs(s)= g(s) = ∞;
{23”} h(s) = the heuristic value of s;
{24”} pred(s)= succ(s)= ∅;
{25”} Create a new edge e;
{26”} source(e)= u;
{27”} destination(e)= s;
{28”} cost(e)= the cost of applying o;
{29”} edges(o)= edges(o)∪ {e};
{30”} pred(s)= pred(s)∪ {e};
{31”} succ(u)= succ(u) ∪ {e};
{32”} if (g(u) > rhs(u)) then
{33”} g(u)= rhs(u);
{34”} for all e ∈ succ(u): UpdateVertex(destination(e));
{35”} else
{36”} g(u)= ∞;
{37”} UpdateVertex(u);
{38”} for all e ∈ succ(u) with destination(e) 
= u: UpdateVertex(destination(e));

procedure Main()
{39”} Initialize();
{40”} forever
{41”} ComputeShortestPath();
{42”} Wait for changes in planning operator costs;
{43”} for all ground planning operators o ∈ operators with changed operator costs:
{44”} for all e ∈ edges(o):
{45”} cost(e)= the (new) cost of applying o;
{46”} UpdateVertex(destination(e));

Fig. 13. The SHERPA replanner.
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• Third, the pseudocode assumes that there is only one goal vertex. However, there are

often many goal states in symbolic planning if the goal is only partially specified.
We address this issue by removing the successors of all vertices that satisfy the goal
condition and then merging all vertices that satisfy the goal condition into one new
vertex, called sgoal.

9.2. An example of heuristic search-based replanning

In the miconic (elevator) domain, the f floors of a building are served by an elevator.
Initially, p people are either in the elevator or waiting for it on randomly selected floors.
The goal is to get each person to his or her destination floor. The elevator can move from
any floor to any other floor in one step, whether it is empty or not. There is no limit on the
number of people that can be in the elevator at any time.

The planning domain contains the following operators:

• The elevator moves from floor fi to floor fj with i 
= j .
• Person pk boards the elevator on floor fi provided that the elevator is currently on

floor fi and floor fi is the origin of person pk .
• Person pk gets off the elevator on floor fi , provided that person pk is in the elevator,

the elevator is currently on floor fi , and floor fi is the destination of person pk .

A problem instance is defined by f , p, a start state (the initial location of each person
and the initial location of the elevator) and a goal condition (the destination floor of each
person). We apply SHERPA to a problem instance with p = 2 people (Paul and Sally) and
f = 3 floors. In the start state, Paul has boarded the elevator on the third floor and Sally is
waiting on the first floor. The goal condition requires Paul to be on the first floor and Sally
to be on the third floor.

Fig. 14 shows the search graph generated by SHERPA when it uses search from scratch
with the hmax heuristic to solve the planning problem. Expanded vertices are shown in
grey with a solid outline in the figure. The numbers in circles indicate the order of vertex
expansions. Generated but not expanded vertices are shown in white with a dashed outline.
Keys of the locally inconsistent vertices are shown in the lower right corner. The shortest
plan is to move the elevator directly to the first floor, let Paul exit and Sally enter the
elevator (in any order), move the elevator directly to the third floor, and let Sally exit the
elevator. We now remove the ground operator that corresponds to the elevator moving
from the first floor directly to the third floor. This deletes several edges from the state
space, including one that is part of the plan. The edges deleted from the search graph are
shown dashed in the figure. Consequently, SHERPA needs to replan. Fig. 15 (left) shows
the search graph generated by SHERPA when it uses search from scratch with the same
heuristic to solve the new planning problem. The shortest plan now is to move the elevator
directly to the first floor, let Paul exit and Sally enter the elevator (in any order), move the
elevator first to the second and then to the third floor, and let Sally exit the elevator. Fig. 15
(right) shows the search graph generated by SHERPA when it uses incremental search with
the same heuristic to solve the new planning problem, resulting in the same shortest plan.
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Fig. 14. First search (with search from scratch).

Although the incremental search expands three vertices twice, it performs 33 percent fewer
expansions than a search from scratch.

Inadmissible heuristics allow HSP to solve search problems in large state spaces by
trading off runtime and the plan-execution cost of the resulting plan. SHERPA uses LPA*
with consistent heuristics. While we have extended LPA* to use inadmissible heuristics and
still guarantee that it expands every vertex at most twice, it turns out to be difficult to make
incremental search more efficient than search from scratch with the same inadmissible
heuristics, although we have had success in special cases. This can be explained as follows:
The larger the heuristics are, the narrower the A* search tree and thus the more efficient A*
is. On the other hand, the narrower the A* search tree, the more likely it is that the overlap
between the old and new A* search trees is small and thus the less efficient LPA* is.

9.3. Experimental evaluation of heuristic search-based replanning

In the following, we compare SHERPA against search from scratch. Replanners are
commonly evaluated using the savings percentage. If x and y denote the computational
effort of replanning and planning from scratch respectively, then the savings percentage
is defined to be 100(y − x)/y [21]. Consequently, we use the savings percentage to
evaluate SHERPA, which means that we evaluate SHERPA relative to its own behavior
in generating plans from scratch or, equivalently, relative to an A* search with the same
heuristic and tie-breaking behavior. When calculating the savings percentage, we use the



122 S. Koenig et al. / Artificial Intelligence 155 (2004) 93–146
Fig. 15. Second search with search from scratch (left) and incremental search (right).

number of vertex expansions to measure the computational effort of SHERPA. This is
justified because our earlier experiment showed that both performance measures were well
correlated. As before, we count two vertex expansions if SHERPA expands the same vertex
twice when it performs an incremental search, to avoid biasing our experimental results in
favor of incremental search. At this point in time, we don’t have results about the runtimes
available since we would need very clean code to obtain meaningful results but the software
system is rather large.

We used the code of HSP 2.0 [16] to implement SHERPA. We used three randomly
chosen domains from previous AIPS planning competitions, namely the blocksworld,
gripper, and miconic (elevator) domains of different sizes. In each of these domains, we
repeated the following procedure 500 times. We randomly generated a start state and goal
description, and used SHERPA to solve this original path-planning problem. We then
randomly selected one of the ground planning operators that were part of the returned
plan and deleted it from the planning domain. Thus, the old plan can no longer be executed
and replanning is necessary. Note that deleting a ground planning operator deletes several
edges from the state space graph and thus changes the graph substantially. We then used
SHERPA twice to solve the resulting modified path-planning problem: one time it used
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Domains Deleted Edges (% ) Sample Average Savings

minimum maximum average Size Percentage

blocksworld (3 blocks) 5.3 25.0 7.5 348 6.3
blocksworld (4 blocks) 1.3 25.0 3.9 429 22.9
blocksworld (5 blocks) 0.4 10.0 2.1 457 26.4
blocksworld (6 blocks) 0.2 4.5 1.2 471 31.1
blocksworld (7 blocks) 0.1 2.7 0.7 486 38.0
gripper (3 balls) 1.2 22.4 8.2 340 47.5
gripper (4 balls) 0.8 21.7 7.2 349 57.0
gripper (5 balls) 0.6 21.8 5.8 367 65.1
gripper (6 balls) 0.5 21.8 5.6 361 69.4
gripper (7 balls) 0.5 21.9 5.2 358 73.4
gripper (8 balls) 0.3 22.0 4.6 368 81.0
gripper (9 balls) 0.3 21.8 4.3 374 77.7
gripper (10 balls) 0.2 21.6 4.5 356 80.0
miconic (5 floors, 1 person) 1.8 11.1 3.5 229 16.3
miconic (5 floors, 2 people) 1.7 7.0 3.5 217 51.4
miconic (5 floors, 3 people) 1.7 5.3 3.4 166 46.3
miconic (5 floors, 4 people) 1.7 4.9 3.2 162 63.1
miconic (5 floors, 5 people) 1.6 4.4 2.9 158 74.4
miconic (5 floors, 6 people) 1.5 4.2 2.8 159 80.4
miconic (5 floors, 7 people) 1.5 3.9 2.6 119 85.2

Fig. 16. Savings percentages of SHERPA over repeated A* searches.

incremental search and the other time it searched from scratch. Since the hmax-heuristic
depends on the available planning operators, we decided to let SHERPA continue to
use the heuristic for the original path-planning problem when it solved the modified one
because this enables SHERPA to cache the heuristic values. Caching the heuristic values
benefits incremental search and search from scratch equally since computing the heuristics
is very time-consuming. No matter whether SHERPA used incremental search or search
from scratch, it always found the same plans for the modified path-planning problems
and the plans were optimal, which is consistent with our theoretical results about LPA*.
Fig. 16 lists the percentage of edges deleted from the state space graph, the number of
modified path-planning problems that were solvable, and the savings percentages averaged
over all cases where the resulting path-planning problems were solvable and thus the
original plan-construction process could indeed be reused. Since the state spaces are large,
we approximated the percentage of edges deleted from the state space graph with the
percentage of edges deleted from the cached part of the graph. We used a paired-sample
z test at the one-percent significance level to confirm that the incremental searches of
SHERPA indeed outperform searches from scratch significantly.

In the following, we interpret the collected data to gain some insight into the behavior
of SHERPA.

• Figs. 17–19 show that the savings percentages tend to increase with the size of the
three domains. (Figs. 20 and 21 show the same trend.) This is a desirable property
since search is time-consuming in large domains and the large savings provided by
incremental searches are therefore especially important. The savings percentages in
the gripper domain appear to level off at about eighty percent, which is similar to
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Fig. 17. Blocksworld: average savings percentage as a function of the domain size.

Fig. 18. Gripper: average savings percentage as a function of the domain size.

the savings percentages that [21] reports for PRIAR, a symbolic replanning method,
and better than the savings percentages that [21] reports for SPA, another symbolic
replanning method. The savings percentages in the other two domains seem to level
off only for domain sizes larger than what we used in the experiments but also reach
levels of eighty percent at least in the miconic domain.

• Fig. 20 shows how the savings percentages for the blocksworld domain change with
the position of the deleted ground planning operator in the plan for the original
path-planning problem. Note that the savings percentages become less reliable as the
distance of the deleted ground planning operator to the goal increases because the
number of shortest plans in the sample with length larger than n quickly decreases as
n increases. The savings percentages decrease as the distance of the deleted ground
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Fig. 19. Miconic: average savings percentage as a function of the domain size.

Fig. 20. Blocksworld: average savings percentage as a function of the distance of the deleted edge from the goal.

planning operator to the end of the plan increases. They even become negative when
the deleted ground planning operator is too close to the beginning of the plan, as
expected, since this tends to make the old and new search trees very different.

• Fig. 21 shows that the savings percentages for the blocksworld domains degrade
gracefully as the similarity of the original and modified planning tasks decreases,
measured using the number of ground planning operators deleted at the same time.
In other words, SHERPA is able to reuse more of the previous plan-construction
process the more similar the original and modified planning tasks are, as expected.
We repeated the following procedure 500 times to generate the data: We randomly
generated a start state and goal description, and solved the resulting planning task
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Fig. 21. Blocksworld: average savings percentage as a function of the dissimilarity of the planning tasks.

from scratch using SHERPA. We call the resulting search graph G and the resulting
plan P . We then generated a random sequence of 10 different ground operators. The
first ground operator was constrained to be part of plan P to ensure the need for
replanning. For each n = 1 . . .10, we then deleted the first n ground operators in
the sequence from the planning domain and used SHERPA to replan using search
graph G. We discarded each of the 500 runs in which the planning task became
unsolvable after all 10 ground operators had been deleted from the domain. Finally, we
averaged the savings percentages over all remaining planning problems with the same
number n = 1 . . .10 of deleted ground operators. We used this experimental setup in
the blocksworld domain for each problem size ranging from 3 to 7 blocks. Note that
we omitted the results for planning tasks with three blocks. Because its state space is
so small, most planning tasks are unsolvable after 10 ground planning operators are
deleted.

10. Related research

A variety of search methods from artificial intelligence, algorithm theory, and robotics
share with LPA* the fact that they find solutions to series of similar path-planning problems
potentially faster than is possible by solving each path-planning problem from scratch.
The idea of incremental search has also been studied in the context of dynamic constraint
satisfaction [22–24] and constraint logic programming problems [25]. In the following,
however, we focus on path-planning problems:

Symbolic replanning. Symbolic replanning methods from artificial intelligence include
case-based planning, planning by analogy, plan adaptation, transformational planning,
planning by solution replay, repair-based planning, and learning search-control
knowledge. These replanning methods have been used as part of systems such as
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CHEF [26], GORDIUS [27], LS-ADJUST-PLAN [28], MRL [29], NoLimit [30],

PLEXUS [31], PRIAR [32], and SPA [21]. NoLimit, for example, accelerates a
backward-chaining nonlinear planner that uses means-ends analysis, SPA accelerates a
causal-link partial-order planner, PRIAR accelerates a hierarchical nonlinear planner,
and LS-ADJUST-PLAN accelerates a planner that uses planning graphs. A difference
between LPA* and the other replanners is that LPA* does not only remember
the previous plans but also the previous plan-construction processes. Thus, it has
more information available for replanning than even PRIAR, that stores plans
together with explanations of their correctness, or NoLimit, that stores plans together
with substantial descriptions of the decisions that resulted in the solution. Another
difference between LPA* and the other replanners is that the quality of the plans of
LPA* is as good as the plan quality achieved by using it to search from scratch whereas
the quality of the plans of the other replanners can be worse than the plan quality
achieved by using them to search from scratch. A third difference between LPA* and
some other replanners is that LPA* does not separate replanning into two phases,
namely one phase that determines where the previous plan fails and another phase
that uses slightly modified standard search methods to replan for those parts. Instead,
LPA* identifies quickly which parts of the previous plan-construction processes cannot
be reused to construct the new plan and then uses an efficient specialized replanning
method to plan for these parts.

Incremental search. Incremental search methods solve dynamic shortest path problems,
that is, path problems where shortest paths have to be determined repeatedly as the
topology of a graph or its edge costs change [33]. Thus, they differ from symbolic
replanning methods in that they find shortest paths. A number of incremental search
methods have been suggested in the algorithms literature [34–45] and, to a much lesser
degree, the artificial intelligence literature [46]. They are all uninformed but differ in
their assumptions, for example, whether they solve single-source or all-pairs shortest
path problems, which performance measure they use, when they update the shortest
paths, which kinds of graph topology and edge costs they apply to, and how the graph
topology and edge costs are allowed to change over time [47]. If arbitrary sequences
of edge insertions, deletions, or weight changes are allowed, then the dynamic shortest
path problems are called fully dynamic shortest path problems [48]. LPA* is an
incremental search method that solves fully dynamic shortest path problems but,
different from the incremental search methods cited above, uses heuristics to focus
its search and thus combines two different techniques to reduce its search effort.

Incremental heuristic search. The incremental search method most similar to LPA* is (fo-
cussed) D* from robotics [49]. We believe that D* is the first truly incremental heuris-
tic search method. It plans routes for mobile robots that move in initially unknown
terrain towards given goal coordinates by searching from the goal coordinates towards
the current coordinates of the robots. We have extended LPA* to solve the same path-
planning problems as D*, resulting in our D* Lite [50]. This was our original moti-
vation for developing LPA*. D* Lite implements the same navigation strategy as D*
but is simpler. For example, it has more than thirty percent fewer lines of code (with-
out any coding tricks), uses only one tie-breaking criterion when comparing priorities,
and does not need nested if-statements with complex conditions that occupy up to
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three lines each which makes it easier to understand, analyze, optimize, and extend.

Furthermore, the theoretical results presented in this article allow us to show a strong
similarity of D* Lite to A* and characterize its behavior much better than is currently
possible for D*, for which only its correctness has been proven.

Researchers have now started to investigate alternative ways of making A* incremental
and thus alternatives to LPA* (personal communication from Peter Yap in 2003), partly by
extending idea that have previously been explored in the context of uninformed search [51].

11. Conclusions

Incremental search methods find optimal solutions to series of similar path-planning
problems potentially faster than is possible by solving each path-planning problem from
scratch. They do this by using information from previous search episodes to speed up later
searches. In this article, we developed LPA*, an incremental version of A*, and applied it
to route planning and symbolic planning. LPA* applies to path-planning problems where
one needs to find shortest paths repeatedly as edges or vertices are added or deleted, or
the costs of edges are changed, for example, because the cost of planning operators, their
preconditions, or their effects change from one path-planning problem to the next. LPA*
builds on previous results from parsing theory and theoretical computer science, namely
DynamicSWSF-FP [5]. We modified DynamicSWSF-FP to search from the start vertex
to the goal vertex and to stop immediately after it is sure that it has found a shortest
path, in which case it becomes an incremental version of breadth-first search. LPA* and
DynamicSWSF-FP then both maintain estimates of the start distances of the vertices, use a
priority queue to determine in which order to update these estimates, and compute shortest
paths based on them. LPA* uses the same notion of local consistency as DynamicSWSF-
FP, which it extends by focusing the search. Just like A*, it uses consistent heuristics in
the form of approximations of the goal distances of the vertices. Consequently, LPA*
combines the advantages of DynamicSWSF-FP (incremental search) and A* (heuristic
search) and is thus potentially more efficient than both of them individually. The simplicity
of LPA* allowed us to prove various properties about it that demonstrated its efficiency
in terms of vertex expansions and showed a strong similarity to A*, which makes it easy
to understand, easy to analyze, easy to optimize, and easy to extend. LPA* needs more
time per vertex expansion than A* but we were able to show experimentally that LPA*
is more efficient than A* in some situations not only in terms of vertex expansions but
also in terms of runtime, especially if the path-planning problems change only slightly and
the changes are close to the goal. We hope that our analytical and experimental results
about LPA* will eventually provide a strong foundation for developing further incremental
heuristic search methods and speeding up various artificial intelligence methods. As a first
step in this direction, we have applied our LPA* to heuristic search-based replanning,
resulting in our SHERPA. LPA* can also be used to develop a simplified version of D*
[49], a robot navigation method for unknown terrain [50]. Besides developing a full scale
symbolic replanner, it is future work to understand LPA* better, characterize the exact
conditions when it is more efficient than A* in terms of runtime, and compare it to search
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methods other than breadth-first search, A*, and DynamicSWSF-FP in studies similar to

[52,53]. From the results presented in this paper, we are only willing to conclude that
incremental heuristic search seems to have an advantage over alternative search methods
in some situations and thus is a promising technology that needs to get investigated further.
Clearly, we need to improve our understanding of incremental search, including when to
prefer incremental search over alternative search methods and which incremental search
methods to use, since it is currently unclear how its runtime depends on properties of the
search problems as well as low-level implementation and machine details and thus whether
it has advantages in situations that are important in practice.
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Appendix A. The proofs

In the following, we prove the theorems stated in the article for the version of LPA*
shown in Fig. A.1. All line numbers in the appendix refer to this version of LPA*. The
theorems then also hold for the unoptimized version of LPA* stated in the main article
since it is a special case where initially g(s) = ∞ for all vertices s. This initialization
allows for a more efficient implementation since the rhs-value of the start vertex is zero, all
other rhs-values are known to be infinity, and the start vertex is known to be the only locally
inconsistent vertex and thus the only vertex in the priority queue. More importantly, this
initialization allows LPA* to avoid having to iterate over all vertices in Initialize() since the
start vertex is the only vertex in the priority queue initially and the other vertices can thus
be initialized only after they have been encountered during the search. This is important
because the number of vertices can be large and only a few of them might be reached
during the search.

All theorems hold no matter how the g-values are initialized by the user before Main() is
called. Unless stated otherwise, all theorems also hold not matter whether the termination
condition of line {08} or the alternative termination condition “while U is not empty” is
used. The heuristics need to be nonnegative and consistent.

In the following, we use k(u) as a shorthand to denote the value returned by
CalculateKey(u) and call it the key of vertex u ∈ S. We will show that the key of any vertex
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The g-values are initialized by the user before Main() is called.
The pseudocode uses the following functions to manage the priority queue: U.TopKey() returns the smallest priority of all
vertices in priority queue U . (If U is empty, then U.TopKey() returns [∞;∞].) U.Pop() deletes the vertex with the smallest
priority in priority queue U and returns the vertex. U.Insert(s, k) inserts vertex s into priority queue U with priority k. Finally,
U.Remove(s) removes vertex s from priority queue U .

procedure CalculateKey(s)
{01} return [min(g(s), rhs(s))+ h(s);min(g(s), rhs(s))];
procedure Initialize()
{02} U = ∅;
{03} rhs(sstart)= 0;
{04} for all s ∈ S UpdateVertex(s);

procedure UpdateVertex(u)
{05} if (u 
= sstart) rhs(u)= mins′∈pred(u)(g(s

′)+ c(s′, u));
{06} if (u ∈ U) U.Remove(u);
{07} if (g(u) 
= rhs(u)) U.Insert(u,CalculateKey(u));

procedure ComputeShortestPath()
{08} while (U.TopKey() <̇CalculateKey(sgoal) OR rhs(sgoal) 
= g(sgoal))

{09} u= U.Pop();
{10} if (g(u) > rhs(u))
{11} g(u)= rhs(u);
{12} for all s ∈ succ(u) UpdateVertex(s);
{13} else
{14} g(u)= ∞;
{15} for all s ∈ succ(u) ∪ {u} UpdateVertex(s);

procedure Main()
{16} Initialize();
{17} forever
{18} ComputeShortestPath();
{19} Wait for changes in edge costs;
{20} for all directed edges (u, v) with changed edge costs
{21} Update the edge cost c(u, v);
{22} UpdateVertex(v);

Fig. A.1. Lifelong Planning A* (version used in the proofs).

in the priority queue is its priority. Thus, U.TopKey() returns the vertex in the priority
queue with the smallest key. However, the key is thus defined for all vertices, while the
priority is only defined for the vertices in the priority queue. The subscript b(u) denotes
the value of a variable directly before vertex u is expanded, that is, directly before line
{09} is executed. Similarly, the subscript a(u) denotes the value of a variable after vertex
u is expanded, that is, directly before line {08} is executed again.

Lemma A.1. The rhs-values of all vertices u ∈ S always satisfy the following relationship:

rhs(u)=
{

0 if u= sstart,

mins ′∈pred(u)(g(s
′)+ c(s′, u)) otherwise.

Proof. Initialize() initializes the rhs-values so that they satisfy the relationship. The right-
hand side of the relationship can then change for a vertex only when the cost of one of its
incoming edges changes or the g-value of one of its predecessors changes. This can happen
on lines {11}, {14} and {21}. In all of these cases, UpdateVertex() updates the potentially
affected rhs-values so that they continue to satisfy the relationship. ✷
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Lemma A.2. The priority queue contains exactly the locally inconsistent vertices every

time line {08} is executed.

Proof. Initialize() initializes the priority queue so that it contains exactly the locally
inconsistent vertices. The local consistency of a vertex can then only change when its
g-value or its rhs-value changes.

The rhs-value can change only on line {05}. UpdateVertex() then adds the vertex to the
priority queue or deletes it from the priority queue, as necessary, immediately afterwards
on lines {06-07}. Thus, the theorem continues to hold.

The g-value can change only on lines {11} and {14}.
Whenever ComputeShortestPath() updates the g-value of a locally overconsistent vertex

on line {11}, then the g-value of the vertex is set to its rhs-value. The vertex thus becomes
locally consistent and is correctly removed from the priority queue. Thus, the theorem
continues to hold.

Whenever ComputeShortestPath() updates the g-value of a locally underconsistent ver-
tex on line {14}, then the local consistency of the vertex can change. ComputeShortestPath()
then calls UpdateVertex() immediately afterwards on line {15}, which adds the vertex to
the priority queue or deletes it from the priority queue, as necessary. Thus, the theorem
continues to hold. ✷
Lemma A.3. The priority of each vertex u ∈U is equal to k(u).

Proof. Whenever a vertex u is inserted into the priority queue, its priority equals its key
k(u). Its key can then change only when its g-value or rhs-value changes. This can happen
on lines {05}, {11} and {14}. Line {05} can update the rhs-value of a vertex. If vertex
u remains locally inconsistent, it is reinserted into the priority queue with priority k(u).
Line {11} updates the g-value of a vertex but the vertex is no longer in the priority queue.
Finally, line {14} updates the g-value of a vertex u. Directly afterwards, line {15} calls
UpdateVertex(u) which updates its rhs-value. If the vertex remains locally inconsistent, it
is reinserted into the priority queue with priority k(u). Thus, the relationship continues to
hold. ✷
Lemma A.4. Assume that vertex u has key kb(u)(u) and is selected for expansion on line
{09}. If vertex v is locally consistent at this point in time but locally inconsistent the next
time line {08} is executed, then the new key ka(u)(v) of vertex v satisfies ka(u)(v) >̇ kb(u)(u)

the next time line {08} is executed.

Proof. Assume that vertex u has key kb(u)(u) and is selected for expansion on line {09}.
Vertex v is locally consistent at this point in time but locally inconsistent the next time line
{08} is executed.

The local consistency of vertex v can only change if its g-value changes or its rhs-
value changes. Its rhs-value can change only when the cost of one of its incoming edges
changes or the g-value of one of its predecessors changes. The edge costs do not change
in ComputeShortestPath(). The g-value of vertex v does not change either. Only the g-
value of vertex u changes and the two vertices must be different since vertex u is initially
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in the priority queue and thus locally inconsistent whereas vertex v is locally consistent.

Consequently, vertex u must be a predecessor of vertex v, and the rhs-value of vertex v

changes when the g-value of vertex u changes. We distinguish two cases:
Case one: Vertex u was locally overconsistent. Thus, gb(u)(u) > rhsb(u)(u). The

assignment on line {11} decreases the g-value of vertex u since ga(u)(u) = rhsb(u)(u) <
gb(u)(u) � ∞. This can affect the rhs-value of vertex v only if rhsa(u)(v) = ga(u)(u) +
c(u, v). In this case, the rhs-value of vertex v decreased. Its rhs-value must now be less
than its g-value since it was locally consistent before and thus its rhs-value was equal to
its g-value, which did not change. Formally, rhsa(u)(v) < rhsb(u)(v)= gb(u)(v)= ga(u)(v).
Putting it all together, it holds that

ka(u)(v) =̇ [
min(ga(u)(v), rhsa(u)(v))+ h(v); min(ga(u)(v), rhsa(u)(v))

]
=̇ [

rhsa(u)(v)+ h(v); rhsa(u)(v)
]

=̇ [
ga(u)(u)+ c(u, v)+ h(v);ga(u)(u)+ c(u, v)

]
>̇

[
ga(u)(u)+ h(u);ga(u)(u)

]
=̇ [

rhsb(u)(u)+ h(u); rhsb(u)(u)
]

=̇ [
min(gb(u)(u), rhsb(u)(u))+ h(u); min(gb(u)(u), rhsb(u)(u))

]
=̇ kb(u)(u).

We used during the derivation the fact that c(u, v) + h(v) � h(u) since the heuristics
are consistent, and the fact that ga(u)(u)+ c(u, v) > ga(u)(u) since the edge cost c(u, v) is
positive and the g-value ga(u)(u) is finite.

Case two: Vertex u was locally underconsistent. Thus, gb(u)(u) < rhsb(u)(u)� ∞. The
assignment on line {14} increases the g-value of vertex u from a finite value to infinity.
This can affect the rhs-value of vertex v only if rhsb(u)(v)= gb(u)(u)+c(u, v). In this case,
the rhs-value of vertex v increased. Its rhs-value must now be larger than its g-value since
it was locally consistent before and thus its rhs-value was equal to its g-value, which did
not change. Formally, rhsa(u)(v) > rhsb(u)(v)= gb(u)(v)= ga(u)(v). Putting it all together,
it holds that

ka(u)(v) =̇ [
min(ga(u)(v), rhsa(u)(v))+ h(v); min(ga(u)(v), rhsa(u)(v))

]
=̇ [

ga(u)(v)+ h(v);ga(u)(v)
]

=̇ [
rhsb(u)(v)+ h(v); rhsb(u)(v)

]
=̇ [

gb(u)(u)+ c(u, v)+ h(v);gb(u)(u)+ c(u, v)
]

>̇
[
gb(u)(u)+ h(u);gb(u)(u)

]
=̇ [

min(gb(u)(u), rhsb(u)(u))+ h(u); min(gb(u)(u), rhsb(u)(u))
]

=̇ kb(u)(u).

We used during the derivation the fact that c(u, v) + h(v) � h(u) since the heuristics
are consistent, and the fact that gb(u)(u)+ c(u, v) > gb(u)(u) since the edge cost c(u, v) is
positive and the g-value gb(u)(u) is finite. ✷
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Lemma A.5. If a locally overconsistent vertex u with key kb(u)(u) is selected for expansion

on line {09}, then it is locally consistent the next time line {08} is executed and its new key
ka(u)(u) satisfies ka(u)(u)= kb(u)(u).

Proof. Assume that a locally overconsistent vertex u is selected for expansion on line
{09}. Thus, ∞ � gb(u)(u) > rhsb(u)(u). Its g-value is then set to its rhs-value on line
{11} (ga(u)(u)= rhsb(u)(u)) and it thus becomes locally consistent. If u is not a successor
of itself, then its rhs-value does not change and it thus remains locally consistent. If u
is a successor of itself, then the call to UpdateVertex() on line {12} does not change
its rhs-value either and it thus remains locally consistent. This follows directly from
the definition of the rhs-values if vertex u is the start vertex. Otherwise, it holds that
rhsb(u)(u)= minv∈pred(u)(gb(u)(v)+ c(v,u))= gb(u)(w)+ c(w,u) for some vertex w 
= u.
(Otherwise rhsb(u)(u) = gb(u)(u) + c(u,u) � gb(u)(u) which would be a contradiction.)
Thus, ga(u)(u) + c(u,u) = rhsb(u)(u) + c(u,u) > rhsb(u)(u) = gb(u)(w) + c(w,u) =
ga(u)(w) + c(w,u) and consequently rhsa(u)(u) = min(ga(u)(w) + c(w,u), ga(u)(u) +
c(u,u)) = ga(u)(w) + c(w,u) = rhsb(u)(u) = ga(u)(u), which proves the first part of the
theorem. Then,

ka(u)(u) =̇ [
min(ga(u)(u), rhsa(u)(u))+ h(u); min(ga(u)(u), rhsa(u)(u))

]
=̇ [

rhsa(u)(u)+ h(u); rhsa(u)(u)
]

=̇ [
rhsb(u)(u)+ h(u); rhsb(u)(u)

]
=̇ [

min(gb(u)(u), rhsb(u)(u))+ h(u); min(gb(u)(u), rhsb(u)(u))
]

=̇ kb(u)(u). ✷
Lemma A.6. Assume that vertex u has key kb(u)(u) and is selected for expansion on
line {09}. If vertex v is locally inconsistent at this point in time and remains locally
inconsistent the next time line {08} is executed, then the new key ka(u)(v) of vertex v

satisfies ka(u)(v) �̇ kb(u)(u) the next time line {08} is executed.

Proof. Assume that vertex u has key kb(u)(u) and is selected for expansion on line {09}.
Vertex v is locally inconsistent at this point in time and remains locally inconsistent the
next time line {08} is executed. Since vertex u is expanded instead of vertex v, it holds
that kb(u)(v) �̇ kb(u)(u). We consider four cases:

Case one: The key of vertex v does not change. Then, it holds that ka(u)(v) =̇ kb(u)(v) �̇
kb(u)(u).

Case two: The key of vertex v changes, and v = u. Vertex u = v was locally
underconsistent. (Had it been locally overconsistent, then it would have been locally
consistent after its expansion according to Lemma A.5, which violates our assumptions.)
The g-value of vertex v = u is then set to infinity and thus ga(u)(u) � gb(u)(u). Since no
other g-value changes, the rhs-value can only change if vertex v = u is a successor of itself.
However, it is guaranteed not to decrease since the g-value does not decrease. Thus, it holds
that rhsa(u)(u)� rhsb(u)(u). Putting it all together,
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ka(u)(v) =̇ ka(u)(u)
=̇ [
min(ga(u)(u), rhsa(u)(u))+ h(u); min(ga(u)(u), rhsa(u)(u))

]
�̇

[
min(gb(u)(u), rhsb(u)(u))+ h(u); min(gb(u)(u), rhsb(u)(u))

]
=̇ kb(u)(u).

Case three: The key of vertex v changes, v 
= u, and vertex u was locally overconsistent.
The g-value of vertex v does not change since v 
= u. Thus, ga(u)(v)= gb(u)(v). Since the
key of vertex v changes, its rhs-value changes and thus vertex v is a successor of vertex
u. Vertex u was locally overconsistent and thus gb(u)(u) > rhsb(u)(u). The assignment on
line {11} decreases the g-value of vertex u since ga(u)(u)= rhsb(u)(u) < gb(u)(u)� ∞.

This decrease can affect the rhs-value of vertex v only if rhsa(u)(v) = ga(u)(u) +
c(u, v)= rhsb(u)(u)+ c(u, v)= min(gb(u)(u), rhsb(u)(u))+ c(u, v). This equality implies
both that rhsa(u)(v) � min(gb(u)(u), rhsb(u)(u)) (since c(u, v) > 0) and rhsa(u)(v) +
h(v)= min(gb(u)(u), rhsb(u)(u))+ c(u, v)+h(v) � min(gb(u)(u), rhsb(u)(u))+h(u). (We
used during the derivation of the last inequality the fact that c(u, v) + h(v) � h(u) since
the heuristics are consistent.) Putting it all together, it holds that

[
rhsa(u)(v)+ h(v); rhsa(u)(v)

]
�̇

[
min(gb(u)(u), rhsb(u)(u))+ h(u); min(gb(u)(u), rhsb(u)(u))

]
=̇ kb(u)(u). (A.1)

It also holds that

[
ga(u)(v)+ h(v);ga(u)(v)

]
=̇ [

gb(u)(v)+ h(v);gb(u)(v)
]

�̇
[
min(gb(u)(v), rhsb(u)(v))+ h(v); min(gb(u)(v), rhsb(u)(v))

]
=̇ kb(u)(v)

�̇ kb(u)(u). (A.2)

Then,

ka(u)(v) =̇ [
min(ga(u)(v), rhsa(u)(v))+ h(v); min(ga(u)(v), rhsa(u)(v))

]
�̇ kb(u)(u).

This follows directly from inequality (A.1) if ga(u)(v) � rhsa(u)(v) and from inequal-
ity (A.2) if ga(u)(v)� rhsa(u)(v).

Case four: The key of vertex v changes, v 
= u, and vertex uwas locally underconsistent.
The g-value of vertex v does not change since v 
= u. Thus, ga(u)(v) = gb(u)(v). Since
the key of vertex v changes, its rhs-value changes and thus it is a successor of vertex u.
However, its rhs-value is guaranteed not to decrease since the g-value of vertex u is set to
infinity on line {14} and thus does not decrease. Thus, rhsa(u)(v) � rhsb(u)(v). Putting it
all together,
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ka(u)(v) =̇ [
min(ga(u)(v), rhsa(u)(v))+ h(v); min(ga(u)(v), rhsa(u)(v))

]

�̇

[
min(gb(u)(v), rhsb(u)(v))+ h(v); min(gb(u)(v), rhsb(u)(v))

]
=̇ kb(u)(v) �̇kb(u)(u). ✷

Theorem 1. The keys of the vertices that ComputeShortestPath() selects for expansion
on line {09} are monotonically nondecreasing over time until ComputeShortestPath()
terminates.

Proof. Assume that vertex u is selected for expansion on line {09}. At this point, its
key kb(u)(u) is a smallest key of all vertices in the priority queue, that is, of all locally
inconsistent vertices according to Lemma A.2. If a locally consistent vertex v becomes
locally inconsistent due to the expansion of vertex u, then its new key ka(u)(v) satisfies
ka(u)(v) >̇ kb(u)(u) according to Lemma A.4. If a locally inconsistent vertex v remains
locally inconsistent, then its new key ka(u)(v) satisfies ka(u)(v) �̇ kb(u)(u) according to
Lemma A.6. Thus, when the next vertex is selected for expansion on line {09}, its key is
at least as large as kb(u)(u). ✷
Theorem 2. Let k = U.TopKey() during the execution of line {08}. If vertex u is locally
consistent at this point in time with k(u) �̇k, then it remains locally consistent until
ComputeShortestPath() terminates.

Proof (By contradiction). If U is empty, then U.TopKey() returns [∞;∞] and thus
U.TopKey() �̇k(sgoal). Also rhs(sgoal) = g(sgoal) since all vertices are locally consistent.
Consequently, the termination condition is satisfied and thus the theorem is trivial.
(Similarly, the termination condition is satisfied trivially if the alternative termination
condition “while U is not empty” is used.) Thus, we assume that U is not empty.

Assume that vertex u is locally consistent during the execution of line {08}. Let g(u),
rhs(u), and k(u) be the g-value, rhs-value, and key of vertex u (respectively) at this point in
time. Then, g(u) = rhs(u) since vertex u is locally consistent. Similarly, k =̇U.TopKey()
at this point in time. Assume that k(u) �̇k and that u becomes locally inconsistent later
during the expansion of some vertex v. When v is chosen for expansion, it must be locally
inconsistent since only locally inconsistent vertices are expanded. Thus, v 
= u. Then,
ka(v)(u) >̇ kb(v)(v) according to Lemma A.4 and kb(v)(v) �̇k according to Theorem 1.
Consequently,[

min(ga(v)(u), rhsa(v)(u))+ h(u); min(ga(v)(u), rhsa(v)(u))
]

=̇ ka(v)(u) >̇ kb(v)(v) �̇k �̇k(u)

=̇ [
min(g(u), rhs(u))+ h(u); min(g(u), rhs(u))

]
=̇ [

g(u)+ h(u);g(u)]
and thus ga(v)(u) � min(ga(v)(u), rhsa(v)(u)) > g(u). However, ga(v)(u) = g(u) since
vertex u has been locally consistent all the time and thus could not have been assigned
a new g-value, which is a contradiction. Consequently, u remains locally consistent until
ComputeShortestPath() terminates. ✷
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Theorem 3. If a locally overconsistent vertex is selected for expansion on line {09}, then

it is locally consistent the next time line {08} is executed and remains locally consistent
until ComputeShortestPath() terminates.

Proof. If a locally overconsistent vertex u is selected for expansion on line {09}, then
it becomes locally consistent according to Lemma A.5. Let k = U.TopKey() during
the execution of line {08} before u is selected for expansion on line {09}, and k′ =
U.TopKey() during the execution of line {08} after u is selected for expansion on
line {09}. Then, ka(u)(u) =̇kb(u)(u) according to Lemma A.5, kb(u)(u) =̇k since u was
selected for expansion, k �̇k′ according to Theorem 1 if the priority queue is not
empty during the execution of line {08} after u is selected for expansion on line
{09}, and k �̇k′ if the priority queue is empty since k′ =̇ [∞;∞]. Putting everything
together, it holds that ka(u)(u) �̇k′. To summarize, vertex u is locally consistent during
the next execution of line {08} after u is selected for expansion on line {09} with
ka(u)(u) �̇k′. Consequently, it remains locally consistent until ComputeShortestPath()
terminates, according to Theorem 2. ✷
Lemma A.7. If line {08} is changed to “while U is not empty”, then ComputeShortest-
Path() expands each vertex at most twice, namely at most once when it is locally undercon-
sistent and at most once when it is locally overconsistent. The g-values of all vertices after
termination equal their respective start distances.

Proof. Assume that line {08} is changed to “while U is not empty”. Then, Compute-
ShortestPath() terminates when all vertices are locally consistent. When a locally
overconsistent vertex is selected for expansion, it becomes locally consistent and remains
locally consistent according to Theorem 3. Thus, every vertex is expanded at most once
when it is locally overconsistent. Similarly, when a locally underconsistent vertex is
selected for expansion, its g-value is set to infinity and the vertex can thus only be
either locally consistent or overconsistent before it is expanded again. (It cannot be
locally underconsistent because its g-value is infinity and cannot be changed before its
next expansion.) Thus, if the vertex is expanded again, it must be locally overconsistent.
(Locally consistent vertices are not expanded.) As already shown, it then becomes
locally consistent and remains locally consistent. To summarize, every vertex is expanded
at most twice before all vertices are locally consistent, namely at most once when
it is locally underconsistent and at most once when it is locally overconsistent, and
ComputeShortestPath() thus terminates.

When all vertices are locally consistent, then g(s) = rhs(s) = 0 if s = sstart and
g(s)= rhs(s)= mins ′∈pred(s)(g(s

′)+ c(s′, s)) otherwise. Thus, the g-values satisfy Eq. (1)
and thus are equal to the start distances. ✷
Lemma A.8. Let k = U.TopKey() during the execution of line {08}. If vertex u is locally
consistent at this point in time with k(u) �̇k, then the g-value of state u equals its start
distance and one can trace back a shortest path from sstart to u by always moving from the
current vertex s, starting at u, to any predecessor s′ that minimizes g(s′) + c(s′, s) until
sstart is reached (ties can be broken arbitrarily).
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Proof. If U is empty, then the theorem follows from Lemma A.7. Thus, we assume that U

is not empty.

Assume that vertex u is locally consistent during the execution of line {08} with
k(u) �̇k. Let g(s), rhs(s), and k(s) be the g-value, rhs-value, and key of any vertex s

(respectively) at this point in time. Then, g(u)= rhs(u) since state u is locally consistent,
and k(u) �̇k.

We first show by contradiction that g(u) < ∞. Assume that g(u) = ∞. Then,
g(u) = rhs(u) = ∞ since u is locally consistent. Thus, k(u) =̇ [min(g(u), rhs(u)) +
h(u); min(g(u), rhs(u))] =̇ [∞;∞]. Consequently, k =̇ [∞;∞] since k(u) �̇k. Let v be
a locally inconsistent vertex with key k. Such a vertex exists since we assume that U is
not empty. Then, g(v) = rhs(v) = ∞. Thus, vertex v must be locally consistent, which is
a contradiction. Consequently, it holds that g(u) <∞.

If u = sstart then g(u) = rhs(u) = 0 since vertex u is locally consistent and rhs(u) = 0
per definition. Thus, g(u) = g∗(u). Furthermore, one can trivially trace back a shortest
path from sstart to u by always moving from the current vertex s, starting at u, to any
predecessor s′ that minimizes g(s′) + c(s′, s) until sstart is reached (ties can be broken
arbitrarily). Thus, we assume in the following that u 
= sstart.

Let w be any predecessor of vertex u that minimizes g(w) + c(w,u). We now show
that vertex w is locally consistent during the execution of line {08} with k(w) �̇k. It holds
that g(u)= rhs(u)= mins ′∈pred(u)(g(s

′)+ c(s′, u))= g(w)+ c(w,u). Thus, g(w) < g(u)

since g(u) <∞ and c(w,u) > 0. Furthermore, g(w)+h(w)� g(u)−c(w,u)+c(w,u)+
h(u) = g(u) + h(u) since the heuristics are consistent and thus h(w) � c(w,u) + h(u).
Consequently,

k(w) =̇ [
min(g(w), rhs(w))+ h(w); min(g(w), rhs(w))

]
�̇

[
g(w)+ h(w);g(w)]

<̇
[
g(u)+ h(u);g(u)]

=̇ [
min(g(u), rhs(u))+ h(u); min(g(u), rhs(u))

]
=̇ k(u) �̇k.

Thus, k(w) <̇ k. This shows that vertex w is locally consistent during the execution of
line {08} with k(w) �̇k since k is the smallest key of any locally inconsistent vertex.

We now show that g(u)= g∗(u) and g(w) = g∗(w) during the execution of line {08}.
Both vertices are locally consistent and their keys are less than or equal to the smallest key
of any locally inconsistent vertex. Thus, they remain locally consistent and thus their g-
values are not updated until ComputeShortestPath() terminates even if line {08} is changed
to “while U is not empty”, according to Theorem 2. Furthermore, the g-values of vertices
u and w equal their respective start distances after termination if line {08} is changed to
“while U is not empty”, according to Lemma A.7. Thus, g(u)= g∗(u) and g(w) = g∗(w)
during the execution of line {08}. These relationships must also hold for the termination
condition actually used by LPA* since the values that LPA* assigns to the g-values of
vertices do not depend on the termination condition.

We now show that the edge from u to w is the last edge of a shortest path from sstart to u.
This is indeed the case since g∗(u)= g(u)= g(w)+ c(w,u)= g∗(w)+ c(w,u). Finally,
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we can repeatedly apply this property to show that one can trace back a shortest path from

sstart to u by always moving from the current vertex s, starting at u, to any predecessor s′
that minimizes g(s′) + c(s′, s) until sstart is reached (ties can be broken arbitrarily) since
vertex w is again locally consistent with k(w) �̇k. ✷
Theorems 4 and 5. ComputeShortestPath() expands a vertex at most twice, namely at most
once when it is locally underconsistent and at most once when it is locally overconsistent,
and thus terminates. After ComputeShortestPath() terminates, one can trace back a
shortest path from sstart to sgoal by always moving from the current vertex u, starting at
sgoal, to any predecessor u′ that minimizes g(u′)+ c(u′, u) until sstart is reached (ties can
be broken arbitrarily).

Proof. ComputeShortestPath() terminates after it has expanded every vertex at most twice,
namely at most once when it is locally underconsistent and at most once when it is
locally overconsistent according to Lemma A.7 if line {08} is changed to “while U is
not empty”. It continues to terminate at least when U is empty even if line {08} is not
changed because U.TopKey() then returns [∞;∞] and thus U.TopKey() �̇k(sgoal) and
because rhs(sgoal)= g(sgoal) since all vertices are locally consistent. Thus, the termination
condition is satisfied. Because the termination condition does not affect which vertices are
expanded and in which order they are expanded, ComputeShortestPath() will terminate
after it has expanded every vertex at most twice, namely at most once when it is locally
underconsistent and at most once when it is locally overconsistent, if it does not already
terminate earlier.

k �̇k(sgoal) and rhs(sgoal) = g(sgoal) after termination according to the termination
condition, where k = U.TopKey() during the execution of line {08}. Consequently, sgoal

satisfies the conditions of Lemma A.8 after termination. The theorem then follows directly
from Lemma A.8. ✷

The following theorems show some additional properties of LPA*, including its
similarity to a version of A* that always breaks ties among vertices with the same f-values
in favor of vertices s that minimize the start distance. (We have also developed a version
of LPA* that is similar to a version of A* that always breaks ties among vertices with the
same f-values in favor of vertices that maximize the start distance.) These theorems only
hold for the termination condition on line {08}. We assume in the proofs that A* terminates
when its priority queue is empty, it expands sgoal, or it is about to expand a vertex with an
infinite f-value. We make use of the following properties (for consistent h-values): First,
A* expands every vertex at most once. Second, it expands sgoal if its f-value is finite, it
expands all vertices u with both [f (u);g∗(u)] <̇ [f (sgoal);g∗(sgoal)] and f (u) < ∞, and
it possibly expands some or all vertices u with both [f (u);g∗(u)] =̇ [f (sgoal);g∗(sgoal)]
and f (u) < ∞. Third, it expands vertices u in monotonically nondecreasing order of
[f (u);g∗(u)]. Fourth, it can expand vertices u with the same [f (u);g∗(u)] in any order.
Fifth, the g-value and f-value of any vertex u expanded by an A* search are g(u)= g∗(u)
and f (u) = g(u) + h(u) = g∗(u) + h(u). In the following, we thus refer to the f-value
f (u) of any vertex u as a shorthand for g∗(u)+ h(u). The above properties simply follow
from the following known properties of A*: The g-values of all expanded vertices equal



S. Koenig et al. / Artificial Intelligence 155 (2004) 93–146 139

their start distances. The f-values of all vertices on the same branch of the search tree of A*

are monotonically nondecreasing and their g-values are strictly increasing. Consequently,
whenever A* expands a vertex u, its successors on the search tree have f-values that are
equal to or larger than the f-value of u and their start distances are larger than the start
distance of u. Vertices u with the same [f (u);g∗(u)] are on different branches of the
search tree and thus can be expanded by A* in any order desired.

Theorem 6. Whenever ComputeShortestPath() selects a locally overconsistent vertex u for
expansion on line {09}, then kb(u)(u) =̇ [f (u);g∗(u)].

Proof. Whenever ComputeShortestPath() selects a locally overconsistent vertex u for
expansion, then it becomes locally consistent according to Lemma A.5 and thus ga(u)(u)=
rhsa(u)(u). It holds that kb(u)(u) =̇ka(u)(u) according to Lemma A.5. Furthermore, vertex u
remains locally consistent until ComputeShortestPath() terminates according to Theorem 3
and thus its g-value is not updated. The g-value of vertex u equals its start distance after
termination if line {08} is changed to “while U is not empty”, according to Lemma A.7.
Thus, ga(u)(u) = g∗(u). This relationship must also hold for the termination condition
actually used by LPA* since the values that LPA* assigns to the g-values of vertices do not
depend on the termination condition. Put together,

kb(u)(u) =̇ ka(u)(u)

=̇ [
min(ga(u)(u), rhsa(u)(u))+ h(u); min(ga(u)(u), rhsa(u)(u))

]
=̇ [

ga(u)(u)+ h(u);ga(u)(u)
]

=̇ [
g∗(u)+ h(u);g∗(u)

]
=̇ [

f (u);g∗(u)
]
. ✷

Theorem 10. ComputeShortestPath() does not expand any vertices whose g-values were
equal to their respective start distances before ComputeShortestPath() was called.

Proof (By contradiction). We prove the theorem under the assumption that line {08} is
changed to “while U is not empty”. If line {08} is not changed, then ComputeShortest-
Path() can only terminate earlier and expands no more vertices than if line {08} is changed.
Thus, the theorem continues to hold even if line {08} remains unchanged.

Now assume that ComputeShortestPath() expands vertex u even though its g-value
ginit(u) before the call to ComputeShortestPath() equals its start distance. Thus, ginit(u)=
g∗(u).

Consider the first time ComputeShortestPath() expands vertex u. The indices b(u) and
a(u) refer to this expansion. Then, gb(u)(u)= ginit(u). Since vertex u is locally inconsistent
when ComputeShortestPath() selects it for expansion, it holds that gb(u)(u) 
= rhsb(u)(u).
It cannot be the case that vertex u is locally overconsistent (gb(u)(u) > rhsb(u)(u))
because otherwise kb(u)(u) =̇ [f (u);g∗(u)] according to Theorem 6 and thus rhsb(u)(u)=
min(gb(u)(u), rhsb(u)(u)) = g∗(u) = ginit(u) = gb(u)(u), which is a contradiction. Thus,
it must be the case that vertex u is locally underconsistent (gb(u)(u) < rhsb(u)(u)),
which also implies g∗(u) = ginit(u) = gb(u)(u) < rhsb(u)(u) � ∞ and thus g∗(u) < ∞.
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When expanding a locally underconsistent vertex, ComputeShortestPath sets its g-value

to infinity. Thus, ga(u)(u) = ∞ > g∗(u). Thus, ComputeShortestPath() needs to expand
vertex u again at a later time because the g-value of vertex u after termination equals its
start distance according to Lemma A.7.

Now consider the second time ComputeShortestPath() expands vertex u. The indices
b′(u) and a′(u) refer to this expansion. Vertex u is locally overconsistent when
ComputeShortestPath() selects it again for expansion according to Lemma A.7, implying
that gb′(u)(u) > rhsb′(u)(u). Also, according to Theorem 6, it holds that rhsb′(u)(u)= g∗(u).
Thus,

kb′(u)(u) =̇ [
min(gb′(u)(u), rhsb′(u)(u))+ h(u); min(gb′(u)(u), rhsb′(u)(u))

]
=̇ [

rhsb′(u)(u)+ h(u); rhsb′(u)(u)
]

=̇ [
g∗(u)+ h(u);g∗(u)

]
=̇ [

gb(u)(u)+ h(u);gb(u)(u)
]

=̇ [
min(gb(u)(u), rhsb(u)(u))+ h(u); min(gb(u)(u), rhsb(u)(u))

]
=̇ kb(u)(u).

Note that rhsb(u)(u) > gb(u)(u) = g∗(u) = rhsb′(u)(u). Thus, the rhs-value of vertex
u decreased between its expansions. This must be due to the g-value of some vertex v

that decreased between the expansions of vertex u with rhsb′(u)(u) = gb′(u)(v) + c(v,u).
Consequently, gb(u)(v) > gb′(u)(v) and ComputeShortestPath() expands vertex v at least
once between the expansions of vertex u since the g-values of vertices change only when
they are expanded and v 
= u since gb′(u)(u) = ∞ (gb′(u)(u) is infinite) but gb′(u)(v) <
gb′(u)(v)� ∞ (gb′(v)(u) is finite).

Now consider the last time ComputeShortestPath() expands vertex v before it expands
vertex u the second time. Thus, ga(v)(v)= gb′(u)(v). Since the keys of the vertices that are
selected for expansion on line {09} are monotonically nondecreasing over time according
to Theorem 1, it must be that kb(u)(u) �̇kb(v)(v) �̇ kb′(u)(u). Since kb(u)(u) =̇kb′(u)(u), it
must be that kb(u)(u) =̇kb(v)(v) =̇ kb′(u)(u). However, we now show that this is impossible.

It holds that gb′(u)(v) < rhsb′(u)(u) since gb′(u)(v)+ c(v,u)= rhsb′(u)(u)= g∗(u) <∞
and c(v,u) > 0. When expanding a locally underconsistent vertex, ComputeShortestPath()
sets its g-value to infinity but ga(v)(v)= gb′(u)(v) < rhsb′(u)(u) <∞ and the g-value is thus
set to a finite value. Thus, vertex v is locally overconsistent when ComputeShortestPath()
selects it for expansion, implying that gb(v)(v) > rhsb(v)(v). When expanding a locally
overconsistent vertex, ComputeShortestPath() sets its g-value to its rhs-value. Thus,
ga(v)(v)= rhsb(v)(v). Put together,

kb(v)(v) =̇ [
min(gb(v)(v), rhsb(v)(v))+ h(v); min(gb(v)(v), rhsb(v)(v))

]
=̇ [

rhsb(v)(v)+ h(v); rhsb(v)(v)
]

=̇ [
ga(v)(v)+ h(v);ga(v)(v)

]
˙
= [

rhsb′(u)(u)+ h(u); rhsb′(u)(u)
]

=̇ [
min(gb′(u)(u), rhsb′(u)(u))+ h(u); min(gb′(u)(u), rhsb′(u)(u))

]
=̇ kb′(u)(u),
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where we use the fact that ga(v)(v) 
= rhsb′(u)(u). This is a contradiction with kb(v)(v) =̇

kb′(u)(u). Consequently, the theorem holds. ✷
Lemma A.9. Whenever ComputeShortestPath() selects a vertex u for expansion on line
{09}, then kb(u)(u) �̇ [f (sgoal);g∗(sgoal)] =̇ [g∗(sgoal);g∗(sgoal)].

Proof (By contradiction). The theorem is trivial if g∗(sgoal)= ∞ since then f (sgoal)= ∞
and thus kb(u)(u) �̇ [f (sgoal);g∗(sgoal)] = [∞;∞] for all vertices u. Thus, we assume in
the following that g∗(sgoal) <∞. Assume that ComputeShortestPath() expands a vertex u
with kb(u)(u) >̇ [f (sgoal);g∗(sgoal)].

Let k = U.TopKey() during the execution of line {08} before u is selected for expansion
on line {09}. Thus, k =̇kb(u)(u). We distinguish two cases:

Case one: It holds that kb(u)(sgoal) <̇ kb(u)(u) =̇k. In this case, sgoal must be locally
consistent according to Lemma A.2. ComputeShortestPath() terminates if sgoal is locally
consistent with kb(u)(sgoal) �̇k, which is a contradiction.

Case two: It holds that kb(u)(sgoal) �̇kb(u)(u). In this case, it holds that[
gb(u)(sgoal);gb(u)(sgoal)

]
=̇ [

gb(u)(sgoal)+ h(sgoal);gb(u)(sgoal)
]

�̇
[
min(gb(u)(sgoal), rhsb(u)(sgoal))+ h(sgoal); min(gb(u)(sgoal), rhsb(u)(sgoal))

]
=̇ kb(u)(sgoal)

�̇ kb(u)(u)

>̇
[
f (sgoal);g∗(sgoal)

]
=̇ [

g∗(sgoal)+ h(sgoal);g∗(sgoal)
]

=̇ [
g∗(sgoal);g∗(sgoal)

]
.

Thus, gb(u)(sgoal) > g∗(sgoal). Since the g-value of sgoal after termination equals
g∗(sgoal) according to Lemma A.8 and its g-value can only change when it is expanded,
there exists an expansion of sgoal during (if sgoal = u) or after the expansion of u

where the g-value of sgoal is set to g∗(sgoal) and thus ga(sgoal)(sgoal) = g∗(sgoal) < ∞.
If sgoal was locally underconsistent directly before this expansion, its g-value would
be set to infinity. Thus, sgoal is locally overconsistent directly before this expansion.
Then, ka(sgoal)(sgoal) =̇kb(sgoal)(sgoal) and ga(sgoal)(sgoal)= rhsa(sgoal)(sgoal), both according
to Lemma A.5. Thus,

kb(sgoal)(sgoal) =̇ ka(sgoal)(sgoal)

=̇ [
min(ga(sgoal)(sgoal), rhsa(sgoal)(sgoal))+ h(sgoal);
min(ga(sgoal)(sgoal), rhsa(sgoal)(sgoal))

]
=̇ [

ga(sgoal)(sgoal)+ h(sgoal);ga(sgoal)(sgoal)
]

=̇ [
g∗(sgoal)+ h(sgoal);g∗(sgoal)

]
=̇ [

f (sgoal);g∗(sgoal)
]

<̇ kb(u)(u).
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Since kb(sgoal)(sgoal) <̇ kb(u)(u), the expansion of sgoal cannot coincide with the expan-

sion of u. On the other hand, the expansion of sgoal after the expansion of u contra-
dicts Theorem 1. Thus, ComputeShortestPath() expands at most those vertices u with
kb(u)(u) �̇ [f (sgoal);g∗(sgoal)]. ✷
Theorem 8. ComputeShortestPath() expands at most those locally overconsistent vertices
u with [f (u);g∗(u)] �̇ [f (sgoal);g∗(sgoal)].

Proof. According to Theorem 6 whenever ComputeShortestPath() selects a locally over-
consistent vertex u for expansion, then kb(u)(u) =̇ [f (u);g∗(u)]. On the other hand,
Lemma A.9 states that kb(u)(u) �̇ [f (sgoal);g∗(sgoal)]. It, thus, follows that [f (u);g∗(u)] �̇
[f (sgoal);g∗(sgoal)]. ✷
Theorem 11. ComputeShortestPath() expands at most those vertices uwith [f (u);g∗(u)] �̇
[f (sgoal);g∗(sgoal)] or [fold(u);gold(u)] �̇ [f (sgoal);g∗(sgoal)], where gold(u) is the
g-value and fold(u) = gold(u) + h(u) is the f-value of vertex u directly before the call to
ComputeShortestPath().

Proof. When ComputeShortestPath() selects a vertex u for expansion on line {09}, the
vertex is locally inconsistent according to Lemma A.2. We distinguish two cases:

Case one: It holds that gb(u)(u) > rhsb(u)(u), that is, vertex u is locally overconsistent.
Then, [f (u);g∗(u)] �̇ [f (sgoal);g∗(sgoal)] according to Theorem 8, which proves the
theorem.

Case two: It holds that gb(u)(u) < rhsb(u)(u), that is, vertex u is locally underconsistent.
Since kb(u)(u) �̇ [f (sgoal);g∗(sgoal)] according to Lemma A.9, it follows that [gb(u)(u)+
h(u);gb(u)(u)] �̇ [f (sgoal);g∗(sgoal)]. Below we show that it must be the case that vertex
u is expanded for the first time. Thus, gold(u) = gb(u)(u) and it follows that [gold(u) +
h(u);gold(u)] �̇ [f (sgoal);g∗(sgoal)], which proves the theorem.

It remains to be shown that, when a locally underconsistent vertex is expanded, it is the
first time that it is expanded. If a locally overconsistent vertex is expanded then it becomes
locally consistent and remains locally consistent according to Theorem 3 and thus cannot
be expanded again, and a vertex can only be expanded once as locally underconsistent
according to Theorem 4. This implies that a vertex that has already been expanded one or
more times cannot be expanded again as locally underconsistent. ✷
Theorem 7. ComputeShortestPath() expands locally overconsistent vertices with finite f-
values in the same order as A* (possibly except for vertices u with the same keys), provided
that A* always breaks ties among vertices with the same f-values in favor of vertices with
smaller start distances and, in case of remaining ties, expands sgoal last.

Proof. ComputeShortestPath() expands locally overconsistent vertices u in monotonically
nondecreasing order of their keys [f (u);g∗(u)] according to Theorems 1 and 6. Further-
more, it expands at most those locally overconsistent vertices u with [f (u);g∗(u)] �̇
[f (sgoal);g∗(sgoal)] according to Theorem 8. A* also expands vertices u in monoton-
ically nondecreasing order of [f (u);g∗(u)] and therefore also expands all vertices u
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with [f (u);g∗(u)] �̇ [f (sgoal);g∗(sgoal)]. Thus, if ComputeShortestPath() first expands

locally overconsistent vertex u1 and then locally overconsistent vertex u2 and both ver-
tices have finite f-values with [f (u1);g∗(u1)] ˙
= [f (u2);g∗(u2)], then [f (u1);g∗(u1)]<̇
[f (u2);g∗(u2)] �̇ [f (sgoal);g∗(sgoal)]. Thus, A* also first expands vertex u1 and then ver-
tex u2. ✷
Theorem 9. LPA* shares with A* the following property for sgoal and all vertices u that A*
expands (possibly except for vertices with [f (u);g∗(u)] =̇ [f (sgoal);g∗(sgoal)]), provided
that A* always breaks ties among vertices with the same f-values in favor of vertices
with the smallest start distances and its g-values are assumed to be infinity if A* has not
calculated them: The g-values of these vertices u equal their respective start distances after
termination and one can trace back a shortest path from sstart to them by always moving
from the current vertex s, starting at u, to any predecessor s′ that minimizes g(s′)+ c(s′, s)
until sstart is reached (ties can be broken arbitrarily).

Proof. The statement is true for A*. In the following, we prove it for LPA*.
If U is empty after termination, then the g-values of all vertices after termination equal

their respective start distances according to Lemma A.7 and the second part of the theorem
follows immediately. Thus, we assume that U is not empty.

Let k = U.TopKey() when ComputeShortestPath() terminates. Furthermore, let g(u),
rhs(u), and k(u) be the g-value, rhs-value, and key of any vertex u (respectively)
after termination. We first show that g(sgoal) = rhs(sgoal) = g∗(sgoal). It holds that
g(sgoal) = rhs(sgoal) since sgoal is locally consistent after termination according to the
termination criterion. Furthermore, k(sgoal) �̇k according to the termination condition.
Thus, g(sgoal)= rhs(sgoal)= g∗(sgoal) according to Lemma A.8.

We now show by contradiction that k <̇ [∞;∞]. Assume that this relationship does
not hold and consider any vertex u ∈ U . It holds that k(u) �̇k =̇ [∞;∞]. However,
k(u) =̇ [∞;∞] implies that min(g(u), rhs(u)) = ∞, which in turn implies that g(u) =
rhs(u) and thus u /∈ U according to Lemma A.2. This is a contradiction and thus it holds
that k<̇[∞;∞].

We now show that g∗(sgoal) <∞. This relationship holds because k(sgoal) �̇k<̇[∞;∞]
implies that g(sgoal)= rhs(sgoal)= g∗(sgoal) <∞.

We now show by contradiction that every vertex u with [f (u);g∗(u)] <̇ [f (sgoal);
g∗(sgoal)] also satisfies g(u) = g∗(u). Assume that [f (u);g∗(u)] <̇ [f (sgoal);g∗(sgoal)]
but g(u) 
= g∗(u). If line {08} is changed to “while U is not empty” then there must be
some later expansion of u so that ga(u)(u) = g∗(u) according to Lemma A.7. ga(u)(u) is
finite since[

ga(u)(u)+ h(u);ga(u)(u)
] =̇ [

g∗(u)+ h(u);g∗(u)
]

=̇ [
f (u);g∗(u)

]
<̇

[
f (sgoal);g∗(sgoal)

]
�̇ [∞;∞].

Thus, u could not have been locally underconsistent when it was selected for expansion
on line {09} because then its g-value would have been set to infinity and thus ga(u)(u)= ∞.
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Thus, uwas locally overconsistent when it was selected for expansion on line {09} and thus

gb(u)(u) >̇ rhsb(u)(u). Consequently, its g-value is set to its rhs-value during its expansion
and thus rhsb(u)(u) = g∗(u), which implies that min(gb(u)(u), rhsb(u)(u)) = rhsb(u)(u) =
g∗(u). Thus,

kb(u)(u) =̇ [
min(gb(u)(u), rhsb(u)(u))+ h(u); min(gb(u)(u), rhsb(u)(u))

]
=̇ [

g∗(u)+ h(u);g∗(u)
]

=̇ [
f (u);g∗(u)

]
<̇

[
f (sgoal);g∗(sgoal)

]
=̇ [

g∗(sgoal)+ h(sgoal);g∗(sgoal)
]

=̇ [
min(g(sgoal), rhs(sgoal))+ h(sgoal); min(g(sgoal), rhs(sgoal))

]
=̇ k(sgoal) �̇k.

Since line {08} was changed to “while U is not empty”, ComputeShortestPath() will
first expand a vertex with priority k and later vertex u with key kb(u)(u). Since kb(u)(u) <̇k,
the expansion of the vertices cannot coincide. This, however, contradicts Theorem 1. Thus,
every vertex with [f (u);g∗(u)] <̇ [f (sgoal);g∗(sgoal)] also satisfies g(u)= g∗(u).

We now show that every vertex u with [f (u);g∗(u)] <̇ [f (sgoal);g∗(sgoal)] also satisfies
k(u) <̇k(sgoal), as follows:

k(u) =̇ [
min(g(u), rhs(u))+ h(u); min(g(u), rhs(u))

]
�̇

[
g(u)+ h(u);g(u)]

=̇ [
g∗(u)+ h(u);g∗(u)

]
=̇ [

f (u);g∗(u)
]

<̇
[
f (sgoal);g∗(sgoal)

]
=̇ [

g∗(sgoal)+ h(sgoal);g∗(sgoal)
]

=̇ [
min(g(sgoal), rhs(sgoal))+ h(sgoal); min(g(sgoal), rhs(sgoal))

]
=̇ k(sgoal).

Finally, every vertex u with [f (u);g∗(u)] <̇ [f (sgoal);g∗(sgoal)] also satisfies k(u) <̇ k

since k(u) <̇k(sgoal) and k(sgoal) �̇k according to the termination condition. Thus,
k(u) <̇k and g(u)= rhs(u) according to Lemma A.2.

If A* breaks ties among vertices with the same f-values in favor of vertices with smaller
start distances then it expands all vertices u with [f (u);g∗(u)] <̇ [f (sgoal);g∗(sgoal)] and
does not expand the vertices u with [f (u);g∗(u)] >̇ [f (sgoal);g∗(sgoal)]. We have shown
that g(u) = rhs(u) and k(u) <̇ k if [f (u);g∗(u)] <̇ [f (sgoal);g∗(sgoal)]. We have also
shown that sgoal is locally consistent with k(sgoal) �̇k. Thus, the theorem follows directly
from Lemma A.8. ✷
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