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In any reflexive Banach (lattice), the resolvent (resp. the C6sPro means) of a 
mean-bounded semi-group of operators (resp. of positive operators) is (resp. are) 
strongly convergent. The mean ergodic theorem fails for mean-bounded operators 
which are not necessarily positive. 0 1985 Academic Press, Inc. 

(I) RESOLVENT OF MEAN BOUNDED SEMI-GROUPS 

Let B be a Banach space. 

1.1. DEFINITION. A linear operator T (resp. a strongly continuous semi- 
group of linear operators T= (T,),,,) acting on B is said to be C-mean- 
bounded if 

M= sup 
/I II 
A- <+03 

#,I n 
IEN 

( 
resp.M=;;~~I~~~ < +co) 

(1.2) 

where S,=Z+ . . . + T”-’ (resp. S, f = (6 T, f ds for any fE B). 

Remark. Since T = (T,),>, is strongly continuous there is no difficulty 
with the definition of Ii T, f ds as the strong limit of Riemann sums. 

1.3. DEFINITION. A resolvent on B is a family V = (AV,), ,,, of linear 
operators acting on B such that VA - V,, = -(A - ,D) V, V, for all ;1, ,U > 0. 

V will be said bounded if sup llnVAll < +co. 
A>0 
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2 R. EMILION 

1.4. DEFINITION. With the same notations as in (1. l), T (resp. 
T= (T,),,,) is said to be A-mean-bounded if for each Iz > 0 andfE B 

is defined and if sup,,, IlnV,il < +co. 

It is known that (3,V,),,, defined in (1.4) is necessarily a resolvent (in the 
sense of (1.3)) which is of course bounded. 

NotethatIZC~=o(T”/(1+1)“t1)=(1-k)C,”=ok”T”whenoneofthese 
terms is defined (put k = l/(L + l), 0 < k < 1). 

1.5. Now, suppose that T (resp. TJ is a positive operator on a Banach 
lattice B (i.e., T(B ’ ) c B ‘, resp. T,(B ’ ) c B ’ ), then “A-mean-bounded” 
implies “C-mean-bounded.” Indeed (1 -k) CEO kjTj> (1 -k) k”-’ S, and 
thus (1 S, [l/n < e sup, >. 1) LV, (1 (take k = 1 - l/n). In the continuous case one 
has 1 Jr eeasT, ds > iewA’S, and thus IISlll/t < e sup*>, IIJVJll (take 
A = 1/t). 

1.6. Our first result (1.7) shows that C-boundedness implies A- 
boundedness even if the operators are not necessarily positive. 

Therefore in the next sections “mean-bounded” will mean A-mean- 
bounded. The two notions are equivalent if the operators are positive ((1.5) 
and (1.7)). The proof of (1.7) will show that any C-mean-bounded sequence 
(resp. continuous function) in B is A-mean-bounded, and the converse is true 
if the sequence (resp. the function) is positive (1.5). 

1.7. THEOREM. Let T (resp. (T,),,,) be a C-mean-bounded operator 
(resp. a C-mean-bounded semi-group) then for A > 0 and f E B 

V*f= x Tnf 
n>O (A+ lY+l J 

co 
resp. V, f = 

0 

eentTt f dtj 

is well defined and defines a bounded resolvent which satisfies 
supnPo IlnV,II GM, where M is given by (1.2). 

ProoJ: The continuous case. The semi-group is strongly continuous, 
thus, an integration by parts gives us 

I 
A 

epntTt f dt = e-‘*S, f +l: AeeJtStfdt for any A > 0. 
0 

Since )I S,(I < Aft, lim,,, a, ePaASA f = 0 and lim, ++ co I$ Ae-“‘St f dt 
exists. Therefore VA f = sr eentTt f dt = sr AepatSt f dt exists and 
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IlAV,J-11 <p*e-wtdt=M for any 1 > 0. 
0 

It is a classical result that @VA),>, is a resolvent. 

Thediscretecase. LetO<k<l andS,=Z+...+T”-‘.Onehas 

P+P P-t9 
c k”T” = c k”(S,+, -S,) 
tl=p Pl=p 

pig-1 

=-k*Sp+ C Sj+,(k’-k’fl)+kptqSp+q+~. 
j=p 

By (1.2) one has 

+(t’+q+ l)kP+q 
1 

and 

ll~k”T”(I~M((Zp+l)kp+~~~:~+riq). (1.8) 

Therefore 

is well defined. Moreover (1.8) shows that IIC,“o k”T”II <M/(1 - k). Now 
let Iz > 0 and k= l/(1 + 1). 

VA = f Tn 

n=o (2, + 1y+’ 
=k 5 k”T”=k(Z-kT)-’ 

n=o 

is well defined and ((AV,(( <M. It is a classical result that (IZV,), ,. is a 
resolvent. 

1.9. Note that if T is a mean-bounded positive operator on L,(J) (resp. 
on L,) such that iW,< 1 in (1.2) then T is a contraction. Indeed, 
j ((f+ rf)/Z) dp Q jfdp for any SE L: (resp. (1 + T1)/2 < 1 implies 
~-1 < 1 and II Tfll, G II Wfll,Il, Q Ilfll, for my E LA. 

This result is false in L*(X, F,,u). Indeed take X= { 1,2} with 
,D( 1) = 42) = 1. The positive operator T on L*(X, F, y) defined by the 
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matrix ( i ‘z “) is such that T2 = 0. If E > 0 is small enough we have 
l/V+ T)PlI < 1 and 

but T is not a contraction. 
However, in the continuous case we obtain the 

1.10. THEOREM. Let T= (T,),,, be a strongly continuous semi-group on 
a Banach space B, such that M= sup&l/t) IIS,I( < 1, then Tt is a 
contraction for any t > 0. 

ProoJ: If I’, = (F e-ltTt dt, Theorem (1.7) implies 

lnv,ill< 1. Note that )I T,, 1) = 
II 

strong - /$+ ? 
II 

< 1. (1.11) 

We have 

Strong - ~ lima L VA = T,. (1.12) -a 

Indeed, let fE B, E > 0 and 6 > 0 such that I]( l/s) S, f - T,,f I[& E for any 
s: 0 < s<6. An integration by parts shows that ]]nVnf - T,,fli = 11s: 
IZ2e-As(S,f - sT,f)ds + si” 12e-As(Ss f - ST, f) dsll < E Ii A2epASs ds + 
(MI/f ]I + ]I T,,f I]) e-‘@“) IS+“O L2e-a(s’2)s ds. Therefore we have -T-- lim ~,+,]I~V,f-T,,f]I<~andlim,,+,~V,f=T,,fforeachfEB. 

Now, since V,(T,f)= T,,(V,f)= V,f, we see that (IV,),,, is a 
resolvent on the Banach space H = T,B (Ti = T, implies that T,B = T,,B). 
Moreover (1.11) and (1.12) imply ]lJV,l],< 1 and lim,,+,IV,h=h for 
any h E H. 

Hence, Hille-Yosida theorem ([2, p. 26 11) shows that (IV,), >0 is the 
resolvent of a uniquely determined semi-group of contractions on H, say U, : 
Vn(Tof)=~~e-“Ut(T,,f)dt for any fEB. But VA(Tof) = 
lo”e -“‘T,(T,, f) dt. Therefore U, = T,,, and II Ttf II = II T,T,f II = II Wdll~ 
I] T,, f ]I < ]I f ]I implies that Tt is a contraction for any t > 0. 

(II) STRONG CONVERGENCE OF ABELIAN MEANS 

For early ergodic theorems related to the following, see Eberlein [2]. 

2.1. THEOREM. Let T (resp. (T,),,,) be a mean-bounded operator (resp. 
a mean-bounded semi-group) on a reflexive Banach space B. Let 
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VA = Cn>O (T”/(l + l)“+ ‘) (resp. V, = s: ewasTs ds), then AV, is strongly 
convergent as 1 --t 0 + and also does as A-+ + 00. 

Remark. If we put k = l/(i + 1) we see that 

(resp.k+O+) 

exists for any f E B. 

Proof. We recall (1.6) that “mean-bounded” means A-mean-bounded and 
if T is C-mean bounded T is also A-mean bounded (1.7). In both cases 
v= wd*>o is a bounded resolvent (1.4 and 1.7). Therefore (2.1) holds as 
bounded resolvents on a reflexive Banach space are strongly convergent. 
Indeed, since V is bounded the set X= {SE B ] lim AV, f exists as I + 0’ 
(resp. 1+ +co)} is closed and also weakly closed. Let fE B and A,, -+ 0 + 
(resp. 1, + +co) such that f * = w - lim 1, VA.f exists as I, -+ O+ (resp. 
1, + +co). 

The case 1+Ot. Let L > 0 and A,, a subsequence of Iz, such that 
h = w - lim,nJ+O+ 1,, V+AV,f exists. We have AV, f * = AV,(w - 
limln,,o+&,, VA,,f) = h. But, since V is bounded I,, Vn,,(l - AV,) = 
1, I V,(I - 1, I VA,,) converges strongly to 0 as A,,, + 0 +. Therefore f * - h = 0 
and for each A > 0, AV, f * =f *. Thus f * E X. Similarly AV,(I- I, VA”) = 
AV,“(I - AV,) converges strongly to 0 as A -+ Ot. Hence, for each 1, we 
havef-A,V,“fEX, and thusf-f*EX. Finallyf*+f-f*=fEXand 
X=B. 

The case I -+ +a~. (S ee also (1.12) in the proof of (1.10)). Since V is 
bounded AVAn,, VAIA, = (M,/(J - &))(V,” - VA) converges strongly to A,, VA, 
as I + +co . Therefore 1, VA. f E X for each 1, and f * E X. Now, again 
since V is bounded AV,(I - A,, VAn) = AV, - (AA,/@ - A,))(VAn - V,) = 
(I + &J(J. - A,)) J.V, - @/(A - 2,)) VA, converges strongly to 0 as 
A,,+ +co. Therefore lV,(f-f *) = 0 and AV,f = AV, f * for each A> 0. 
Sincef*EX,fEXandX=B. 

(III) TAUBERIAN THEOREMS 

We can easily extend the classical real tauberian theorems [5] to B-valued 
functions where B is a Banach lattice. 

The lattice property is needed only in the positive case and the fact that 
the space is complete is not used in the proofs. 

Although the following proofs contain classical arguments due to 
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Karamata [5] we prefer to give the full details: the case of a positive 
sequence is a very slight modification of [5] but the case of a bounded 
sequence must be proved differently. 

We state the discrete case. The continuous case is an immediate conse- 
quence of the discrete one. The limits are taken in the norm topology of B. 

3.1. THEOREM. Let (a,,) be a sequence of B such that Cz,oe-‘iai is 
defined for any ,I > 0 and that lim,,,, I CzO eeaiai exists, then 
lim ,~+,(l/n)CLO i a exists tf a,, > 0 (resp. a, is bounded) and the two 
limits are equal. 

3.2. The hypotheses of (3.1) are equivalent to CEO kiai is defined for 
any k: 0 < k < I and lim,,, (1 - k) JJ& kiai exists. (Put k = e-l.) 

Note that (3.1) holds if a,, > 0 for any n large enough. 

3.3. THEOREM. Let a: t + a(t) be a B-valued function defined on 
[0, +a~[, integrable on every finite interval and such that s: e-“a(t)dt 
exists for any 1 > 0 and that lim,,,+ 1 l? eeASa(s) ds exists. Then 
lim t-+mWO sh 4s) d s exists tf a is positive (resp. is bounded) and the two 
limits are equal. 

(Apply (3.1) with a, = ji’ ’ a(s) ds). 

Proofof3.1. Putl=l/n;wehave(l/n)C;=,ai=lC~oe-~ig(e-”i)ai, 
where g is the real function defined on the interval [0, l] by g(x) = 0 if 
O<x< l/e andg(x)= l/x if I/e<x< 1. 

The theorem will be proved if liml,,+ L CimO e-‘.‘g(e-*.‘) ai exists. 
We are going to prove 

)\y+ 1 f e-*‘g(e-‘.‘) ai = A 1: g(u) du (=A) (3.4) 
i=O 

whereA=lim,,o+~C~oe -Aiai (which exists by hypothesis). 
Let p be an integer. 
If lim n+o+kEZoe -*iai = A and if we replace L by (p + 1) A we obtain 

jiy+ (p + 1) ,I f e-*@+ ‘“ai = A or 
+ i=O 

,“y+ A 5 e-‘i(e-*i)p at = 
-t i=O 

--+Aj;updu. 

Therefore (3.4) holds if g(x) is replaced by xp and hence by any polynomial. 

The case a, > 0. Let E > 0, Define a real continuous function h on [0, I ] 
such that g < h and j: (h -g)(u) du < s/3: take h afftne on [l/e - 6, l/e], 
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with 6 > 0 small enough, and h = g otherwise. Let Q be a polynomial 
such that [h(x) - Q(x)1 < s/3 for any x: 0 <x < 1. Let P be the poly- 
nomial Q+E/~. Then g<h(Qts/3=P and Ii(P-g)(u)du= 
j: (P - Q)(u) du + l: (Q - h)(u) du t li (h -g)(u) du < E. In the same way 
we can find a polynomial p such that p < g and that si (g -p)(u) du < E. 

Then we have 

X=i f’ e-“‘p(e-“‘)ai-dj’g(u)du 
i=O 0 

< Y=l F e-“‘g(e-“‘)ai-AJ’g(u)du 
i=O 0 

<Z=A 5 e-“iP(e-“i)ai--A~lg(u)du 
i=O 0 

and thus 11 YI( < llXl[ + l[Zll by the lattice properties of B. 
But 

llxll < //A ,fo e”He-Y ai -A joldu) du // 

+ IIA II j; Mu> -p(u)> du 

7 
and since (3.4) holds for the polynomialp, we obtain hm,,,, llX[l < IIA II E. 7 

In the same way hm,,,, lIZI < IIA II E. E being arbitrary we have 
lim 3+o+ II YII = 0 or 

lim II f’ e-“‘g(e-“‘)ni=A,flg(u)du=A. 
AdO+ i=O 0 

This is (3.4). 

The case ai bounded. Let K = SUP,>, IlUilla 

Let E > 0, let h and Q as above. Since 

jiji+ l1,1 2 esA’h(eeA’) ai - 1 z. eeAiQ(evAi) (2111 
i=O 

<jiji+K bgoepAi)f=K$ 

and IJi (h - Q)(u) dul < st Ih - Q I (u) du < s/3 and since (3.4) holds for Q, 
(3.4) also holds for h. 

To show that (3.4) holds for g it then suffices to consider the numbers 
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111 X0 e- -Ar(h - g)(epAi) aill and lt (h -g)(u) du. The last one is 
dominated by ~13. On the other hand, by the construction of h, we have 

< KA c e-“h(e-&‘) 
i:il>l 

<K’(e-‘h(e-‘) + e-A3’[‘/A3]t”h(e-A(t”‘+“)) 

+CO 

+Kti =T 
i=[Z]+z 

e-*‘h(W 

<KA[I +e- A([l/A]+ “h(e-.,t([‘/A\l t “)I 

+Kil +m 
I 

e-Ath(e-A”) dt 
[l/Al+ 1 

(the construction of h shows that the function t + emA’h(emAt) is decreasing 
on [l/n, +a [> 

<KA[l +e- it([l/Alt l’h(e- 1(11/A]+ “)I + K;1 I+” e-A’h(e-A’) dt 
l/A 

=KA [(l Se- ~i([l/~l+‘)h(e-~‘[‘/~lt”)] + Kj;‘e h@) du 

<KA[(l +e- ~([l/~lt”h(e-~“‘/~lt”)] + f+ 

Hence 

7 <ty+KA(l +e-‘h(e-‘))+K+=K+. 
-+ 

Therefore, since (3.4) holds for h, (3.4) holds for g. 
The theorem is completely proved. 

3.5. In the non-positive case the conclusion of the tauberian theorem 
(3.1) fails if we replace the hypothesis u, bounded by a, C-mean-bounded 
(i.e., sup,,,(l/n) 11 CF=i aill < co) or a,/n bounded. 

Take a, such that S, = u, + .a. + a, = n if n is even and S, = -n if n is 
odd. So a,, = 4n - 1 and u2,,+ 1 = -4n - 1 or a, = 4(-l)“[n/2] - 1. Clearly 
u,Jn (resp. a,) is bounded (resp. C-mean-bounded) and S,jn diverges, but 
lim,, -( 1 - k) C,“& k”u, exists. 
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(IV) MEAN ERGODIC THEOREMS 

Let B be a reflexive Banach lattice (for example, B = L”(X,sT,p), 
l<p<co). 

Now, using Theorem (2.1) (see the remark) and Theorem (3.1) (or (3.2)) 
we immediately obtain the following mean ergodic theorems. 

4.1. THEOREM. Let T be a mean-bounded operator on a reflexive 
Banach lattice B. Let f E B be such that T”’ is positive for any n large 
enough (resp. sup,, 11 T”f 11 < +a~), then ((I + ... + T”-‘)/n)f converges in 
the norm topology as n + +a~ and T”f/n converges to 0. 

(Note that r/n = ((n + l)/n)(.S,+ ,/(n + 1)) - s,/n). 

4.2. THEOREM. Let T be a positive operator on a reflexive Banach 
lattice, then (I + .. . + T”-‘)/n is strongly convergent tf (and only tj) T is 
mean-bounded. 

4.3. COROLLARY. Let T be a positive mean-bounded operator on a 
reflexive Banach lattice B then strong - lim,,,(T”/n) = 0 and 
(+) B = Inv T 0 (Z - T)(B) 

(InvT={xEB/Tx=x}. Write f=f*+f-f* with f*= 
lim “+*((Z + ..a + T”-‘)/n)f). By (2.1), (+) holds even if T is not positive. 
Indeed Inv T = Inv IV, and (Z - T)(B) = (I - IV,)(B). 

4.4. COROLLARY. Let T, ..a Tk be commuting positive operators on a 
reflexive Banach lattice B then 

n,-1 
l -i- 

np- 1 

lim . . . 
ni++m n, ... n k j%O 

.i- Tjll L . . . Tjkkf exists for any f E B 
jk=O 

if and only if each Ti (i = 1 + +. k) is mean-bounded. 

Proof The general case can be proved in the same way as the particular 
one k= 2. 

Note that Ti (i = 1, 2) is mean-bounded if and only if 

(take nj = 1 forj # i). (4.5) 

So, the “only if’ part is due to Banach-Steinhaus theorem. 
Conversely suppose that each T, is mean-bounded, then B = 

Inv(1 - Ti) @ (I - T,)(B) (4.3). H ence the set A = {f + (g + h - T, h) - 
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T*(g + h - - T,h) with T, f =f and T2 g = g} is dense in B. It is easy to 
check that the limit exists for f (if Tlf=f), for g (if T, g = g), for h - T, h 
and thus for T,(g + h - T, h). Therefore the set of convergence X 
contains A. 

Since X is closed by (4.5), we have X= B. 

4.6. If T is power-bounded (i.e., supn 11 T” /I < +a~) but not necessarily 
positive the conclusion of (4.1) holds for any fE B. 

4.7. The mean ergodic theorem (4.2) fails for mean-bounded operators 
which are not necessarily positive. 

The following counterexample is due to I. Assani. 
Take B = R* and T = ( 0’ ?!I ). Then, one has 

T” = 
( 

(-1)” (-l)n+l 2n 
0 ) (-1)” * 

Clearly T’/n % 0 but 

sup II I+...+T”-’ <+03 

n<1 n II 
net4 

We can note that the abelian and the Cesaro means of T”f/n converge in 
norm to 0 for any mean-bounded operator. Indeed, if T is C-mean-bounded, 
one has 

Z+ . . . + T”-’ 
<+m 

n 
AEN 

and thus 
n 

sup 
II II 

T <+co. 
n>l n 
?lEN 

Now for any k: 0 < k < 1, we see that 

j$ k”y= ~,;(Kz+r~.f) 

=-kS, +S, (k-T) +S, (q-T) + s-e. 
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Therefore (1.2) yields 

ll~,~n~ll~M(k+Z(k-~)+3(r-~)+...) 

=M 2k+k+$+ 
( 

. . . +; . . . 
1 

and 

Thus (3.2) shows that the Cesaro means of T”f/n converge to 0. 
Also note that if B is reflexive and T is C-mean-bounded then strong - 

lim X++,(,S,/n) exists if (and only if) strong - lim,,+,(Tn/n) = 0 (same 
classical arguments as those used in the proof of: sup, >0 ljil VA (1 < +co * 
strong - lim,,,+ IV, exists (2.1)). 

4.8. The continuous case. Let T= (T,),,, be strongly continuous semi- 
group of B-positive operators. Assume that T is mean-bounded. 

Although we have 

n l”-’ S,f n+ 1 1 -- x Tj,Wt< n n + 1 n i=O -n+l g %%.f 
J-0 

with n= [t] and fEB+, we cannot apply the discrete result (4.1): It does 
not appear that T, is mean-bounded. 

Therefore, we use (2.1) and (3.3) to obtain the 

4.9. THEOREM. Let T= (T,),,, be a mean-bounded strongly continuous 
semi-group of linear operators on a reflexive Banach lattice B. 

Let f E B be such Ttf > 0 for any t large enough (resp. 
SUP~,~ II Ttf II < +a~), then lim,,+,(S,f/t) exists. 

4.10. THEOREM. Let T= (Tt)l>o be a strongly continuous semi-group of 
positive operators on a reflexive Banach lattice B. lim,,, ,(S, f/t) exists for 
each f E B if (and only if) T is mean-bounded. 

4.11. The local case. If T= (T,),,, is strongly continuous at t = 0 we 
immediately see that strong - lim, +. +(SJt) = To. 

Note that if B is reflexive, then T is strongly continuous at 1= 0 (i.e., there 
exists To such that To = strong - limt_,O+ TJ if and only if T is locally 
bounded (i.e., SUP~<~< 1 )I TJ] < +co). Indeed the set X= {f E B/lim,,,+ Ttf 
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exists} is closed and also weakly closed. Let fE B and t, + O+ such that 
h = w - lim,n+O+ T,,f exists. Since T,,fE X for each t,, one has h E X. But, 
since T is continuous at t > 0, we have T,h = T,f: Therefore fE X and 
X=B. 

Now, suppose that T is not necessarily continuous at t = 0. We will say 
that T is locally mean-bounded if T is strongly integrable at 0 (i.e., 
S, f = lim,,, SE T, f ds exists for each fE B and t > 0) and if 
supo<t< 1 IlS&ll < +co* 

We obtain the following result which also holds for n-parameters semi- 
groups on a reflexive Banach space B: 

4.12. THEOREM. Strong - lim, +. +(SJt) exists if and only if T is locally 
mean-bounded. 

Proof: The “only if’ part is clear. 
Conversely, if T is locally mean-bounded the set X = {fE B/ 

lim,,,+(S,f/t) exists} is closed and also weakly closed. For any a > 0 and 
fEB, we can show that T,S,f=S,,,f-S,f and lim,,,+T,(S,f)=S,f: 
This implies that lim,,, +( l/t) S,(S, f) = S,J Thus (l/a) S, f E X for any 
a > 0. Now, let f E B and t, -+ O+ such that h = w - lim,n,o+(l/t,) S,= f 
exists. Since X is weakly closed, h E X. But, for any s > 0, we have 

T, h = w - $II+ ; T&f) 
n 

=w-$“++S,~(T,/)=T,~ and S,f=S,h. 
n 

Therefore f E X and X = B. 

(V) POINTWISE CONVERGENCE ON A DENSE SUBSET OF Lp( 1 ( p ( a) 

Now, suppose that B = L,(X,ST,,U) (1 <p < co), the usual reflexive 
Banach lattice. Suppose that T (resp. (T,),,,) is a mean-bounded positive 
operator (resp. semi-group of positive operators) on L,. Then the abelian 
means LV, = A CpEo (r”fl(A + l)n+l) (resp. Av, = A jr e-*‘T, f ds) are 
pointwisely convergent as I -i 0 + (resp. A+ +co) p-a.e. on X for any f 
belonging to a dense subset of B. 

Indeed B = L, = Inv V @ (Z - a V,)(B), where Inv V = {f E B/f - 
av, f = 0). Note that Inv V and (Z - aV,)(B) do not depend of the 
particular a chosen: 
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(I-pv,)-(r-av,)=aV,-Pv,=a(V,-y,)+(a-P)V, 

= -a(a -P) v, vfl+ (a -p> Y. 

= (a - p) V,(Z - av,> for any a, B > 0. 

Also note that (Z - T)(B) = (Z - a V,)(B) and Inv T = Inv K It is trivia1 
that lim ,,,+nV,f=f a.e. on X for any fE Inv V. On the other hand, if 
f = v- aVJ(g> f or some g E L, and a > 0 then JV,f= aV,(Z - aV,)g = 
nV,(Z-IV,)(g)=LV,g-J’V,g’ withg’=Vag. 

We have lim n+o+lV, g = 0 a.e. on X (since V, g E L,, V, g < + 00 a.e.). 
If n = [l/n], we also have 

- 
,‘llf+ nv, g’ + 6 !‘a n’v, 1 g’ I< lim 

(n+ 1)2 1 
+ Ii++02 n2 (n + 1)” ~l/ot+l) I g’l. 

Now, since X=suPg>O])aV,]], < +co (1.7), we obtain 

Therefore 

and 

Finally 

fKP II g’ll; nTo (+)’ < +co. 

n;@ (n+J2 ( Vllcn+,) 1 g’/)’ < $03 a.e. on X 

““T, (n : 1)’ ~*/ol+ 1) I g’ I = 0 a.e. on X. 

,“y+ A2 V, g’ = 0 a.e. on X + 

and 

,“T+ LV,f= 0 -P a-e. on X iff= (Z - a V,)( g). 

Thus, lirn,,,, JV,f exists a.e. on X for any f belonging to the dense 
subset Inv V@ (Z - au,)@). 

Note that we have used above a well-known remark due to Akcoglu (see 
[3, p. 3701). 
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(VI) ON AN EXAMPLE OF DERRIENIC AND LIN [l] 

In [ 11, Derrienic and Lin construct an example of L,(N)-positive operator 
induced by a transformation and which verifies 

sn sup - II II <3 
n>1 n I 
nEN 

and supn (1 T”II, = co. Since 11 T/l, < 1, we also have 

s 
sup --K 

II II <3 
n>1 n P 
neN 

(for any p: 1 <p < co) and the construction of T shows that 
SUPn II T” OP a (2 1 k ilp for any k > 1 and any p: 1 <p c co. Therefore we 
obtain sup,, (I T” lip = co for any p: 1 <p < co with T positive and mean- 
bounded on L,(N). 

Such an example cannot exist in a finite dimensional space because any 
mean-bounded positive matrix is necessarily power-bounded. 

If 19 is the transformation on N given in the previous example, define 8,, 
t>O on N x [0, l[ by e,(x,y)=(Bkx,y+t-k), where k= [y+t]; the 
semi-group (T,),,, defined by Ttf =f 0 Br verifies supl>,, IIS,/tlJ, < 3 and 
supt>o IIT,/Ip = a~ (1 <P < a). 
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