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The purpose of this paper is to calculate the measure for which a sequence 
of polynomials with a constant recursion formula is orthogonal. The answer 
is well known in many special cases, since these sequences include the 
Chebychev polynomials of the first and second kinds. Many other special 
cases are discussed in 121. Our method uses nothing more than the classical 
case of Chebychev polynomials together with the converse to the classical 
translation theorem of Christoffel. The continuous part of the measure (there 
may be one or two mass points) is given as a quotient-the numerator from 
the Chebychev case and the denominator given by the Christoffel theorem. 

Our interest stems from the fact that a special case of these polynomials, 
introduced in [3] for the study of harmonic analysis on free groups, has 
turned out to be very useful and interesting. The works [4,6,8, 1 l] used [3] 
to further develop the study of radial functions on discrete groups. (The 
polynomials had appeared in a different but related context earlier [ 1, 91.) 
The measure corresponding to the polynomials is the Plancherel measure of 
the radial functions on the group. In the study of other interesting groups 
(e.g., SL(2, Z)), other special cases likewise yield interesting information 
16, 111. 

All of the results proved previously about such Plancherel measures now 
follow as special cases of the general theorem proved here. In addition, we 
shall prove a generalization of the results of [7] in Section 4. Section 4, 
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which is the only section to discuss groups, depends only on Theorem 3, and 
is otherwise independent of the work in the rest of the paper. 

In its most general form we study the following sequence of polynomials: 

and 
PO(X) = c> P1(X)=X-a, (*> 

P,+l(x)=(x-a)P,(x)--P,-,(x) for n>l, 

where a and a are arbitrary real numbers and b and c > 0. 
Given (*) the Favard theorem [5] says that there exists a compact positive 

measure y on R, unique up to constant multiple, such that 
(,p,(x)p,(x) L+(X) > 0 if n = m and is 0 otherwise. It is this measure we 
seek. We shall refer to ,u as the measure induced by the p,,. 

In discussing the polynomials, we find it convenient to assume that p,(x) 
has 1 or 2” as leading coefIicient for n > 0. Hence they are not necessarily 
orthonormal. Thus we do not have to distinguish between {p,) and {c,pn} 
or between ,u and cp, where c > 0 and the c, are constants. 

Notation. (1) (a>+ = (a + l4P 
(2) Since we never manipulate nonreal numbers we take 6 to mean 

a throughout. 
(3) 6(p) is the unit measure concentrated at the point p. 

We shall prove 

THEOREM 3. Assume {p,) satisfies (*). Let f(x) = (1 - c)(x - a)’ t 
(c - 2)(a - a)(x - a) + (a - a)* + bc*. Then the continuous part of the 
measure dp induced by the p, is given by 

dp, = v’4b - (x-a)’ dx 
7?f (xl 

and the discrete part dpd is 0 except possibly in the following two cases: 

Case 1. f has two real roots y, # y,. Then 

&,=4&y,) +A,~Y,), 

where 

?Lj = 
2 

! 

bc _ IYi--a/ 

\/(a-a)*+4b(c-1) Iyi-al c i +‘ 

Case 2. c = 1 and a # a so that f has one root y = a + bc2/(a - a). Then 
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1. CLASSICAL RESULTS 

We begin by recalling the Chebychev polynomials of the second kind, 
U,(x), given by U,(cos 0) = sin(n + 1) B/sin 8. Trigonometric sum formulas 
yield U,(x) = 1, U,(x) = 2x, and U, + i(x) = 2xU,(x) - U, _ i(x). The 
substitution x = cos 8, 0 E [0, K] yields easily that the U,(x) are actually 
orthonormal with respect to (JT-S;f/n) dx. 

Note. [lo] is a reference for everything in this section. 
To describe the Christoffel theorem, we first introduce some notation. 

Assume we are given a sequence of polynomials {p,(x)} with deg p,, = n. Let 
f(x) be a polynomial of degree t with distinct roots x1 ,..., x,. Notice that for 
any n, k(x,) =det((p,+i(xj)))i,jZ,,,,.,, is a polynomial in x, of degree 
<(n + t), and k(xi) = 0 for i = I,..., t. Thus k(t)/f(t) is a polynomial of 
degree <n. 

Iff(x) has multiple roots we change the construction of k(x) as follows: 
assume that x, = ...= x,+, is a root of multiplicity (m + 1). Then for 
n < r < n + t we replace the redundant p,(x,), p,(x,+ i), p,(x,+,) with p,(x,), 
p~(x,),...,p~““(x,). Thus k(x) has the property that k(x,) = 
k/(x,) = ...= k’“‘(x,) = 0, whencef(x) divides k(x). We still have k(x)/(x) 
a polynomial of degree &. We set q,(x) = c,(k(x)/f(x)), where c, # 0 is a 
constant chosen to give qJx) a convenient leading coefficient (1 or 2” as 
discussed earlier). 

With the construction as above we write Tf{p,} = {qn} and say that the q, 
are the Christoffel translates of the p,(x) under f(x). If f is linear with the 
root r we write TcI, for T,. The following is very well-known [ 10, p. 301: 

THEOREM A (Christoffel). If (p,(x)} d in uces the measure dp(x) andf(x) 
is a polynomial which is >O on the support of dp, then T,{p,} induces the 
measure f(x) dp(x). 

Notice that the support of dp(x) is the support off(x) dp(x) together with 
a subset of the zeroes off(x). Thus we get the following corollary-converse 
which is the direction in which we use the Christoffel theorem. 

THEOREM B. Assume {q,,} is a set of orthogonal polynomials inducing 
the measure dv(x) and f(x) is a polynomial >O on the support of dv. If 
{q,} = Tf{p,} then the {p,,} induce the measure dp(x) = (l/j-(x)) dv(x) + 

C.f(W,~~~d &6(r), where the 1, are nonnegative constants which can be 
calculated by using the fact that J^p,(x) dp(x) = 0 for n > 1. 

Remarks. (1) If f is a constant, T, will be assumed to be the identity. 
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(2) The construction f can be defined even if the (~“1 are not 
orthogonal polynomials or iff is an arbitrary complex polynomial. Of course 
it may then make no sense to talk about an induced measure. 

2. COMPOSITION OF CHRISTOFFEL TRANSLATES 

THEOREM 1. If f and g are polynomials, then Tf 0 T, = T,, . 

ProoJ Let {p,} be a sequence of polynomials orthogonal with respect to 
the compact measure p(x). Let x, ,..., xI, y, ,..., y, be real numbers which are 
all less than any element in the support of ,u. Let f(x) = ni=i (x -xi), 
g(x) = II& 1 (X - Yj>* Then T,{ P,, 1 induces g(x) d&x) and T,{ T,{ pn ] } 
induces f(x) g(x) dp(x), but so does T,,{ p,}. Hence (Tf 0 T,){p,} = 7’,,{ p,}. 
Now the mth polynomial of (T,o T,){p,} and Tf8{p,} is a polynomial in x 
whose coefficients are polynomials in x, ,..., x,, y, ,..., ys. Since they are equal 
for all x 1,**., x,, Yl,‘**, ys real and small, they are equal as polynomials in 
Xl ,*-*, x,, Y I ,*a., y, and hence are equal for all values of x ,,..., x,, y ,,..., y,, 
hence for all polynomials f and g. 

This proves that T,o T, = T, when applied to sequences which are 
orthogonal on some interval, but since T,o T, and T,, are both purely finite 
algebraic constuctions, the fact that they are equal on all sets of orthogonal 
polynomials means that they are equal as constructions, hence on all sets of 
polynomials. 

Remark. In fact the construction T, can be applied to any sequence of 
C” functions { pn] and then T,. o T, = T,, (up to constant multiples, of 
course). 

3. PROOF OF THE MAIN THEOREM 

Let us first consider the following sequence: S(c,p): PO(x) = c > 0, 
PI(x) = 2x - 2/I, and P,+ ,(x) = 2xP,(x) - P,- ,(x). 

If p,(x) = 2-“P,(x) then {p,(x)} is the sequence (*) with a = 0, a = j?, 
and b = 4. Notice that S(1, 0) = {U,(x)}, the Chebychev polynomials of the 
second kind. Let f(x) = (1 - c) x2 + (c - 2) ,f3x + (/I’ + (c2/4)). 

PROPOSITION 1. T&W, P> = 1 u&)1 and so the measure induced by 
S(c,/3) is given by 

dp=\/i--x’dx+ c 
ax) 

II 6(y) Y . 
yarealr0ot 

Proof. Let y be a (not necessarily real) root off(x) and r = (2y - 2p)/c. 
Then r is a root of g(x) = (1 - c) x2 - ~/IX + 1. By induction we see that 
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P,(y) = r”c. A straightforward calculation then shows that To,) S(c, p) z 
S(l, r(1 - c)/2). (Remember that To,, is defined as TX-,.) In particular, if p 
is some number and j=b + (l/4&, then T,,,S(l,p^) = S(l, 0) = {U,(x)} 
which induces the measures dz/rr dx. Thus applying Theorem B, we 
see that S(l,& induces the measure 

Since this completes the case c = 1, we now take c # 1. Let p^ = r(1 - c)/2, 
9 = /? t (l/4& = r( 1 - c)/2 + 1/2r( 1 - c), and r^ = (29 - 2&/c = l/r( 1 - c). 
Now ~,,,S(c,p) = S(l,& and T,,-,S(l,/?) = S(l,O). It is easy to show that j 
is the second root of j(x) (and r” is the second root of g(x)). Thus by 
Theorem 1, TrcX, = T,;, To,) g iving us TfcX, S(c, /I) = S( 1, 0), proving the 
proposition. 

We are left now with the computation of the discrete part of the measure. 
(In particular, we are done in the case that there are no real roots, i.e., if 
p* t c - 1 < 0.) 

As in the proof of Proposition 1, let us first do the case S(l,o). Thus the 
measure is 

We calculate 1 by using the fact that (pi(x) db = 0. Then using the formulae 

for ) a ) > 1, where E = sign(a), we find that 

x = (2 IpI - &)+= (j+)+> 

i = 2j - 2p^. Thus 

PROPOSITION 2. S(l,p^) induces the measure 

dp=-dx+(l F) 
XIX-81 

m- I I &yn)~ wherey^=b+F 
+ 4P 

and ?=2f-2/I?. 
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Note. Dividing by I/?/ yields the measure 

For lpi < f the discrete part vanishes and as B + 0, J(x) --$ constant. Hence 
even at p^ = 0 we get the correct expression. We continue, as before, to 
study the case of S(c, /3), c # 1, letting r, y, p, ?, and ,G be as in the proof of 
Proposition 1. Since T,,,S(c, /I) = S(1, p) we get, again by Theorem B, that 
S(c, /3) induces 

j//r? 
71 lx -YllX -?I 

dx + ((lllr”l) - Ir”l)+ S(P) + ;lqy) 
IY-y”I 

(Of course we have to assume that y # y^, i.e., p’ # 1 - c.) But y was 
originally chosen simply as a root off(x), hence y and y^ play completely 
symmetric roles. Thus 

A = W/H - b-l>+ 
Iv-v”1 . 

Note that if ) rl > 1 then A= 0. Dividing the measure by (1 - c) we get 

Let us observe finally that the discrete part is 0 in the case of y a root of 
multiplicity 2. This is the case that 0 < p2 = 1 - c < 1. So let us fix c, 
0 < c < 1, and observe that for p near f m, r is approximately 

P *fi -- 
l-c l-c =& 

so j r( > 1 and the discrete part is always 0 for /3 in a neghborhood of 
*fi. Thus by continuity of all the data and the process, dpd = 0 at 
/I’ = 1 - c. Thus we get 

THEOREM 2. S(c, /?) induces the measure whose continuous part is given 
by 

dp c = - dx 
u- (xl 
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for f(x) = (1 - c) x2 + (c - 2) /3x + (J?’ + c*/4) and whose discrete part 
vanishes unless 

(a) f has two real distinct roots, where 

d/b = d& rOOtSy ,2Y : 2/3I - C( 
12Y -2PI 

c i + d(y)y Or 

(b) c = 1 whence dpd = (2 - ( 1/2p2))+ 6(y), where f( y) = 0. 

Now finally we make a simple change of variables to get the general case. 
Assume {p.(x)} satisfies (*). Then let 

P,(x) = - ( 1 &’ Pn(2fi x + a). 

Then it is easy to show that {P,(x)) = S(c, /I), where /3 = (a - a)/2@. If 
{P,(x)} induces some measure dp(x), then S(c,/3) induces dp(2fiz + a) 
which we can calculate by Theorem 2. It has continuous part 

71((1-c)2*+(c-z)/3z+~*+(c2/4)}’ 

We make the substitution z = (x - a)/2fi, i.e., x = 2fi z + a. This gives 
us 

dclc = d4b - (x - a)’ dx 

v-(x) ’ 

where f(x) = (1 - c)(x - a)* + (c - 2)(a - a)(x - a) + (a -a)” + bc*. 
Similarly, to calculate the discrete part dpd we make the appropriate 
substitutions to get 

I= 
1 

d(a-a)*+4b(c-1) + 

and dpd = CrealrootsA U(y) in the case of 2 different roots and 

in the case of c = 1. This completes the proof of our main theorem, 
Theorem 3, as stated in the introduction. 

580/59/2-3 



182 COHENANDTRENHOLME 

4. APPLICATIONS TO HARMONIC ANALYSIS ON DISCRETE GROUPS 

In this section we will show how to compute the Plancherel measure of 
radial elements in the reduced C*-algebra, C*(G), of certain discrete 
groups G. 

We consider a discrete group G on which some length function has been 
defined. The identity element is assumed to be the only element of length 0 
and the length is assumed invariant under inversion. (This is equivalent to 
choosing a finite set of generators.) We consider the C*-algebra C*(G) as 
operators on L’(G) under the action of convolution. Let X, be the charac- 
teristic function of the set of elements of length n. X, is self-adjoint. Let 
f: C*(G) -+ C assign to any function its value at the identity and consider the 
functional F which assigns to any polynomial p(x) the valuef(p(X,)). This 
functional yields a positive measure dp which we call the Plancherel measure 
of the group with respect to the given set of generators. 

Notice that X,, * X,,, = 0 at the identity if n # m and equals the number of 
elements of length n if n = m. Assume that we can find a sequence of 
polynomials such that X, =p,(X,). Then F(p,(x)p,(x)) = 0 for m # n and 
is positive for m = n. So the p,(x) are exactly the orthogonal polynomials of 
the Plancherel measure dp. In the case of discrete groups, this measure plays 
a very special role, and its evaluation has proved to be a very important tool 
in the study of the harmonic analysis of G. [6], for example, contains a very 
thorough account of the uses of radial functions. 

A well-studied example is that of the free group of t generators (cf. [ 1, 3, 
6, 8, 91). It is easily shown that the sequence of polynomials described above 
is given by p,,(x) = 1, p,(x) =x, p*(x) =x2 - 2t, and p,,+ 1(x) = xp,(x) - 
(2t - l)p,-i(x). Without affecting the measure, we can change the first 
polynomial to pa(x) = 2t/(2t - 1). Then (*) is satisfied for ar = a = 0, 
b = 2t - 1, and c = 2r/(2t - 1). Applying Theorem 3 gives us the measure 

d4(2t - 1) -x2 dx 
7?(2t-x2) * 

This result appears in several earlier articles, calculated by various means. 
Now let G be the free product G, * G, * . . .xG, of k groups, each of the 

same finite order n. No assumption of commutativity is made nor are the 
groups assumed to be isomorphic to one another. Each element other than 
the identity can be written uniquely as g = g, . . . g,, where each gi is in one 
of the Gj with no two consecutive g, in the same Gj. We define the length of 
g, ) gl, to be s. Then X,, = 1 and X, = Cg+,,gEGig. We wish to study the X, 
from the above point of view. Let Gi = Gi - {I}. Let Yi = CgCG;g. Thus 
X, = xi Yi, and X,,, = Cijtij+l Yi, Yi, ... Yi,. 
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Notice that for g E G,., g(Yi + 1) = Yi t 1. Thus CpEc;gYi = Cc;Yi + 
(n - 1) -g = (n - 2)Yi + (n - 1). That is, Ti Yi = (n - 2) Yi t (n - 1). 
This leads to the following formulas: XT = Ci+j YiYj t xi Y: = 
X,tC,(n-2)Y,+k(n-l)tX,=X,t(n-l)X,+k(n-1). 

Let X,,i = xi,& Yi, ‘*’ yi,, Xmzxm,i t yixm-l,iY xm=Ci yixm-l,i9 
and Ci X,,i = (k - 1) X, * !O YiX, = YiXm,i + Y:Xm- r,i = YiXm,i + (n - 2) 
yixm-l.i + (n - 1)X,,,+. Thus X,X, = xi YiX, = 2 Y,X, = C YiX,,,,i 
+ (n-2) Yixm-,,i + (n- 1)x,-*,i = xm+, + (n-2)X, t (n-1) 

(k-1)X,-,. This is for m>2. 
We then have the equations X, = 1, X, =X,, X, = Xf - (n - 2) 

XI-k(n-l), and for m>2, X,+, =X,X,-(n-2)X,-(k-1) 
(n- 1)X,-,. Let po=k/(k- l), p,(x)=x, and for m> 1 let pm+,(x)= 
(X - (n - 2))p,(x) - (k - l)(n - l)p,,-,(x). Then for i > 1, pi(X,) =Xi. 
These are the same polynomials that appear in [7], which is a study of the 
case G, = G, = .. .= G,, a cyclic group of order n. 

So we can apply Theorem 3, with a = 0, a = (n - 2), b = (k - l)(n - l), 
and c = k/(k - 1). We get 

f(x)= (k _ 1) A (k t x)(k(n - 1) -x) 

which has the real roots y, = -k and y2 = k(n - 1). This puts us in Case 1 of 
Theorem 3 and we see that 2, always =0 and I, = 0 if k > n. Precisely, we 
have the following: 

THEOREM 4. The Plancherel measure of X, is 

(k - 1) d(4k - l)(n - 1) - (x - n + 2)’ dx + 2(n - k)+ 6(-k) 
n(k + x)(k(n - 1) -x> n 

The continuous spectrum is [n - 2 - Y, n - 2 + r], where r = 
2d(k - l)(n - 1). 

This study can be extended to one other case by a trick shown to us by 
Massimo Picardello: Let N be a finite group of order n and K a finite group 
of order k. The H = N * K is an infinite group. Let p: H + K be the 
projection and let G = kerp. Then G is the free product of the k groups, 
hNh -I, hK, each group of order n. So the previous analysis may be applied 
to G. Since G is normal in H of index k, the harmonic analysis on G is 
more-or-less that on H. 

As in [6] this then provides the means for getting for G a principal series 
and a complementary series of representations, and leads to a great deal of 
information about the harmonic analysis of such groups. 
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