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We establish refinements of the classical Kato inequality for sections of a vector
bundle which lie in the kernel of a natural injectively elliptic first-order linear
differential operator. Our main result is a general expression which gives the value
of the constants appearing in the refined inequalities. These constants are shown to
be optimal and are computed explicitly in most practical cases. � 2000 Academic Press
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1. INTRODUCTION

The Kato inequality is an elementary and well-known estimate in Riemannian
geometry, which has proved to be a powerful technique for linking vector-valued
and scalar-valued problems in analysis on manifolds [3, 5, 6, 16, 20, 28].
Its content may be stated as follows: for any section ! of any Riemannian
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(or Hermitian) vector bundle E endowed with a metric connection { over
a Riemannian manifold (M, g), and at any point where ! does not vanish,

|d |!| |�|{!|. (0.1)

This estimate is easily obtained by applying the Schwarz inequality to the
right-hand side of the trivial identity: d( |!|2)=2 ({!, !). Hence equality is
achieved at a given point x if and only if {! is a multiple of ! at x, i.e., if
and only if there is a 1-form : such that

{!=:�!. (0.2)

The present work is motivated by circumstances in which more subtle
versions of the Kato inequality appear. Examples include the treatment of
the Bernstein problem for minimal hypersurfaces in Rn by R. Schoen, et al.
[26], where it is shown that the second fundamental form h of any minimal
immersion satisfies

|d |h| |�� n
n+2

|{h|, (0.3)

(see also [4]); the study by S. Bando et al. of Ricci flat and asymptotically
flat manifolds [1], where a key role is played by the inequality

|d |W | |�� n&1
n+1

|{W | (0.4)

for the Weyl curvature W of any Einstein metric; and the proof given by
J. Rade of the classical decay at infinity of any Yang�Mills field F on R4

[23], which relies on the estimate

|d |F | |�� 2
3

|{F |. (0.5)

Other examples may be found in the work of S. T. Yau on the Calabi conjec-
ture [29], or more recently in the work of P. Feehan [11] and M. Gursky and
C. LeBrun [15]. For a survey of these techniques see also [21].

In all of these examples, the classical Kato inequality (0.1) is insufficient
to obtain the desired results. Moreover, the knowledge of the best constant
involved between the two terms of the inequality seems to be a key element
of all the proofs. For instance, in the case of Yang�Mills fields on R4, the
classical Kato inequality (0.1) gives only the decay estimate |F |=O(r&2) at
infinity, whereas the (optimal) refined inequality (0.5) yields the expected
|F |=O(r&4) and thus paves the way for proving that any finite energy
Yang�Mills field on flat space is induced from one on the sphere.
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These examples suggest that it is an interesting question to determine
when such a refined Kato inequality may occur and to compute its optimal
constant. A convincing explanation of the principle underlying this pheno-
menon was first provided by J. P. Bourguignon in [7]. He remarked that
in all the cases quoted above the sections under consideration are solutions
of a natural linear first-order injectively elliptic system, and that in such a
situation equality cannot occur in (0.1) except at points where {!=0. To
see this, suppose that equality is achieved (at a point) by a solution ! of
such an elliptic system. At that point, {!=:�! for some 1-form :. Now
a natural first-order linear differential operator may be written as 6 b {,
where 6 is a projection onto a (natural) subbundle of T*M�E. Hence
6(:�!) vanishes and so, by ellipticity, :�! vanishes.

Hence it is reasonable to expect that a refined Kato constant might appear
in this situation, i.e., that there should exist a constant kP<1, depending
only on the choice of elliptic operator P, such that

|d |!| |�kP |{!| (0.6)

if ! lies in the kernel of P.
In this paper we attack the task of establishing explicitly the existence of

refined Kato constants for the injectively elliptic linear first-order operators
naturally defined on bundles associated to a Riemannian (spin) manifold
by an irreducible representation of the special orthogonal group SO(n)
or its nontrivial double-cover Spin(n). We devise a systematic method to
obtain the values of the refined constants kP and we compute the constants
explicitly in a large number of cases. We express the constants in terms of
the conformal weights of generalized gradients (those operators given by
projection on an irreducible component of the tensor product above) which
are numbers canonically attached to any such operator and which can be
easily computed from representation�theoretic data (see Section 2 for
details). As a byproduct of our approach, we obtain a number of represen-
tation-theoretic formulae, relating conformal weights to higher Casimirs of
so(n), some of which appear to be new.

The structure of the paper is as follows. In the first section, we present
the basic definitions and strategy that will be followed to obtain the Kato
constants. Then, in Section 2, we review the representation-theoretic back-
ground that will be needed for our study. We do this in part for the benefit
of the reader with a limited knowledge of representation theory, but also
to set up some notation and to demonstrate that the conformal weights
used in the following are easy to compute. Most importantly, we discuss
the question of which first order natural operators are injectively elliptic.
This question has been settled by Branson [8], whose result we restate in
the notation of this paper.
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Before developing the main machinery, we use some elementary com-
putations to give the Kato constants when the number N of irreducible
components of T*M�E is 2. Although this is entirely straightforward, the
results are sufficient to obtain a new proof of the Hijazi inequality in spin
geometry, which we sketch. For more complicated representations we
need more tools, which we develop in Section 4. Building on the work of
Perelomov and Popov [22], and also on more recent ideas of Diemer and
Weingart [30] we study higher Casimir elements in the universal envelop-
ing algebra of so(n) and obtain formulae relating them to conformal
weights. The main result in this direction is Theorem 4.8. We use this in
Section 5 to prove our main theorem, which reduces the search for Kato
constants to linear programming. Section 6 gives some explicit constants
for N odd, whereas Section 7 deals with the case that N is even. In each
we give the Kato constants for a large number of operators and we detail
the precise values for N=3 and N=4. We also deal with the sharpness of
our inequalities by giving the (algebraic) equality case. Finally, as an
appendix, we present tables listing all of the Kato constants in dimensions
3 and 4.

1. STRATEGY

We consider an irreducible natural vector bundle E over a Riemannian
(spin) manifold (M, g) of dimension n with scalar product ( } , } ) and a
metric connection {. By assumption, E is attached to an irreducible
representation * of SO(n) or Spin(n) on a vector space V. If { is the
standard representation on Rn, then the (real) tensor product {�* splits
in N irreducible components as

{�*=�
N

j=1

+( j )

Rn �V=�
N

j=1

Wj .

This induces a decomposition of T*M�E into irreducible subbundles Fj

associated to the representations +( j ). Projection on the j th summand (of
Rn�V or T*M�E ) will be denoted 6j .

Following [12, 14, 18], we can describe this decomposition in terms of
the equivariant endomorphism B: Rn�V � Rn �V defined by

B(:�v)= :
n

i=1

ei �d*(ei 7 :) v, (1.1)
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where e1 , ..., en is an orthonormal basis of Rn and d* is the representation
of so(n) induced by *.

1.1. Notation. For a linear map T : Rn�V � Rn�V we write :�; [
T:�; for the unique linear map Rn�Rn � End(V ) satisfying

T(:�v)= :
n

i=1

ei �Tei �:(v). (1.2)

Note that (S b T ):�;=�n
i=1 S:�ei

b Tei �; .

Observe that B:�;=d*(: 7 ;) is a skew endomorphism of V which is
skew in :�;, and that B itself is symmetric. Therefore, the eigenvalues of
B are real and so, by Schur's lemma, on the irreducible summands Wj it
acts by scalar multiples wj of the identity, called conformal weights. The
conformal weights are all distinct, except in the case that V is an represen-
tation of SO(n) such that Rn�V contains two irreducible components
whose sum is an irreducible representation of O(n). Therefore, apart from
this exceptional situation, the decomposition of Rn�V into irreducibles
corresponds precisely to its eigenspace decomposition under B. We shall
adopt the convention that irreducible representations of O(n) in Rn�V
will not be split under SO(n), so that the conformal weights wj of Wj are
always distinct. Henceforth, therefore, Wj will denote the eigenspaces of B
arranged so that the conformal weights wj are (strictly) decreasing, and N
will denote the number of eigenspaces, i.e., the number of (distinct) conformal
weights.

The origin of this terminology is the following fact [12, 14]: when the
connection { on E is induced by the Levi�Civita connection of (M, g),
the natural first order operators Pj=6j b {, sometimes called generalized
gradients, are conformally invariant with conformal weight wj .

The operators of interest in this paper are the first order linear differen-
tial operators PI :=� i # I 6i b { acting on sections of E, where I is a subset
of [1, ..., N]. Such operators are called Stein�Weiss operators [27]. The
operator PI is said to be (injectively, i.e., possibly overdetermined) elliptic
iff its symbol 6I :=� i # I 6 i does not vanish on any nonzero decomposable
elements :�v of the tensor product Rn�V. Note that PI is (injectively)
elliptic if and only if PI* b PI is elliptic in the usual sense.

We could consider, more generally, the operators �i # I aiPi for any non-
zero coefficients ai : such an operator will be elliptic iff PI is, and the
methods of this paper can be adapted to apply to this situation. Also note
that throughout the paper { can be an arbitrary metric connection on E,
i.e., it need not be induced by the Levi�Civita connection of M.
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We shall obtain refined Kato inequalities from refined Schwarz inequalities
of the form

|(8, v) |
|v|

�k |8| , (1.3)

where 8 # Rn �V and v # V. For k=1, this holds for any 8 and nonzero
v, with equality if 8=:�v for some : # Rn. Recall that the classical Kato
inequality (0.1) is obtained from this by lifting it to the associated bundles
and putting v=!, 8={! for a section ! of E. If ! lies in the kernel of the
operator PI then {! is a section of ker 6I=WI� , where I� is the complement
of I in [1, ..., N] and WI� denotes the image of 6I� . Hence to obtain a Kato
inequality for the operator PI , we only need an estimate of the form (1.3)
for 8 # WI� and v # V. The supremum, over all nonzero v, of the left-hand
side of (1.3) is the operator norm |8| op of (8, } ) , viewed as a linear map
from V to Rn. Now observe that for any 8 # WI� , we have:

|8|op= sup
|v|=1

|(8, v) |= sup
|:|=|v| =1

|(8, :�v) |= sup
|:|=|v| =1

|(8, 6I� (:�v))

�\ sup
|:|=|v|=1

|6I� (:�v)|+ |8|.

This gives a refined Schwarz inequality with k=sup |:|=|v| =1 |6I� (:�v)|,

|(8, v) |
|v|

=
|(8, :0 �v) |

|v|
=

|(8, 6I� (:0 �v)) |
|v|

�
|6I� (:0 �v)|

|v|
|8|�\ sup

|:|=|v| =1

|6I� (:�v)|+ |8|,

where :0 is any unit 1-form such that (8, v)=c:0 for some c # R.
We therefore have the following Ansatz which reduces the search for

refined Kato inequalities to a purely algebraic problem.

1.2. Ansatz. Consider the operator PI on the natural vector bundle E
over (M, g). Then, for any section ! in the kernel of PI , and at any point
where ! does not vanish, we have

|d |!| |�kI |{!|,

where the constant kI is defined by

kI= sup
|:|=|v|=1

|6I� (:�v)|.
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Furthermore equality holds at a point if and only if {!=6I� (:�!) for a
1-form : at that point such that |6I� (:�!)|=kI |:�!|.

1.3. Remark. Equality holds in this Kato inequality if and only if it holds
in the refined Schwarz inequality with v=!, 8={!. Hence the above Ansatz
is algebraically sharp: the supremum sup |:| =|v|=1 |6I� (:�v)| is attained by
compactness. We also deduce that the Kato inequality is sharp in the flat
case: equality is attained by a suitable chosen affine solution of PI!=0.

In order to turn this Ansatz into a useful result, we must:

(i) Find when PI is elliptic.

(ii) Show that when PI is elliptic, kI is less than one.

(iii) Give a formula for kI in terms of easily computable data.

(iv) Obtain a more explicit description of the equality case.

The first question has been answered by T. Branson [8]. We shall
discuss his result at the end of the next section. Also in that section we shall
give a more explicit description of the operators and representations
involved, together with the associated conformal weights. The conformal
weights are easy to compute and so our guiding philosophy will be: find kI

in terms of the conformal weights.
Since kI=sup |:|=|v| =1 |6I� (:�v)| and

|6I� (:�v)|2= :
j # I�

|6j (:�v)|2,

a key step in our task is to find a convenient formula for |6j (:�v)| for
each j=1, ..., N.

To do this, note that 6j is the projection onto an eigenspace of B, and
so Lagrange interpolation gives the standard formulae,

6j= `
k{ j

B&wk id
wj&wk

=
�N&1

k=0 wN&1&k
j �k

l=0 (&1)l _l(w) Bk&l

>k{ j (wj&wk)
, (1.4)

where _i (w) denotes the ith elementary symmetric function in the eigen-
values wj . We define Ak to be the operators

Ak= :
k

l=0

(&1)l _l(w) Bk&l (1.5)
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appearing in this formula, which are manifestly symmetric in the conformal
weights. Using these operators, we have:

|6j (:�v)|2=(6 j (:�v), :�v)=
�N&1

k=0 wN&1&k
j (Ak (:�v), :�v)

>k{ j (wj&wk)
.

(1.6)

This formula for the N quantities |6j (:�v)| in terms of the N quantities
qk=(Ak (:�v), :�v) lies at the heart of our method. Note first that
A0=1, and so q0=|:�v|2, which we set equal to 1. Second, the formula
(1.1) for B implies that

(B(:�v), :�v) =0, \: # Rn, v # V. (1.7)

Hence q1 is also computable. These two observations alone will allow us to
find the Kato constants for N�4. For larger N we shall need to obtain
more information about the operators Ak .

We shall find that approximately half of the qk 's can be eliminated. The
remainder can then be estimated from above and below using the non-
negativity of |6j (:�v)|. These bounds can in turn be used to estimate
|6I� (:�v)|.

2. REPRESENTATION THEORETIC BACKGROUND

The description of representations of the special orthogonal group
SO(n), or its Lie algebra so(n), differs slightly according to the parity of n.
We write n=2m if n is even and n=2m+1 if n is odd; m is then the rank
of so(n).

We fix an oriented orthonormal basis (e1 , ..., en) of Rn, so that ei 7 ej

(for i< j ) is a basis of the Lie algebra so(n), identified with 42Rn. We also
fix a Cartan subalgebra h of so(n) by the basis E1=e1 7 e2 , ..., Em=
e2m&1 7 e2m , and denote the dual basis of h* by (=1 , ..., =m). We normalize
the Killing form so that this basis is orthonormal. For further information
on this, and the following, see [13, 24, 25].

An irreducible representation of so(n) will be identified with its dominant
weight * # h*. Roots and weights can be given by their coordinates with
respect to the orthonormal basis =i . Then the weight *=(*1 , *2 , ..., *m),
whose coordinates are all integers or all half-integers, is dominant iff

*1� } } } �*m&1�|*m |, n=2m,

*1� } } } �*m&1�*m�0, n=2m+1.
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In this notation, the standard representation { is given by the weight
(1, 0, ..., 0), the weight *=(1, 1, ..., 1, 0, ..., 0) (with k ones) corresponds to
the k-form representation 4kRn, the weights *=(1, 1, ...1, \1) (for n=2m)
correspond to the selfdual and antiselfdual m-forms, and the weights
*=( 1

2 , ..., 1
2 , (\) 1

2) correspond to the spin or half-spin representations
2(\) . The Cartan product of two representations is the subrepresentation
* x + of highest weight *++ in *�+. If * and + are integral then * x +
is the subrepresentation of ``alternating-free, trace-free'' tensors in *�+; for
instance, the k-fold Cartan product xk Rn is the representation S k

0 Rn of
totally symmetric traceless tensors, with weight (k, 0, ..., 0).

Note that we take the real form of the representations wherever possible:
in particular, when discussing elements of the tensor product {�* only
real elements of the standard representation will be used, even if * is
complex.

The decomposition of the tensor product {�* into irreducibles is
described by the following rule: an irreducible representation of weight +
appears in the decomposition if and only if

(i) +=*\= j for some j, or n=2m+1, *m>0, and +=*

(ii) + is a dominant weight.

Weights + satisfying (i) will be called virtual weights associated to *. We
shall say that + is effective if it also satisfies (ii). It will be convenient to
have a notation for the virtual weights which is compatible with the outer
automorphism equivalence of representations of so(2m). We define +0=*
and +i, \=*\= i , unless n=2m, j=m, and *m {0, in which case we define
+m, \ to be the virtual weights such that |+m, +

m |=|*m |+1 and |+m, &
m |=

|*m |&1. This notation allows us to assume, without loss of generality, that
*m=|*m |, and we shall omit the modulus signs in the following.

The Casimir number of a representation * is given by

c(*)=(*+$, *+$)&($, $)=(*, *)+2 (*, $) , (2.1)

where $ is the half-sum of positive roots, i.e., $i=(n&2i )�2.
The conformal weight associated to a component + of {�* may be

computed explicitly by the formula

w(+, *)= 1
2 (c(+)&c(*)&c({)), (2.2)

which continues to make sense for virtual weights. We let w0 and w i, \

denote the (virtual) conformal weights of +0 and + i, \. Expanding the
definition of the Casimir, and applying some Euclidean geometry in h*, we
obtain the explicit formulae (assuming *m=|*m | ):
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w0=(1&n)�2 (2.3)

wi, +=1+*i&i (2.4)

wi, &=1&n&(*i&i ). (2.5)

These formulae show that conformal weights are simple to compute in
practice, which is one of our motivations for using them. We note that the
virtual conformal weights wi, \ satisfy

w1, +>w2, +> } } } >wm, +�wm, &> } } } >w2, &>w1, & (2.6)

with equality in the middle if and only if n=2m and *m=0. If n=2m+1
and *m>0, then the conformal weight w0 lies strictly between wm, + and
wm, &. This verifies our earlier claim that the conformal weights are almost
always distinct.

For effective weights, we remind the reader of our convention of not
splitting subrepresentations with the same conformal weight. This means
that we write {�*=�N

j=1 +( j ), where the representations +( j ) are all
irreducible, unless n=2m and *m=0, in which case one of the components
is taken to be +m, +�+m, &.

In order to say which of the weights are effective (and hence, which
representations occur in {�*), it is useful to make explicit any repetitions
among the coordinates *j by writing * in the form

*=(k1 , ..., k1 , k2 , ..., k2 , ..., k& , ..., k&),

with k1>k2> } } } >k&&1>k&�0. If k& {0 and n=2m, we write

*=(k1 , ..., k1 , k2 , ..., k2 , ..., k& , ..., \k&)

for the two possible signs of the last entry. Here & is the number of groups of
equal entries and we let p1 denote the number of k1 's, p2& p1 the number of
k2 's, etc., so that pj is the number of entries greater than or equal to kj .

We first note that the following 2&&1 weights, at least, are effective for
any representation *, and are associated with the conformal weights listed.

+1, + w1, +=k1

+ p1+1, + w p1+1, +=k2& p1

b b

+ p&&1+1, + w p&&1+1, +=k&& p&&1

+ p&&1 , & w p&&1 , &= p&&1&k&&1+1&n

b b

+ p1 , & w p1 , &= p1&k1+1&n.
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If k&=0 there are no further effective weights unless n=2m and p&&1=
m&1, in which case +m, \ are both effective with the same conformal
weight. Hence, by convention, if k&=0 then N=2&&1.

If k&>0 and n=2m then +m, & is effective and N=2&. If k&>0 and
n=2m+1 then +0 is a possible target; furthermore +m, & is effective for
k&>1�2.

We therefore see that the number of components N in the decomposition
Rn�V=�N

j=1 Wj is either 2&&1, 2&, or 2&+1.
The case N=2&&1 arises when *m=0. The representations occurring, in

order of decreasing conformal weight, are as follows:

+(1)=+1, +, +(2)=+ p1+1, +, ..., +(&&1)=+ p&&2+1, +,

+(&)=+ p&&1+1, + or +m, +�+m, &,

+(&+1)=+ p&&1 , &, +(&+2)=+ p&&2, &, ..., +(2&&1)=+ p1 , &.

The case N=2& arises when n=2m+1 and *m=1�2 or when n=2m
and *m {0. The representations occurring, in order of decreasing conformal
weight, are as follows:

+(1)=+1, +, +(2)=+ p1+1, +, ..., +(&)=+ p&&1+1, +,

+(&+1)=+m, & or +0, +(&+2)=+ p&&1, &, ..., +(2&)=+ p1 , &.

The case N=2&+1 arises when n=2m+1 and *m>1�2. The represen-
tations occurring, in order of decreasing conformal weight, are as follows:

+(1)=+1, +, +(2)=+ p1+1, +, ..., + (&)=+ p&&1+1, +,

+(&+1)=+0,

+(&+2)=+m, &, +(&+3)=+ p&&1 , &, ..., + (2&+1)=+ p1 , &.

Note that for ``most'' representations (e.g., if *m {0) N and n have the
same parity. Indeed, if *1>*2> } } } >|*m |>0 we see that N=n. However,
the representations arising in practice are not at all generic: N is usually
very small.

We are now in a position to describe T. Branson's classification of the
elliptic operators [8]. First, note that if J is a subset of I such that PJ is
elliptic, then PI is elliptic. Hence it suffices to find the minimal elliptic
operators PI , i.e., the elliptic PI such that PJ is not elliptic for any proper
subset J of I.

2.1. Theorem (Branson [8]). Let * be an irreducible representation of
SO(n) or Spin(n). Then the minimal elliptic operators associated to * are
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either elementary or the sum of two elementary operators. The elementary
elliptic operators are:

(i) P1 with target +1, +.

(ii) For N=2&, P&+1 with target +m, & or +0.

(iii) For N=2&+1, P&+1 with target +0, provided * is properly
half-integral.

The other minimal elliptic operators are:

(iv) P[ j, N+2& j ] with target + pj&1+1, + �+ pj&1, & or +m, +�+m, & �
+m&1, & for all j # [2, ..., &]. (For N=2&&1, j=&, and p&&1=m&1, P[&, &+1]

is obtained by combining the operators with targets +m, \�+m&1, &, which
are both elliptic.)

(v) For N=2&+1: P[&+1, &+2] with target +0�+m, &, provided * is
integral.

Notice that the subsets of N corresponding to the minimal elliptic
operators partition N (where we combine the operators with targets
+m, \ �+m&1, &), unless N=2&+1 and * is properly half-integral, in which
case there is one ``useless'' operator P&+2 . This means that there are non-
elliptic operators with relatively large targets. Indeed, the above theorem
may equivalently be viewed as a description of the maximal non-elliptic
operators. These play an important role in our later work, so we shall
describe them explicitly here.

2.2. Definition. Let NE denote the set of subsets of [1, ..., N] whose
elements are obtained by choosing exactly one index in each of the sets
[ j, N+2& j ] for each j with 2�j�& if N=2&&1, 2& (giving 2&&1

elements in NE ) and for each j with 2�j�&+1 if N=2&+1 (giving 2&

elements in NE ).

Branson's theorem implies that the set NE is precisely the set of subsets
of [1, ..., N] corresponding to the maximal non-elliptic operators, unless
N=2&+1 and * is properly half-integral, in which case the maximal non-
elliptic operators correspond to the elements of NE which do not contain
&+1. This last case will cause us problems because there are not enough
non-elliptic subsets.

Branson proves Theorem 2.1 by reducing the problem to the study of the
spectrum of the operator on the sphere M=S n, which he computes by
applying powerful techniques from harmonic analysis. For the benefit of
the reader not familiar with these global techniques, we remark that there
are some cases in which ellipticity or non-ellipticity can be established by
elementary local arguments.

225KATO INEQUALITIES AND CONFORMAL WEIGHTS



Since ellipticity depends only on the symbol 6I on Rn �V and since
SO(n) is transitive on the unit sphere in Rn, it follows that PI is elliptic
if and only if the linear map v � 6I (en �v) is injective (for a fixed unit
vector en).

First note that this map is SO(n&1)-equivariant and so we have the
following necessary (but not sufficient) condition for ellipticity.

2.3. Lemma. PI cannot be elliptic unless every subrepresentation of V
under the group SO(n&1) occurs as a subrepresentation of Wj for some j # I.

To use this lemma, one must apply the standard branching rule for
restricting a representation of SO(n) to SO(n&1)��see, for example
[13, p. 426]. For N=2&&1 and N=2& it is straightforward to verify the
non-ellipticity of the maximal non-elliptic operators and hence obtain most
of the non-ellipticity results in Branson's theorem. For N=2&+1 this naive
method does not cover all the cases: P&+1 is not elliptic if * is an integral
weight, even though * itself is the target representation.

Second, note the following sufficient (but not necessary) condition for
ellipticity.

2.4. Lemma. If the space of local solutions of PI on Rn is finite-dimen-
sional, then PI is elliptic.

Proof. If PI is not elliptic then for some v # V, en �v belongs to
ker 6I�Rn�V. Now consider the operator PI on Rn (with respect to the
trivial connection on E$Rn_V ). If Lv denotes the line subbundle of E
corresponding to the span of v # V then any section of Lv which is inde-
pendent of x1 , ..., xn&1 belongs to the kernel of PI . Hence the kernel of PI

is infinite dimensional on Rn.

As observed (for instance) in [19], this second lemma shows that the
highest gradient is always elliptic. This is the operator P1 with the highest
conformal weight w1 whose target +(1) is the highest weight subrepresenta-
tion of {�*. We shall also refer to P1 as the Penrose or twistor operator,
since it reduces to the usual Penrose twistor operator if one views the
representation * as a subrepresentation of a tensor product of spinor
representations. The kernel of a twistor operator on S n (or any simply
connected open subset) is well-known to be a finite-dimensional represen-
tation space for SO(n+1, 1): the twistor operator is the first operator in
the Bernstein�Gelfand�Gelfand resolution of this representation (see for
instance [2]).

Finally in this section, we recall the following ellipticity result:
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2.5. Proposition [14]. PI is elliptic in either of the following cases:

(i) I contains all j with wj �0

(ii) I contains all j with wj �0.

These operators are of special interest because of a simple Weitzenbo� ck
formula relating them [14].

4. REFINED KATO INEQUALITIES WITH N=2

The case N=2 often arises in spin geometry and in two- and four-
dimensional differential geometry. It occurs in the following two cases:

(i) When the dimension n is even, *=(k, ..., k, \k) with k an
arbitrary integer or half-integer, i.e., V=x2k 2+ or V=x2k 2& . There-
fore the bundle E is either xk 4m

\ M or, if M is spin, xk&1�2 4m
\ M x 7\

(7\ denotes positive and negative spinor bundles of M ); one thus gets
w1=k>w2=1& n

2&k.

(ii) When the dimension n is odd, *=( 1
2 , ..., 1

2), i.e., V=2, E is the
spinor bundle 7 and w1= 1

2>w2= 1&n
2 .

Note that the operators P1 and P2 are both elliptic.

3.1. Theorem. Let E be associated to a representation * with N=2.

(i) For any nonvanishing section ! of E in the kernel of the twistor
operator P1 ,

|d |!| |�� w1

w1&w2

|{!|=� k
2k+(n�2)&1

|{!| (3.1)

with equality if and only if, for some 1-form :,

{!=62(:�!).

(ii) For any section ! of E in the kernel of P2 ,

|d |!| |�� &w2

w1&w2

|{!|=� k+(n�2)&1
2k+(n�2)&1

|{!| (3.2)

with equality if and only if, for some 1-form :,

{!=61(:�!).
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Proof. From the Ansatz 1.2, we have to estimate the norms of 6j (:�v)
for j=1, 2. The crucial ingredient here is Eq. (1.7), which gives the following
system of equations for the components of a unit length vector :�v
in Rn�V:

|61(:�v)|2+|62(:�v)|2=1,
(3.3)

w1 |61(:�v)|2+w2 |62(:�v)|2=0.

The solution is a special case of Eq. (1.6),

|61(:�v)|2=
w2

w2&w1

, |62(:�v)|2=
w1

w1&w2

, (3.4)

and moreover this is valid for any choice of unit : and v. These formulae
easily yield the refined Kato inequalities and their equality cases.

3.2. Remark. The calculations above also yield some (possibly not
optimal) refined Kato inequalities for any N and the operators

P+= :
wj>0

Pj or P&= :
wj<0

Pj

(for simplicity, we consider here only the case when conformal weights do
not vanish). The reasoning for P+ relies on the system of equations

|6+(:�v)|2+|6&(:�v)|2=1
(3.5)

w1 |6+(:�v)|2+wmax
<0 |6&(:�v)| 2�0,

where wmax
<0 =maxwj<0 wj and 6\ are the projections associated to both

operators. One easily gets the refined Kato inequality

|d |!| |�� w1

w1&wmax
<0

|{!| (3.6)

for any section ! in the kernel of P+ and similarly

|d |!| |�� wN

wN&wmin
>0

|{!|, with wmin
>0 =min

wj>0
wj (3.7)

for any section ! in the kernel of P& .

3.3. Remark. As an application of these results, we give a new proof of
the Hijazi inequality in spin geometry relating the first eigenvalue of the Dirac
operator on a Riemannian spin manifold to the first eigenvalue of its conformal
Laplacian. This application is due to Christian Ba� r and Andrei Moroianu [31]
and we thank them for their permission to reproduce it in this work.
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3.4. Proposition (Hijazi [17]). Let M be a compact Riemannian spin
manifold of dimension n�3. Then the first eigenvalue *1 of the Dirac operator
and the first eigenvalue +1 of the conformal Laplacian 4 n&1

n&2 2+scal satisfy:

*2
1�

n
4(n&1)

+1 . (3.8)

Proof. If � is an eigenspinor with eigenvalue *, then � lies in the kernel
of the Dirac operator given by the Friedrich connection {� X�={X�+
(*�n) X } �, which is a metric connection on spinors. Hence we have the
following refined Kato inequality for �, wherever it is nonzero:

|d |�| |2�
n&1

n
|{� �|2. (3.9)

We next consider the conformal Laplacian of |�|2: where := n&2
2(n&1) : the

conformal Laplacian is invariant on scalars of weight 2&n
2 and so this

power is natural in view of the conformal weight 1&n
2 for the Dirac operator.

Using the Lichnerowicz formula and the elementary identity d*d( f :)=
:f :&1d*df &:(:&1) f :&2 |df | 2 with f =|�| 2, we obtain the equalities on
the open set where � is nonzero,

1
2:

d*d( |�|2:)+
1
4

scal |�|2:&
n&1

n
*2 |�|2:

=
1
2

1&:
2

|�|2:&4 |d( |�|2)| 2+
1
2

|�|2:&2 d*d( |�|2)

+\1
4

scal&
n&1

n
*2+ |�| 2:

=|�|2:&2 \2(1&:) |d |�| | 2+({*{�, �)

&|{�|2+\1
4

scal&
n&1

n
*2+ |�|2+

=|�|2:&2 \2(1&:) |d |�| | 2+\1&
n&1

n + *2 |�|2&|{�|2+
=|�|2:&2 \ n

n&1
|d |�| | 2&|{� �|2+ ,

since |{� �|2=|{�|2+ 1
n *2 |�|2. This is nonpositive by (3.9). Note that this

gives a local version of the Hijazi inequality, with equality iff {� � is the
projection of :�� onto the kernel of Clifford multiplication, for some
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1-form :. If the eigenvalue * is nonzero, then differentiating and commuting
derivatives shows in fact that {� �=0. The case *=0 is distinguished by
conformal invariance and the fundamental solutions �(x)=c(x) ,�|x|n give
examples with {�{0.

In order to globalize, we consider the Rayleigh quotient for the first
eigenvalue +1 of the conformal Laplacian:

+1�
|

M
4

n&1
n&2

|d.|2+scal .2

|
M

.2

.

We can estimate the integral in the numerator by setting .=|�|2: on the
open set where � is nonzero and writing

4
n&1
n&2

|(d |�|2:)|2+scal |�|4:

=4 |�|2: \n&1
n&2

d*d( |�|2:)+
1
4

scal |�|2:+&
2(n&1)

n&2
d*d( |�| 4:)

�
4(n&1)

n
*2 |�| 4:&

2(n&1)
n&2

d*d( |�|4:).

Taking *=*1 , integrating over [x # M : |�|(x)�=], and letting = � 0 gives
(3.8). The equality case is also easy to establish.

A similar argument can be used to provide an alternative proof of the
N=2 vanishing theorems of Branson�Hijazi [10].

4. CASIMIR NUMBERS AND CONFORMAL WEIGHTS

One way to understand the powers Bl : Rn�V � Rn�V of the operator
B is to relate them to invariants of V. Let ptr Bl=� i (Bl)ei �ei

: V � V be
the partial trace of B obtained by contracting over Rn. Since V is irreducible
and B is symmetric and equivariant, this partial trace must be a scalar multiple
of the identity. The explicit expression (1.1) for B yields the following formula:

ptr Bl= :
i1 , ..., il

d*(e i1
7 ei2

) b d*(ei2
7 ei3

)

b } } } b d*(eil&1
7 eil

) b d*(eil
7 ei1

). (4.1)
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This is the action on V of an element of the centre of the universal enveloping
algebra U (so(n)) called a higher Casimir, since it reduces to the Casimir
element when l=2 (and vanishes when l=1). The (scalar) action of the
Casimir element on V is the Casimir number c(*) of V, and it is of some
interest to compute the higher Casimir numbers. This computation was
carried out by A. Perelomov and V. Popov in [22], where a generating
series for the higher Casimir numbers in terms of polynomials in * is given.

Our aim in this section is to obtain instead relations between higher
Casimirs and conformal weights. These relations will enable us to find a
more convenient basis for the higher Casimirs in terms of certain linear
combinations of the Bl.

In fact, it is more natural to work with the translated operator B� =B+
1
2 (n&1) id and its eigenvalues, the translated conformal weights w~ j=
wj+

1
2 (n&1)= 1

2 (c(+ ( j ))&c(*)). The translated virtual conformal weights
are then w~ i, \= 1

2\(*i+
n
2&i )= 1

2\x i where x=*+$. These translated
conformal weights are more convenient because if *i=* i+1 then

w~ i+1, ++w~ i, &=0, (4.2)

which is a useful cancellation property for non-effective weights. In particular,
there is the following immediate consequence, which already suggests that
(translated) conformal weights are a convenient tool for handling Casimir
numbers.

4.1. Proposition. Let Pl be the polynomial on (the dual of ) the Cartan
subalgebra defined by

Pl(*)= :
m

i=1 \
1
2

+xi+
l

+ :
m

i=1 \
1
2

&xi+
l

for l # N,

where x=*+$. Then:

(i) if N is odd,

:
N

j=1

w~ 2k+1
j &\n&1

2 +
2k+1

=P2k+1(x)&P2k+1($) \k # N; (4.3)

(ii) if N is even

:
N

j=1

w~ 2k+1
j &\n&1

2 +
2k+1

&\1
2+

2k+1

=P2k+1(x)&P2k+1($) \k # N. (4.4)
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Proof. The starting point is the trivial formula

P2k+1(x)=: (w~ i, \)2k+1 \k # N,

where the summation is over all virtual weights (it does not matter whether
we include +0 as w~ 0=0). However, by the cancellation formula (4.2),
almost all of the non-effective weights cancel. Examining the cases, we find
that

P2k+1(x)=:
j

w~ 2k+1
j N#n mod 2

P2k+1(x)=:
j

w~ 2k+1
j +(&1)n ( 1

2)2k+1 N�n mod 2.

If we now apply this formula to the trivial representation, where N=1 and
x=$, we readily obtain the statement of the proposition.

4.2. Corollary. For N odd,

:
N

j=1

w~ j&
n&1

2
=0, :

N

j=1

(w~ j)
3&\n&1

2 +
3

=3c(*), (4.5)

and for N even,

:
N

j=1

w~ j&
1
2

&
n&1

2
=0, :

N

j=1

(w~ j)
3&\1

2+
3

&\n&1
2 +

3

=3c(*). (4.6)

4.3. Remark. The distinction based on the parity of N (which coincides,
for generic representations, with the parity of the dimension n) can be
removed by adding a ``dummy'' conformal weight to the sum: one can either
add a translated conformal weight w~ =&1�2 when N is even or, following
Branson [8], a translated conformal weight w~ =1�2 when N is odd. This
remark remains true for all the results proved in this section, provided care is
taken in exceptional cases where the dummy conformal weight already occurs
as an effective conformal weight.

We now obtain a generating series for the higher Casimirs. These are
similar to the expressions of Perelomov and Popov [22], but differ in two
significant ways: first, we compute ptr B� l, rather than ptr Bl ; and second,
we give the generating series in terms of translated conformal weights,
rather than in terms of coordinates of *.
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4.4. Proposition. The partial traces of B� l are given by the following
generating series:

1+ :
l �0

ptr B� l tl+1=
t
2

+\1&(&1)N t
2+ `

N

j=1

1+w~ j t
1&w~ j t

.

Proof. For each l,

ptr B� l=
tr B� l

dim V
=: (w~ j)

l
dim Wj

dim V
,

since the partial traces act by scalars on V. The relative dimensions
dim Wj �dim V may be computed as follows.

4.5. Lemma. Let Resz=w~ j
( } ) denote the residue at w~ j of the rational

function within parentheses. Then:

(i) if N is odd,

dim Wj

dim V
=(2w~ j+1) `

k{ j

w~ j+w~ k

w~ j&w~ k
=Res

z=w~ j \
z+ 1

2

z
`
N

k=1

z+w~ k

z&w~ k+ ,

(ii) if N is even,

dim Wj

dim V
=(2w~ j&1) `

k{ j

w~ j+w~ k

w~ j&w~ k
=Res

z=w~ j \
z& 1

2

z
`
N

k=1

z+w~ k

z&w~ k+ .

Proof of the Lemma. Weyl's dimension formula (see for instance [13, 25])
gives

dim Wj= `
: # R +

( +( j )+$, :)
($, :)

, dim V= `
: # R +

(*+$, :)
($, :)

, (4.7)

where R+ is the set of positive roots of so(n), hence

dim Wj

dim V
= `

: # R+

( +( j )+$, :)
(*+$, :)

. (4.8)

Unless the dominant weight +( j ) of W j is equal to *, +( j ) is one of the 2m
virtual weights + i, \=*\= i . Hence

dim Wj

dim V
= `

: # R+ \1\
: i

(*+$, :)+ (4.9)
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so that

dim Wj

dim V
= `

[w~ k, \ : k{i( j )]

w~ i, \+w~ k, \

w~ i, \&w~ k, \ , (4.10)

if n=2m is even, and

dim Wj

dim V
=

w~ i, \+ 1
2

w~ i, \& 1
2

`
[w~ k, \ : k{i( j )]

w~ i, \+w~ k, \

w~ i, \&w~ k, \ , (4.11)

if n=2m+1 is odd. Applying the cancellation rule (4.2) and analyzing
each case in turn completes the proof.

Proof of Proposition 4.4 (Continued). It follows from the lemma that

tr B� l

dim V
= :

N

j=1

Res
z=w~ j \zl&1 \z&

(&1)N

2 + `
N

k=1

z+w~ k

z&w~ k+
=Res

t=0 \t&2t1&l \1
t
&

(&1)N

2 + `
N

k=1

1�t+w~ k

1�t&w~ k +
by the residue theorem. It is straightforward to check that this residue is
the coefficient of tl+1 in the desired rational expression of Proposition 4.4.

4.6. Corollary. The partial traces of B� l are given by the generating
series

1+ :
l �0

ptr B� ltl+1=
t
2

+\1&(&1)N t
2+ S(t)

where S$(t)�S(t)=2 � s2k+1(w~ ) t2k+1 and s2k+1(w~ ) are the power sum
symmetric functions in the translated conformal weights. In particular, by
Proposition 4.1, the partial traces can be computed from the polynomials
P2k+1(x).

We recover from these generating functions the results of Perelomov and
Popov for the orthogonal Lie algebras [22]. The generating functions are
not too complicated, but they suggest that the operators A� k defined by

A� k= :
k

l=0

(&1)l _l(w~ ) B� k&l, (4.12)
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where _l(w~ ) denotes the l th elementary symmetric function in the trans-
lated conformal weights, will have much simpler traces. This is indeed the
case.

4.7. Proposition 5.7. The partial trace of A� j is

ptr A� j=(1+(&1) j) _ j+1(w~ )+ 1
2 ((&1) j&(&1)N) _ j (w~ ). (4.13)

Proof. We compute the generating function

:
j�0

ptr A� j t j+1= :
j�0

:
j

k=0

(&1)k _k (w~ ) ptr B� j&kt j+1

= :
k�0

:
j�k

(&1)k _k (w~ ) ptr B� j&k tkt j&k+1

= :
k�0

(&1)k _k (w~ ) tk :
l �0

ptr B� l tl+1

=\1&
(&1)N t

2 + `
N

j=1

(1+w~ j t)&\1&
t
2+ `

N

j=1

(1&w~ j t)

= :
j�0 \(1&(&1) j)+

t
2

((&1) j&(&1)N)+ _j (w~ ) t j.

This yields the stated formula.

We are now ready for the main result of this section.

4.8. Theorem. Define C� j=A� j+
1
4 ((&1)N&(&1) j ) A� j&1 , where A� &1=0

by convention. Then (C� j):�;=(&1) j (C� j);�: .

4.9. Corollary. If N is odd then

(A� 2 j+1(:�v), :�v)=0, (4.14)

while if N is even

(A� 2 j+1(:�v), :�v)+ 1
2 (A� 2 j (:�v), :�v)=0. (4.15)

The idea of looking for polynomials in B with symmetry properties was
first suggested to the authors by T. Diemer and G. Weingart [30]. One of
their key results is the following:
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4.10. Theorem (Diemer�Weingart). Let qj (B) be a sequence of polyno-
mials in B with qj (B)=0 for j<0, q0(B)=1, and for j�0,

qj+1(B):�;=\\B+
n&1+(&1) j

2
id+ b qj (B)+:�;

&
1
2

(:, ;) ptr qj (B)+ :
k�1

ajkq j+1&2k (B):�; (4.16)

for some ajk # R. Then

qj (B):�;=(&1) j qj (B);�: . (4.17)

Proof. We give the proof of Diemer and Weingart, which is by complete
induction on j : clearly (4.17) holds for j�0 and we have an inductive formula
for qj+1 . Introducing the temporary notation (cj):�;= 1

2 (:, ;)(ptr qj (B))
we have

2(qj+1(B):�;&(&1) j+1 qj+1(B);�:)

=((2B+(n&1+(&1) j) id) b q j (B)&cj):�;

+(&1) j ((2B+(n&1+(&1) j) id) b qj (B)&cj);�:

=(B b qj (B)):�;+(&1) j (qj (B) b B);�:

+(&1) j ((B b qj (B));�:+(&1) j (qj (B) b B):�;)

+((n&1+(&1) j) qj (B)&cj):�;

+(&1) j ((n&1+(&1) j) q j (B)&cj);�:

since qj (B) commutes with B. The result follows by observing that

(B b qj (B)):�;+(&1) j (qj (B) b B);�:

=:
i

(B:�ei
b qj (B)ei�;+(&1) j qj (B);�ei

b Bei�:)

=:
i

(B:�ei
b qj (B)ei�;&qj (B)ei �; b B:�ei

)

=:
i

[d*(: 7 ei), qj (B)ei �;]=:
i

qj (B): 7 ei } (ei�;)
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by equivariance of qj (B), where : 7 ei } (ei �;) is defined using the action
of so(n) on Rn�Rn. This gives, finally,

(B b qj (B)):�;+(&1) j (qj (B) b B);�:

=qj (B):�;&nqj (B):�;+(:, ;) ptr q j (B)&q j (B);�:

=((1&n&(&1) j ) qj (B)+cj):�; ,

which completes the proof.

By taking ajk=0 (for all j, k), Diemer and Weingart obtain an inductive
definition of a sequence of polynomials with the desired symmetry proper-
ties. Unfortunately, the task of computing these polynomials explicitly is
formidable because of the complexity of the traces of the powers of B.

The polynomials C� j defined here are completely explicit and because they
have simple traces we are able to prove that they satisfy the inductive
conditions of Theorem 4.10. More precisely, we have:

4.11. Lemma. For j�0,

C� j+1=\B� +
(&1) j

2
id+ b C� j&

1
2

ptr C� j+
1
8

(1&(&1)N+ j) C� j&1

+
1
2

(1&(&1) j) \_j+1(w~ )&
1
2

(1&(&1)N) _j (w~ )+ id.

Proof. Note that C� j=A� j+
1
4 ((&1)N&(&1) j) C� j&1 and so

C� j+1&B� C� j&
1
2 (&1) j C� j

=A� j+1&B� A� j&
1
2 (&1) j C� j

+1
4 ((&1)N+(&1) j) C� j&

1
4 ((&1)N&(&1) j ) B� C� j&1

=A� j+1&B� A� j+
1
4 ((&1)N&(&1) j )(C� j&B� C� j&1)

=A� j+1&B� A� j+
1
4 ((&1)N&(&1) j)(C� j&B� C� j&1& 1

2 (&1) j C� j&1)

+1
8 (1&(&1)N+ j) C� j&1

=A� j+1&B� A� j+
1
4 ((&1)N&(&1) j)(A� j&B� A� j&1)

+1
8 (1&(&1)N+ j) C� j&1 .
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Now, by definition, we have A� j+1&B� A� j=(&1) j+1 _j+1(w~ ) id and so

C� j+1&B� C� j&
1
2 (&1) j C� j

= 1
8 (1&(&1)N+ j) C� j&1&(&1) j _j+1(w~ ) id

&1
4 (1&(&1)N+ j) _j (w~ ) id. (4.18)

Finally, observe that

ptr C� j=(1+(&1) j)(_ j+1(w~ )+ 1
4 (1&(&1)N+ j) _j (w~ )) id.

Adding one half of this onto (4.18) completes the proof.

Theorem 4.8 follows immediately from this lemma and Theorem 4.10.

5. REFINED KATO INEQUALITIES

In the last section we learnt that by working with B� and A� j instead of
B and Aj , we could obtain some explicit formulae. Of course B� =B+ 1

2 (n&1) id
has the same eigenspaces as B and so we can rewrite (1.6) as:

|6j (:�v)|2=
�N&1

k=0 w~ N&1&k
j (A� k (:�v), :�v)

>k{ j (w~ j&w~ k)
. (5.1)

If N is odd, Corollary 4.9 implies that the terms with k odd vanish, while
for N even, we have

(A� 2 j+1(:�v), :�v)+ 1
2 (A� 2 j (:�v), :�v)=0.

Our main result will readily follow from this.

5.1. Main Theorem. Let I a subset of [1, ..., N] corresponding to an
operator PI acting on E. Then a Kato constant kI for sections in the kernel
of PI is given by the following expressions.

If N is odd, then

k2
I = max

J # NE \ :
i # I� & J�

> j # J (w~ i+w~ j)

> j # J� "[i] (w~ i&w~ j)+
=1& min

J # NE \ :
i # I & J�

> j # J (w~ i+w~ j)

> j # J� "[i] (w~ i&w~ j)+ . (5.2)
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If N is even, then

k2
I = max

J # NE \ :
i # I� & J�

(w~ i&1�2) > j # J (w~ i+w~ j)

> j # J� "[i] (w~ i&w~ j ) +
=1& min

J # NE \ :
i # I & J�

(w~ i&1�2) > j # J (w~ i+w~ j )

> j # J� "[i] (w~ i&w~ j) + . (5.3)

These constants are sharp, unless N=2&+1, * is properly half-integral, and
the set J achieving the extremum contains &+1.

Recall that NE denotes the set of subsets of [1, ..., N] whose elements
are obtained by choosing exactly one index in each of the sets [ j, N+2& j ]
for each j with 2�j�& if N=2&&1, 2& and for each j with 2�j�&+1 if
N=2&+1. These correspond to the maximal non-elliptic operators unless
N=2&+1 and * is properly half-integral, when there are also some elliptic
subsets in NE.

Explicit values of the constants for a number of cases, including all
minimal elliptic operators, will be given in Sections 6 and 7, and in the
Appendix. Note that kI=1 for non-elliptic operators, as one would expect.

Proof of the Main Theorem. We let first N=2&&1 and denote Qk=
(&1)k&1 (A� 2k&2(:�v), :�v). We have

|6j (:�v)|2=
�&

k=1 w~ 2(&&k)
j (&1)k&1 Qk

>k{ j (w~ j&w~ k)
=

w~ 2(&&1)
j &�&

k=2 w~ 2(&&k)
j (&1)k Qk

>k{ j (w~ j&w~ k)

(5.4)

since Q1=1. We can now obtain bounds on Q2 , ..., Q& using the non-
negativity of the norms. Since the denominator in (5.4) has sign (&1) j&1

these inequalities are

:
&

k=2

(&1) j+k w~ 2(&&k)
j Qk �(&1) j w~ 2(&&1)

j (5.5)

with equality iff |6j (:�v)|2=0.
This system of linear inequalities confines the values of the Qk 's to a

convex region in R&&1. Our first goal is to show that this region is compact,
hence polyhedral, and to identify its vertices. For this we let ?j denote the
affine functions of Q=(Q2 , ..., Q&) given by |6 j (:�v)| 2 and note the
following.

5.2. Lemma. Let J be a subset of [1, ..., N] with &&1 elements. Then the
intersection of the &&1 affine hyperplanes ?j=0 for all j # J consists of the
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single point QJ=(Q2 , ..., Q&) with Qk=_k&1((w~ 2
j ) j # J). At this point the

affine functions ?j take the values

?j (QJ)=
>k # J (w~ 2

j &w~ 2
k)

>k{ j (w~ j&w~ k)
=

>k # J, k{ j (w~ j+w~ k)

>k # J� , k{ j (w~ j&w~ k)
=j (J ) (5.6)

where =j (J )=0 if j # J and =1 otherwise.

This lemma follows by simply observing that the affine function ?j is
obtained by evaluating a polynomial independent of j on w~ 2

j and then using
the fact that the coefficients of a polynomial are the elementary symmetric
functions of the roots.

Compactness of the convex region is obtained by taking J=[2, ..., &] and
J=[&+1, ..., 2&&1]. The inverse of the Vandermonde system of inequalities
for J=[2, ..., &] has non-negative entries, while for J=[&+1, ..., 2&&1] it
has non-positive entries.

5.3. Proposition. Let N=2&&1. Then for k=2, ..., &,

_k&1(w~ 2
2 , ..., w~ 2

&)�Qk�_k&1(w~ 2
&+1 , ..., w~ 2

2&&1). (5.7)

The lower bounds are all attained if and only if 6[2, ..., &](:�v)=0, while the
upper bounds are all attained if and only if 6[&+1, ..., 2&&1](:�v)=0. These
bounds are sharp by non-ellipticity of P[2, ..., &] and P[&+1, ..., 2&&1] .

When N=2&&1=3, the case most commonly occurring in practice, it
is now straightforward to obtain sharp Kato constants. However, for
N�5, the upper bound for some Qk and the lower bound for another (as
given in this proposition) will not be simultaneously attained: the convex
region is smaller. We illustrate this in the case N=5 (&=3).

In Fig. 1, the numbered lines represent the conditions on Q2 and Q3 for
the norms of 61 , ..., 65 to vanish. The shaded region represents the range
of possible values for (Q2 , Q3), while the dotted rectangle represents the
bounds on (Q2 , Q3) we have found. We have circled the points correspond-
ing to the non-elementary minimal elliptic operators.

According to Ansatz 1.2, in order to find a sharp Kato constant for PI we
must maximize (for |:�v|=1) the projection |6I� (:�v)|2=1&|6I (:�v)|2,
which is equivalent to minimizing |6I (:�v)| 2=�i # I ? i .

Since these norms are affine in the Qk 's, it follows that to minimize or
maximize them on the polyhedral region of admissible values of the Qk 's
we must find the supporting hyperplanes associated to the linear part of the
function. Such a supporting hyperplane certainly contains a vertex of the
polyhedron, and so it suffices to minimize or maximize over the set of
vertices.
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FIGURE 1

We claim that these vertices are the points QJ with J # NE. Certainly
these points are vertices, since if J # NE then PJ is non-elliptic (this part
of the argument will fail when N=2&+1) and so there is some :�v of
norm one with 6j (:�v)=0 for each j in J. Therefore it remains to
eliminate the points QJ with J � NE as possible vertices, which we do by
showing that a point QJ with PJ elliptic does not lie in the polyhedral
region. This is done by proving that there is, for every such J, an index i
such that the affine function ?i assumes a (strictly) negative value at QJ .
Equation (5.6) tells us that for i � J, ?i (QJ) is nonzero and has the sign
(&1) i&1 \i where \i is the sign of >j # J (w~ 2

i &w~ 2
j ). If PJ is elliptic, J

contains a minimal elliptic set, and hence either the index 1 or a couple of
indices of the form ( j, N+2& j ). In any case, since J has length &&1 and
there are exactly &&1 couples of type (l, N+2&l), there is at least one
such couple outside J. One readily checks that w~ 2

l and w~ 2
N+2&l are adjacent

in the ordering of the squares of the conformal weights, and so \l=\N+2&l .
Since N is odd, l and N+2&l have the opposite parity, and so one of i=l

or i=N+2&l yields a negative sign for ?i . This proves the claim, and
now maximizing or minimizing over the vertices using (5.6) proves the
main theorem for N=2&&1.

The argument for the case N=2&+1 is completely analogous, by replac-
ing & with &&1. When * is properly half-integral, the lower bounds in the
analogue of (5.7) will not be sharp since P[2, ..., &+1] is elliptic. However, we
only used these bounds to establish compactness of the convex region
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defined by the non-negativity of the norms, so this does not matter. The
ellipticity of P&+1 means that some of the vertices of this polyhedral region
are not possible values for the Qk 's. More precisely, the index sets corre-
sponding to the vertices are still contained in the set NE, and so we can
maximize or minimize over NE, but we will not obtain sharp results if the
extremum is obtained at a vertex corresponding to an index set containing
&+1.

Now suppose N=2& and let Qk=(&1)k&1 (A� 2k&2(:�v), :�v). We
have

|6j (:�v)|2=
w~ j&

1
2

`
k{ j

(w~ j&w~ k)
:
&

k=1

w~ 2(&&k)
j (&1)k&1 Qk

=
w~ j&

1
2

`
k{ j

(w~ j&w~ k)
\w~ 2(&&1)

j & :
&

k=2

w~ 2(&&k)
j (&1)k Qk+ (5.8)

since Q1=1. Our strategy is now the same as before: we obtain the poly-
hedron using the non-negativity of the norms and its vertices by looking at
maximal length non-elliptic operators. Since the denominator in (5.8) has
sign (&1) j&1 these inequalities are:

:
&

k=2

(&1) j+k w~ 2(&&k)
j Qk�(&1) j w~ 2(&&1)

j for j�&

(5.9)

:
&

k=2

(&1) j+k w~ 2(&&k)
j Qk�(&1) j w~ 2(&&1)

j for j�&+1.

Lemma 5.2 is unchanged except that the formula for ?j (QJ) has an additional
w~ j&

1
2 . To obtain compactness, we consider J=[2, ..., &] and J=[&+2, ..., 2&]

and again observe that the inverses of these Vandermonde systems have
entries all of one sign.

5.4. Proposition. Let N=2&. Then for k=2, ..., &,

_k&1(w~ 2
2 , ..., w~ &

2)�Qk�_k&1(w~ 2
&+2 , ..., w~ 2

2&). (5.10)

The lower bounds are all attained if and only if 6[2, ..., &](:�v)=0, while the
upper bounds are all attained if and only if 6[&+2, ..., 2&](:�v)=0. These
bounds are sharp by the non-ellipticity of P[2, ..., &] and P[&+2, ..., 2&] .

242 CALDERBANK, GAUDUCHON, AND HERZLICH



The vertices are identified with NE in a way similar to the case N=2&&1.
The only difference comes from the way the sign changes when passing from
i=l to i=N+2&l: the parity of i does not change but the sign of the factor
w~ i&1�2 does. This proves the main theorem for N=2&.

In the next two sections we shall calculate some of the constants more
explicitly by finding the vertex at which the maximum or minimum is achieved.
This is only feasible when the number of terms in the sum is small and, in
general, the vertex depends on the coordinates of *. Nevertheless, this is
a worthwhile task, as explicit constants are of more practical use than
extrema over exponentially large sets.

Our main tool is the order of the conformal weights, together with the
fact that, for j # [2, ..., &], we have w~ j+w~ N+2& j=kj&kj&1<0. Similarly,
for N=2&+1, w~ &+1+w~ &+2=w~ &+2=&*m<0. Hence for any i # [1, ..., N]
and j # [2, ..., &],

(w~ i+w~ j)(w~ i&w~ j)&(w~ i+w~ N+2& j)(w~ i&w~ N+2& j)

=&(w~ j+w~ N+2& j)(w~ j&w~ N+2& j)>0

and this also holds for N=2&+1 and j=&+1.
By considering the possible signs of the terms, we obtain:

5.5. Proposition. For any i # [1, ..., N] and j # [2, ..., &] (or j=&+1
when N=2&+1) with i{ j and i{N+2& j, we have:

w~ i+w~ j

w~ i&w~ N+2& j
>

w~ i+w~ N+2& j

w~ i&w~ j
>0 iff i< j or N+2& j<i

w~ i+w~ N+2& j

w~ i&w~ j
>

w~ i+w~ j

w~ i&w~ N+2& j
>0 iff j<i<N+2& j.

6. REFINED KATO INEQUALITIES WITH N ODD

When N is odd, we have to minimize or maximize over J # NE, a sum
of a subset of the following terms:

> j # J (w~ i+w~ j)

> j # J� "[i] (w~ i&w~ j)
=

w~ i+w~ N+2&i

w~ i&w~ 1

`

j{N+2&i
j # J

w~ i+w~ j

w~ i&w~ N+2& j
for i # J� "[1]

> j # J (w~ 1+w~ j)

> j # J� "[i] (w~ 1&w~ j)
= `

j # J

w~ 1+w~ j

w~ 1&w~ N+2& j
.
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Using Proposition 5.5, the first expression is minimized (subject to J %3 i ) by
Jmin

i =[2, ..., i&1, N+2&&, ..., N+2&i] (together with &+2 if N=2&+1)
and is maximized by J max

i =[i+1, ..., &, N+2&i, ..., N] (together with &+1
if N=2&+1). The second expression is minimized by Jmin

1 =[N+2&&, ..., N]
(together with &+2 if N=2&+1) and maximized by J max

1 =[2, ..., &]
(together with &+1 if N=2&+1).

This information suffices to find Kato constants for the elementary
elliptic operators and the complements of generalized gradients. Note that
Jmin

i =J min
N&1&i and J max

i =J max
N&1&i , which will give a few more explicit

results.
We shall now show how the values of the constants can be computed for

the non-elementary (i.e., length 2) minimal elliptic operators.
Let I=[i, N+2&i] for i # [2, ..., &] (or i=&+1 when N=2&+1).

Then for any J # NE, J & I has precisely one element, and hence so does
J & I� . Therefore, for each J, the sum has only one term, indexed by either
i or N&2&i, and so the minimum, over all J, is given by the minimum
over J min

i and J min
N+2&i . Unfortunately, each of these two quantities may be

the smallest, depending on the precise values of the conformal weights, so
that we are forced to keep a minimum in our formulae. However, if N=
2&&1 and i=&, then the following argument, together with the fact that
w~ 1&w~ &+1>w~ 1&w~ & , shows that the minimum is obtained by using J min

&+1 .

6.1. Lemma. For each k=1, ..., &&2

(w~ &+w~ k+1)(w~ &+1&w~ 2&&k)>(w~ &+1+w~ k+1)(w~ &&w~ 2&&k)>0.

Proof. Positivity holds because 2&&k>&+1, while the inequality follows
from the identity

(w~ &+w~ k+1)(w~ &+1&w~ 2&&k)&(w~ &+1+w~ k+1)(w~ &&w~ 2&&k)

=&(w~ k+1+w~ 2&&k)(w~ &&w~ &+1)

and the fact that w~ k+1+w~ 2&&k<0.

A similar argument works when N=2&+1 and i=&+1.
We summarize these observations in the following results.

6.2. Theorem. Let E be associated to a representation * with N=2&&1
and let PI be an elliptic operator on sections of E associated to a subset I of
[1, ..., N]. Then in the following cases, a refined Kato inequality of the type
|d |!| |�kI |{!| holds outside the zero set of ! for ! in the kernel of PI .
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(i) For [1]�I�[1, &+1, ..., 2&&1], we have

k2
I =1&

>2&&1
k=&+1 (w~ 1+w~ k)

>&
k=2 (w~ 1&w~ k)

.

Equality case: {!=6[2, ..., &](:�!) for : with 6[&+1, ..., 2&&1](:�!)=0.

(ii) For [i, 2&+1&i]�I�[i, 2&+1&i] _ J0 , with i # [2, ..., &] and
J0=[ j : 2� j<i] _ [2&+1& j : i< j�&], we have

k2
I =1&min(C1 , C2),

where

C1=
w~ i+w~ 2&+1&i

w~ i&w~ 1

`
k # J0

w~ i+w~ k

w~ i&w~ 2&+1&k
,

C2=
w~ i+w~ 2&+1&i

w~ 2&+1&i&w~ 1

`
k # J0

w~ 2&+1&i+w~ k

w~ 2&+1&i&w~ 2&+1&k
.

Equality case: {!=6J� 0"[i, 2&+1&i](:�!) for : with

6[i] _ J0
(:�!)=0 if C2<C1 or

6[2&+1&i] _ J0
(:�!)=0 if C1<C2 .

Furthermore, C2<C1 if i=& (and so 6[2, ..., &](:�!)=0).

(iii) For I=[2, ..., 2&&1], we have

k2
I =

>&
k=2 (w~ 1+w~ k)

>2&&1
k=&+1 (w~ 1&w~ k)

.

Equality case: {!=61(:�!) for : with 6[2, ..., &](:�!)=0.

(iv) For I� =[i] with i # [2, ..., 2&&1], we have

k2
I =

w~ i+w~ 2&+1&i

w~ i&w~ 1

`

j{2&+1&i
j # Ji

max

w~ i+w~ j

w~ i&w~ 2&+1& j
.

Equality case: {!=6i (:�!) for : with 6Ji
max (:�!)=0. Here

Jmax
i =[i+1, ..., &, 2&+1&i, ..., 2&&1].

(v) For I=[2, ..., 2&&2], we have

k2
I =

>&
k=2 (w~ 2&&1+w~ k)

(w~ 2&&1&w~ 1) >2&&2
k=&+1 (w~ 2&&1&w~ k)

+
>&

k=2 (w~ 1+w~ k)
>2&&1

k=&+1 (w~ 1&w~ k)
.
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Equality case: {!=6[1, 2&&1](:�!) for : with 6[2, ..., &](:�!)=0.
(This is not a refined inequality when N=3.)

(vi) For I� =[i, 2&&i] with i # [2, ..., &&1], we have

k2
I =

w~ i+w~ 2&+1&i

w~ i&w~ 1

`

j{2&+1&i
j # Ji

max

w~ i+w~ j

w~ i&w~ 2&+1& j

+
w~ i+1+w~ 2&&i

w~ 2&&i&w~ 1

`

j{i+1
j # Ji

max

w~ 2&&i+w~ j

w~ 2&&i&w~ 2&+1& j
.

Equality case: {!=6[i, 2&&i](:�!) for : with 6Ji
max (:�!)=0.

Here J max
i =[i+1, ..., &, 2&+1&i, ..., 2&&1].

Replacing & by &+1 gives analogous results for N=2&+1, but note that
equality cases with 6&+1(:�v)=0 will not be attained if * is properly
half-integral.

We now give more detailed formulas when N=3, which is the most
common case arising in practice: the representation {�* splits into N=3
components when:

(i) V=xk 4 p (k a positive integer) and 0<p�m&1 ( p=m&1 in
even dimension belongs to this case only by virtue of our convention on
distinctness of conformal weights). Then *=(k, ..., k, 0, ..., 0) where k is
repeated p times and w1=k>w2=&p>w3= p&k+1&n.

(ii) in odd dimensions, either V=xk 4m (k a positive integer) or
V=xk&1�2 4m x 2 (k>1�2 and half-integral), where 2 is the spin
representation. This corresponds in both cases to *=(k, ..., k) and w1=
k>w2=&n&1

2 >w3=&k& n&1
2 .

Note that P1 and P2+P3 are elliptic, whereas P2 and P3 are non-elliptic,
unless &=1 and * is properly half-integral, when P2 is elliptic, but the
results above do not cover this case.

6.3. Theorem. If ! is a nonvanishing section in the kernel of one of the
elliptic operators P1 , P2+P3 , P1+P3 , or P1+P2 , we have a refined Kato
inequality |d |!| |�kI |{!| with kI given as follows.

(i) For P1 or P1+P3 ,

k2
[1]=k2

[1, 3]=
w1

w1&w2

=
k

k+ p
.

Equality holds iff {!=62(:�!) for a 1-form : such that 63(:�!)=0.
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(ii) For P2+P3 ,

k2
[2, 3]=

&w3

w1&w3

=
k+n& p&1
2k+n& p&1

.

Equality holds iff {!=61(:�!) for a 1-form : such that 62(:�!)=0.

(iii) For P1+P2 ,

k2
[1, 2]=

w1

w1&w3

=
k

2k+n& p&1
.

Equality holds iff {!=63(:�!) for a 1-form : such that 62(:�!)=0.

When * is properly half-integral, only the first constant is sharp and we
do not get a nontrivial constant for P2 . Since this case sometimes arises in
practice (e.g., the Rarita�Schwinger operator), we note briefly how the
Kato constant can be found. Since w~ &+1=0, the projection 6&+1=62 is
equal to A� N&1=A� 2 divided by w~ 1w~ 3<0. Hence we need to obtain a better
upper bound on (A� 2(:�v), :�v) =( (B2&w~ 1w~ 3)(:�v), :�v). Now
for fixed :{0, say :=en , we can break this up under so(n&1) and use the
fact, easily verified, that B2 is the difference between the Casimir number of
* and the Casimir operator of so(n&1). Applying the branching rule, we
see that the eigenvalues of (A� 2)en�en

are &(k&l)2 for l # N with k&l �0.
Hence if k is half-integral, (A� 2(:�v), :�v) �&1�4. This gives

k2
[2]=1&

1
2k(2k+n&1)

k2
[2, 3]=

(2k+n&1)2&1
(2k+n&1)(4k+n&1)

k2
[1, 2]=

k2&1
k(4k+n&1)

.

The analogues of these sharper results for larger N=2&+1 can be derived
from Branson's minimization formula [9]. In particular, he gives the
formula for k[&+1] explicitly there.

Most ``uncomplicated'' tensor bundles, such as vectors, forms, symmetric
traceless tensors, and algebraic Weyl tensors, have N=3 (except in low
dimensions, where N might be 2).

(i) For 41, the constants are 1
2 (conformal or Killing vector fields),

n&1
n (harmonic 1-forms), and 1

n (closed 1-forms dual to a conformal vector
field). The last of these is trivial, since the only non-vanishing component
of {! in this case is 1

n div ! id.

(ii) For 42, the constants are 1
3 , n&2

n&1 , and 1
n&1 . The second of these

is the constant for harmonic 2-forms.
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(iii) For S 2
0 , the constants are 2

3 , n
n+2 , and 2

n+2 . The second of these
is the constant appearing in the work of Schoen et al. [26].

(iv) For 42
x 42, the constants are 1

2 , n&1
n+1 , and 2

n+1 . The second of
these is the constant for the second Bianchi identity appearing in the work
of Bando et al. [1].

7. REFINED KATO INEQUALITIES WITH N EVEN

When N=2& is even, we have to minimize or maximize over J # NE,
a sum of a subset of the following terms:

(w~ i&1�2)(w~ i+w~ N+2&i)
(w~ i&w~ 1)(w~ i&w~ &+1)

`

j{N+2&i
j # J

w~ i+w~ j

w~ i&w~ N+2& j
for i # J� "[1, &+1]

w~ 1&1�2
w~ 1&w~ &+1

`
j # J

w~ 1+w~ j

w~ 1&w~ N+2& j

w~ &+1&1�2
w~ &+1&w~ 1

`
j # J

w~ &+1+w~ j

w~ &+1&w~ N+2& j
.

Using Proposition 5.5, the first expression is minimized (subject to J %3 i ) by
Jmin

i =[2, ..., i&1, N+2&&, ..., N+2&i] and is maximized by J max
i =

[i+1, ..., &, N+2&i, ..., N]. The second expression is minimized by J min
1 =

[N+2&&, ..., N] and maximized by J max
1 =[2, ..., &), while the third

expression is minimized by J min
&+1=[2, ..., &) and maximized by J max

&+1=
[N+2&&, ..., N].

We now proceed as in the odd-dimensional case, except that the analogue
of Lemma 6.1 is no longer useful, due to the additional w~ & 1

2 factors. The
results are summarized below.

7.1. Theorem. Let E be associated to a representation * with N=2& and
let PI be an elliptic operator on sections of E associated to a subset I of
[1, ..., N]. Then in the following cases, a refined Kato inequality of the type
|d |!| |�kI |{!| holds outside the zero set of ! for ! in the kernel of PI .

(i) For [1]�I�[1, &+2, ..., 2&], we have

k2
I =1&

(w~ 1&1�2) >2&
k=&+2 (w~ 1+w~ k)

>&+1
k=2 (w~ 1&w~ k)

.

Equality case: {!=6[2, ..., &+1](:�!) for : with 6[&+2, ..., 2&](:�!)=0.
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(ii) For [&+1]�I�[2, ..., &, &+1], we have

k2
I =1&

(w~ &+1&1�2) >&
k=2 (w~ &+1+w~ k)

(w~ &+1&w~ 1) >2&
k=&+2 (w~ &+1&w~ k)

.

Equality case: {!=6[1, &+2, ..., 2&](:�!) for : with 6[2, ..., &](:�!)=0.

(iii) For [i, 2&+2&i]�I�[i, 2&+2&i] _ J0 , with i # [2, ..., &]
and J0=[ j : 2�j<i] _ [2&+2& j : i< j�&], we have

k2
I =1&min(C1 , C2)

where

C1=
(w~ i+w~ 2&+2&i)(w~ i&1�2)

(w~ i&w~ &+1)(w~ i&w~ 1)
`

k # J0

w~ i+w~ k

w~ i&w~ 2&+2&k
,

C2=
(w~ i+w~ 2&+2&i)(w~ 2&+2&i&1�2)

(w~ 2&+2&i&w~ &+1)(w~ 2&+2&i&w~ 1)
`

k # J0

w~ 2&+2&i+w~ k

w~ 2&+2&i&w~ 2&+2&k
.

Equality case: {!=6J� 0"[i, 2&+2&i](:�!) for : with

6[i] _ J0
(:�!)=0 if C2<C1

or

6[2&+2&i] _ J0
(:�!)=0 if C1<C2 .

(iv) For I=[2, ..., 2&], we have

k2
I =

(w~ 1&1�2) >&
k=2 (w~ 1+w~ k)

>2&
k=&+1 (w~ 1&w~ k)

.

Equality case: {!=61(:�!) for : with 6[2, ..., &](:�!)=0.

(v) For I=[1, ..., &, &+2, ..., 2&], we have

k2
I =

(w~ &+1&1�2) >2&
k=&+2 (w~ &+1+w~ k)

>&
k=1 (w~ &+1&w~ k)

.

Equality case: {!=6&+1(:�!) for : with 6[&+2, ..., 2&](:�!)=0.

(vi) For I� =[i] with i # [2, ..., &, &+2, ..., 2&], we have

k2
I =

(w~ i&1�2)(w~ i+w~ 2&+2&i)
(w~ i&w~ 1)(w~ i&w~ &+1)

`

j{2&+2&i
j # J i

max

w~ i+w~ j

w~ i&w~ 2&+2& j
.
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Equality case: {!=6i (:�!) for : with 6Ji
max (:�!)=0. Here

Jmax
i =[i+1, ..., &, 2&+2&i, ..., 2&].

(vii) For I=[2, ..., 2&&1], we have

k2
I =

(w~ 1&1�2) >&
k=2 (w~ 1+w~ k)

>2&
k=&+1 (w~ 1&w~ k)

+
(w~ 2&&1�2) >&

k=2 (w~ 2&+w~ k)
(w~ 2&&w~ 1) >2&&1

k=&+1 (w~ 2&&w~ k)
.

Equality case: {!=6[1, 2&](:�!) for : with 6[2, ..., &](:�!)=0.

(viii) For I=[1, ..., &&1, &+2, ..., 2&] we have

k2
I =

(w~ &&1�2) >2&
k=&+2 (w~ &+w~ k)

(w~ &&w~ &+1) >&&1
k=1 (w~ &&w~ k)

+
(w~ &+1&1�2) >2&

k=&+2 (w~ &+1+w~ k)
>&

k=1 (w~ &+1&w~ k)
.

Equality case: {!=6[&, &+1](:�!) for : with 6[&+2, ..., 2&](:�!)=0.

(ix) For I� =[i, 2&+1&i] with i # [2, ..., &&1], we have

k2
I =

(w~ i+w~ 2&+2&i)(w~ i&1�2)
(w~ i&w~ 1)(w~ i&w~ &+1)

`

j{2&+2&i
j # Ji

max

w~ i+w~ j

w~ i&w~ 2&+2& j

+
(w~ i+1+w~ 2&+1&i)(w~ i&1�2)

(w~ 2&+1&i&w~ 1)(w~ 2&+1&i&w~ &+1)

_ `

j{i+1
j # Ji

max

w~ 2&+1&i+w~ j

w~ 2&+1&i&w~ 2&+2& j
.

Equality case: {!=6[i, 2&+1&i](:�!) for : with 6Ji
max (:�!)=0.

Here J max
i =[i+1, ..., &, 2&+2&i, ..., 2&].

We now give more detailed formulas when N=4, which is the generic
case in four-dimensional differential geometry: the representation {�*
splits into N=4 components whenever

(i) if n=2m is even and V=xl 4\ xk&l 4 p or V=xl&1�2 4\

xk&l 4 p
x 2\ where k>l>0 are (simultaneously) integers or half-

integers, p<m are integers, 4m
\ stands for selfdual or anti-selfdual m-forms,

and 2\ for positive or negative spin representations. The associated weights
are *=(k, ..., k, l, ..., l, \l), with k repeated p times. One gets w1=k>w2=
l& p>w3=1& n

2&l>w4=&k+ p+1&n.

(ii) n=2m+1 is odd, V=xk&1�2 4 p
x 2 with p<m integer and

k� 1
2 and half-integer, so that *=(k, ..., k, 1

2 , ..., 1
2). Conformal weights are

a specialization of the previous formula with l= 1
2 : w1=k>w2= 1

2& p>
w3= (1&n)

2 >w4=&k+ p+1&n.
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Note that that P1 , P3 , and P2+P4 are elliptic, whereas P2 and P4 are
non-elliptic.

We give in the following theorem the Kato constants for the kernels of
the minimal elliptic operators.

7.2. Theorem. If ! is a non-vanishing section in the kernel of one of the
elliptic operators P1 , P3 , or P2+P4 , we have a refined Kato inequality
|d |!| |�kI |{!| with kI given as follows.

(i) For P1 ,

k2
[1]=1&\w1+

n&2
2 + (w1+w4+n&1)

(w1&w2)(w1&w3)

=
\k+

n&2
2 + (k&l)+l (k&l+ p)

(k&l+ p) \k+l+
n&2

2 +
.

Equality holds iff {!=(62+63)(:�!) for a 1-form : with 64(:�!)=0.

(ii) For P3 ,

k2
[3]=1&\w3+

n&2
2 + (w3+w2+n&1)

(w3&w4)(w3&w1)

=1&
l \n

2
& p+

\k&l+
n
2

& p+\k+l+
n&2

2 +
.

Equality holds iff {!=(61+64)(:�!) for a 1-form : with 62(:�!)=0.

(iii) For P2+P4 , k2
[2, 4] equals

1&min {\w4+
n&2

2 + (w2+w4+n&1)

(w4&w1)(w4&w3)
,
\w2+

n&2
2 + (w2+w4+n&1)

(w2&w1)(w2&w3) =
=1&min { \k+

n
2

& p+ (k&l )

(2k+n& p&1) \k&l+
n
2

& p+
,

\l+
n
2

& p&1+ (k&l )

(k&l+ p) \2l+
n
2

& p&1+=
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Equality holds iff {!=(61+63)(:�!) for a 1-form : with 62(:�!)=0
or 64(:�!)=0 depending on which term is the minimum.

APPENDIX: EXPLICIT CONSTANTS FOR DIMENSIONS 3 AND 4

Dimension 3. Irreducible representations of so(3) are symmetric powers,
denoted 2r, of the spin representation 2 (if r is even, 2r has a canonical
real structure and from now on we denote by 2r its real part). The Clebsch�
Gordan formulas show that we are in the case N=2 if r=1 and N=3 if
r�2. In the former case, the elliptic operators are the (Penrose) twistor
operator P1 and the Dirac operator P2 corresponding to projections on the
first and second part of

R3�2=22 �2=23�2.

In the latter case, the elliptic operators are the twistor operator P1 and
Dirac-type operator P2+P3 corresponding to projections on the first or
second-and-third part of

R3�2r=22�2r=2r+2�2r �2r&2, r�2. (9.2)

If r�3 and is odd, then P2 is elliptic on its own: it is the Rarita�Schwinger
operator when r=3 and so we denote it by R-S in general.

The following table sums up our formulae in three dimensions.

Operator Conditions Refined Constant

Twistor all r � r
r+2

Dirac r=1 � 2
3

Dirac-type r�2 � r+2
2(r+1)

R-S (r odd) r�3 � 1&
1

r(r+2)

Minimal Elliptic Operators in Dimension 4. Irreducible representations
of so(4) are tensor products of symmetric powers, denoted V r, s=2r

+�2r
& ,

of the positive and negative half-spin representation 2\ (if r+s is even, V r, s
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has a canonical real structure and, as above, V r, s will denote its real part).
Assuming r�s, the Clebsch�Gordan formulas yield, for r�s>0,

R4�V r, s=V r+1, s+1�V r+1, s&1�V r&1, s+1�V r&1, s&1

so that we are in the case N=4 if r>s>0 and the case N=3 if r=s>0
(the middle components have equal conformal weights here). If r>s=0
then

R4�V r, 0=V r+1, 1 �V r&1, 1,

and we are in the case N=2.
Hence we have (at most) three minimal elliptic operators.

(i) The twistor operator, given by the projection on the first factor
in every case.

(ii.a) The operator given by the projection onto V r&1, s+1. It is the
operator P3 when N=4 (i.e., if r>s>0) or P2 when N=2 (i.e., if s
vanishes). It defines the spin r�2 field equation in this last case and we shall
call it a ``spin r+s

2 field'' in general.

(ii.b) The operator in (ii.a) is not elliptic if N=3 (i.e., if r=s>0).
We shall replace it by the operator given by the projection onto
(V s+1, s&1�V s&1, s+1)�V s&1, s&1. The usual Hodge�de Rham belongs to
this case, so that it seems reasonable to call it a Dirac-type operator.

(iii) The operator given by the projection onto V r+1, s&1 �V r&1, s&1

is the elliptic operator P2+P4 if N=4 (i.e., if r>s>0). We shall again call
it a Dirac-type operator.

The following table sums up our formulae in four dimensions.

Operator Conditions Refined Constant s=0 r=s

Twistor r�s�0 � 2rs+r+s
2(r+1)(s+1) � r

2(r+1) � s
s+1

Spin
r+s

2
r>s�0 � 2rs+r+3s+2

2(r+1)(s+1) � r+2
2(r+1)

��

field

Dirac-type r�s>0 � s+2
2(s+1)

�� � s+2
2(s+1)
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As an example, we can reobtain the value found by M. Gursky and
C. LeBrun in [15] for a co-closed positive half Weyl tensor (outside its
zero set),

|d |W+| |�� 3
5

|{W+| , (7.1)

and note that equality occurs if and only if {W+=62(:�W+).
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