Communication

Two relations for median graphs

Riste Škrekovski ${ }^{1}$
Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

Received 27 March 2000; accepted 28 March 2000
Communicated by Claude Benzaken

Abstract

We generalize the well-known relation for trees $n-m=1$ to the class of median graphs in the following way. Denote by q_{i} the number of subgraphs isomorphic to the hypercube Q_{i} in a median graph. Then, $\sum_{i \geqslant 0}(-1)^{i} q_{i}=1$. We also give an explicit formula for the number of Θ-classes in a median graph as $k=-\sum_{i \geqslant 0}(-1)^{i} i q_{i}$. (c) 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

A graph G (with distance function d) is called a median graph, if for any three vertices u, v, w of G there exists a unique vertex x such that $d(u, v)=d(u, x)+d(x, v)$, $d(u, w)=d(u, x)+d(x, w)$, and $d(v, w)=d(v, x)+d(x, w)$. Median graphs are beautiful generalization of trees and hypercubes. In the survey of Klavžar and Mulder [2] one can find many different characterizations of this class of graphs.

One of the most important results in the theory of median graphs is Mulder's convex expansion theorem [4] (see also [5]). Roughly speaking, this theorem says that if G is a median graph different from K_{1}, then there exist median graphs $G^{\prime}, G_{0}^{\prime}, G_{1}^{\prime}$, and G_{2}^{\prime} such that $G^{\prime}=G_{1}^{\prime} \cup G_{2}^{\prime}$ and $G_{0}^{\prime}=G_{1}^{\prime} \cap G_{2}^{\prime}$ is not empty. Moreover, if we take disjoint copies of G_{1}^{\prime} and G_{2}^{\prime} and for every vertex from G_{0}^{\prime} connect by an edge the appropriate vertices from these two copies, then we obtain G.

Define a relation Θ on the edges of a connected graph G as follows. We say, that edges $e_{1}=x_{1} y_{1}$ and $e_{2}=x_{2} y_{2}$ are in relation Θ (and write $e_{1} \Theta e_{2}$) if and only if $d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right) \neq d\left(x_{1}, y_{2}\right)+d\left(x_{2}, y_{1}\right)$. The relation Θ was introduced by Djoković [1] (in different notation). It is well known that Θ is an equivalence relation providing G is a median graph. Even more, the number of different Θ-classes (i.e. equivalence

[^0]classes of Θ) is the smallest number k for which G has an isometric embedding in the hypercube Q_{k}.

Denote by n, m, and k the number of vertices, the number of edges, and the number Θ-classes of a median graph, respectively. In [3] authors prove an Euler-type relation $2 n-m-k=2$ for median Q_{3}-free graphs. This result is a consequence of the following theorem. With this theorem, we generalize the well known relation for trees $n-m=1$ to the class of median graphs and also give an explicit formula for k.

Theorem. Let G be a median graph and let $q_{i}(i \geqslant 0)$ be the number of subgraphs of G isomorphic to the hypercube Q_{i}. Denote by k the number of Θ-classes of G. Then the following holds:

$$
\sum_{i \geqslant 0}(-1)^{i} q_{i}=1 \quad \text { and } \quad k=-\sum_{i \geqslant 0}(-1)^{i} i q_{i}
$$

Proof. The proof is by induction on the number of vertices. The claim is obviously true for $G \cong K_{1}$. So, we may assume that G is the convex expansion of the median graph G^{\prime} with respect to the subgraphs G_{1}^{\prime} and G_{2}^{\prime} with $G_{0}^{\prime}=G_{1}^{\prime} \cap G_{2}^{\prime}$. By definition, $G_{0}^{\prime}, G_{1}^{\prime}$, and G_{2}^{\prime} are median graphs. Denote by q_{i}^{j} the number of distinct subgraphs of G_{j}^{\prime} isomorphic to the hypercube Q_{i} and denote by k^{j} the number of Θ-classes of G_{j}^{\prime}. Since each $G_{j}^{\prime}(j=0,1,2)$ has less vertices than G, we have

$$
\sum_{i \geqslant 0}(-1)^{i} q_{i}^{j}=1 \quad \text { and } \quad k^{j}=-\sum_{i \geqslant 0}(-1)^{i} i q_{i}^{j}
$$

It is easy to observe that $q_{0}=q_{0}^{1}+q_{0}^{2}$ and $q_{i}=q_{i}^{1}+q_{i}^{2}+q_{i-1}^{0}$ for every $i \geqslant 1$. Observe also that $k=k^{1}+k^{2}-k^{0}+1$. Thus,

$$
\begin{aligned}
\sum_{i \geqslant 0}(-1)^{i} q_{i} & =\sum_{i \geqslant 0}(-1)^{i} q_{i}^{1}+\sum_{i \geqslant 0}(-1)^{i} q_{i}^{2}+\sum_{i \geqslant 0}(-1)^{i+1} q_{i}^{0} \\
& =1+1-1 \\
& =1
\end{aligned}
$$

And, for the second equation,

$$
\begin{aligned}
k & =k^{1}+k^{2}-k^{0}+1 \\
& =-\sum_{i \geqslant 0}(-1)^{i} i\left(q_{i}^{1}+q_{i}^{2}\right)+\sum_{i \geqslant 0}(-1)^{i} i q_{i}^{0}+\sum_{i \geqslant 0}(-1)^{i} q_{i}^{0} \\
& =-\sum_{i \geqslant 0}(-1)^{i} i\left(q_{i}^{1}+q_{i}^{2}\right)-\sum_{i \geqslant 0}(-1)^{i+1}(i+1) q_{i}^{0} \\
& =-\sum_{i \geqslant 1}(-1)^{i} i\left(q_{i}^{1}+q_{i}^{2}+q_{i-1}^{0}\right) \\
& =-\sum_{i \geqslant 0}(-1)^{i} i q_{i} . \quad
\end{aligned}
$$

References

[1] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263-267.
[2] S. Klavžar, H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comput., in press.
[3] S. Klavžar, H.M. Mulder, R. Škrekovski, An Euler-type formula for median graphs, Discrete Math. 187 (1998) 255-258.
[4] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204.
[5] H.M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts, Vol. 132, Mathematisch Centrum, Amsterdam, 1980.

[^0]: ${ }^{1}$ Supported by the Ministry of Science and Technology of Slovenia under the grant J1-0502-0101.
 E-mail address: skreko@fmf.uni-lj.si (R. Škrekovski).

