

Discrete Mathematics 226 (2001) 351-353

DISCRETE MATHEMATICS

n and similar papers at core.ac.uk

Communication

Two relations for median graphs

Riste Škrekovski¹

Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

Received 27 March 2000; accepted 28 March 2000 Communicated by Claude Benzaken

Abstract

We generalize the well-known relation for trees n - m = 1 to the class of median graphs in the following way. Denote by q_i the number of subgraphs isomorphic to the hypercube Q_i in a median graph. Then, $\sum_{i \ge 0} (-1)^i q_i = 1$. We also give an explicit formula for the number of Θ -classes in a median graph as $k = -\sum_{i \ge 0} (-1)^i i q_i$. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

A graph G (with distance function d) is called a *median graph*, if for any three vertices u, v, w of G there exists a unique vertex x such that d(u, v) = d(u, x) + d(x, v), d(u, w) = d(u, x) + d(x, w), and d(v, w) = d(v, x) + d(x, w). Median graphs are beautiful generalization of trees and hypercubes. In the survey of Klavžar and Mulder [2] one can find many different characterizations of this class of graphs.

One of the most important results in the theory of median graphs is Mulder's convex expansion theorem [4] (see also [5]). Roughly speaking, this theorem says that if G is a median graph different from K_1 , then there exist median graphs G', G'_0, G'_1 , and G'_2 such that $G' = G'_1 \cup G'_2$ and $G'_0 = G'_1 \cap G'_2$ is not empty. Moreover, if we take disjoint copies of G'_1 and G'_2 and for every vertex from G'_0 connect by an edge the appropriate vertices from these two copies, then we obtain G.

Define a relation Θ on the edges of a connected graph G as follows. We say, that edges $e_1 = x_1y_1$ and $e_2 = x_2y_2$ are in relation Θ (and write $e_1\Theta e_2$) if and only if $d(x_1, x_2) + d(y_1, y_2) \neq d(x_1, y_2) + d(x_2, y_1)$. The relation Θ was introduced by Djoković [1] (in different notation). It is well known that Θ is an equivalence relation providing G is a median graph. Even more, the number of different Θ -classes (i.e. equivalence

¹ Supported by the Ministry of Science and Technology of Slovenia under the grant J1-0502-0101. *E-mail address:* skreko@fmf.uni-lj.si (R. Škrekovski).

classes of Θ) is the smallest number k for which G has an isometric embedding in the hypercube Q_k .

Denote by *n*, *m*, and *k* the number of vertices, the number of edges, and the number Θ -classes of a median graph, respectively. In [3] authors prove an Euler-type relation 2n-m-k=2 for median Q_3 -free graphs. This result is a consequence of the following theorem. With this theorem, we generalize the well known relation for trees n-m=1 to the class of median graphs and also give an explicit formula for *k*.

Theorem. Let G be a median graph and let q_i ($i \ge 0$) be the number of subgraphs of G isomorphic to the hypercube Q_i . Denote by k the number of Θ -classes of G. Then the following holds:

$$\sum_{i \ge 0} (-1)^i q_i = 1 \quad and \quad k = -\sum_{i \ge 0} (-1)^i i q_i.$$

Proof. The proof is by induction on the number of vertices. The claim is obviously true for $G \cong K_1$. So, we may assume that G is the convex expansion of the median graph G' with respect to the subgraphs G'_1 and G'_2 with $G'_0 = G'_1 \cap G'_2$. By definition, G'_0, G'_1 , and G'_2 are median graphs. Denote by q_i^j the number of distinct subgraphs of G'_j isomorphic to the hypercube Q_i and denote by k^j the number of Θ -classes of G'_j . Since each G'_i (j = 0, 1, 2) has less vertices than G, we have

$$\sum_{i \ge 0} (-1)^i q_i^j = 1 \text{ and } k^j = -\sum_{i \ge 0} (-1)^i i q_i^j.$$

It is easy to observe that $q_0 = q_0^1 + q_0^2$ and $q_i = q_i^1 + q_i^2 + q_{i-1}^0$ for every $i \ge 1$. Observe also that $k = k^1 + k^2 - k^0 + 1$. Thus,

$$\sum_{i \ge 0} (-1)^i q_i = \sum_{i \ge 0} (-1)^i q_i^1 + \sum_{i \ge 0} (-1)^i q_i^2 + \sum_{i \ge 0} (-1)^{i+1} q_i^0$$
$$= 1 + 1 - 1$$
$$= 1.$$

And, for the second equation,

$$\begin{aligned} k &= k^{1} + k^{2} - k^{0} + 1 \\ &= -\sum_{i \ge 0} (-1)^{i} i(q_{i}^{1} + q_{i}^{2}) + \sum_{i \ge 0} (-1)^{i} i q_{i}^{0} + \sum_{i \ge 0} (-1)^{i} q_{i}^{0} \\ &= -\sum_{i \ge 0} (-1)^{i} i(q_{i}^{1} + q_{i}^{2}) - \sum_{i \ge 0} (-1)^{i+1} (i+1) q_{i}^{0} \\ &= -\sum_{i \ge 1} (-1)^{i} i(q_{i}^{1} + q_{i}^{2} + q_{i-1}^{0}) \\ &= -\sum_{i \ge 0} (-1)^{i} i q_{i}. \quad \Box \end{aligned}$$

References

- [1] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263-267.
- [2] S. Klavžar, H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comput., in press.
- [3] S. Klavžar, H.M. Mulder, R. Škrekovski, An Euler-type formula for median graphs, Discrete Math. 187 (1998) 255–258.
- [4] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204.
- [5] H.M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts, Vol. 132, Mathematisch Centrum, Amsterdam, 1980.