
Physics Letters B 747 (2015) 410–416

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Triangle singularities and XYZ quarkonium peaks

Adam P. Szczepaniak a,b,c,∗
a Department of Physics, Indiana University, Bloomington, IN 47405, USA
b Theory Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
c Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2015
Received in revised form 22 April 2015
Accepted 13 June 2015
Available online 16 June 2015
Editor: D.F. Geesaman

We discuss analytical properties of partial waves derived from projection of a 4-legged amplitude with 
crossed-channel exchanges in the kinematic region of the direct channel that corresponds to the XYZ 
peaks in charmonium and bottomonium. We show that in general partial waves can develop anomalous 
branch points in the vicinity of the direct channel physical region. We show that this effect only occurs 
if masses of resonances in the crossed channel are in a specific, narrow range. We estimate the size of 
threshold enhancements originating from these anomalous singularities in reactions where the Zc(3900)

and the Zb(10610) peaks have been observed.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

There is significant interest in the physics of heavy quarkonia 
stimulated by discoveries of narrow peaks in the spectrum. Such 
peaks may indicate existence of new hadrons. A recent review of 
the experimental situation and of the various theoretical models 
can be found, for example, in [1]. While the quark model pro-
vides a remarkably accurate description of the heavy quarkonium 
spectrum, these new peaks, also referred to as the XYZ states, 
appear at masses that do not, in a natural way, derive from the 
quark model [2]. Several of these peaks have been observed in in-
variant mass distributions of meson pairs that contain one heavy 
quarkonium, e.g. the J/ψ or the ϒ , and one light meson. The pos-
sibility that these new hadrons are therefore multi-quark bound 
states has been explored, for example in [3,4]. The peaks appear 
near thresholds for production of meson pairs with open flavor, 
e.g. D D̄∗ or B B̄∗ , and for this reason it has also been suggested 
that binding between the two flavored mesons may be responsible 
for generating some of the XYZ’s [5–8]. It should be recognized, 
however, that distinction between multi-quark and hadron bound 
states is complicated [9] and in any case requires sophisticated am-
plitude analysis and precise data [10]. It has also been suggested 
[11] and studied in [12–18] that coupling to nearby open chan-
nels may produce peaks even without presence of new hadrons. 
In the mathematical language of amplitude analysis the analogous 
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statement would be that threshold cusp may be enhanced not 
only by a nearby pole but by a carefully arranged set of branch 
points, also referred to as anomalous thresholds. Amplitude poles 
correspond to physical particles (stable or unstable) while cuts rep-
resent the effect of “forces”, i.e. exchanges of known particles in 
the crossed-channels. If the XYZ peaks were due to the latter it 
could potentially weaken the case for new hadrons. To address this 
issue it is therefore important to perform a systematic analysis of 
the “forces” and the associated singularities.

2. The model

We consider a decay of a heavy object of mass M , hereafter re-
ferred to as the M particle, to a quasi stable heavy state of mass 
M ′ and a pair of degenerate, light mesons of mass μ. We are in-
terested in the energy dependence of the low spin partial waves, 
in particular the S-waves, in the M ′μ channel. In this section we 
discuss a generic case and in the section that follows we con-
sider threshold behavior in J/ππ and ϒ(1S)π production from 
Y (4260) → J/ψππ [19–21] and ϒ(5S) → ϒ(1S)ππ [22,23] de-
cays, respectively.

The reaction of interest is M(p1) → M ′(p3) + μ(p2) + μ(p4)

with pi referring to the 4-vectors. Ignoring spin, the reaction am-
plitude, A(s, t) is a scalar function of two independent Lorentz in-
variant Mandelstam variables, which we choose as, s = (p1 − p2)

2

and t = (p1 − p3)
2. They correspond to the invariant mass squared 

of the M ′(p3)μ(p4) pair and momentum transfer squared between 
the two heavy mesons, respectively. The amplitude in the kinemat-
ics of the decay region, s > (M ′ + μ)2, t > 4μ2 can be obtained 
by analytical continuation in t of the amplitude describing the 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/81104858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2015.06.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:aszczepa@indiana.edu
http://dx.doi.org/10.1016/j.physletb.2015.06.029
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.06.029&domain=pdf


A.P. Szczepaniak / Physics Letters B 747 (2015) 410–416 411
s-channel scattering process, M(p1) + μ(−p2) → M ′(p3) + μ(p4). 
It is the t-channel singularities of the latter that are responsible 
for anomalous singularities of the s-channel partial waves. Simi-
lar analysis applies to the u-channel where u = (p1 − p4)

2. Bose 
symmetry requires the amplitude to be s ↔ u symmetric.

The s-channel partial waves, Al(s), describe production of the 
M ′μ system in a state of fixed angular momentum, l. Ignoring spin 
of the external particles, partial waves are the coefficients in ex-
pansion of A(s, t) in a series of Legendre polynomials,

A(s, t) = 16π

∞∑
l=0

(2l + 1)Al(s)Pl(zs). (1)

The argument of the rotational functions, zs = zs(s, t), is the co-
sine of the scattering angle in the center of mass frame of the 
s-channel. When considered as complex functions of the invari-
ant mass squared, s, the partial waves Al(s) have branch points 
at all s-channel production thresholds. The cuts associated with 
these branch points are located on the positive real s axis and uni-
tarity determines the discontinuity across the cuts. These cuts are 
referred to as the right hand cuts. Through the partial wave pro-
jection,

Al(s) = 1

32π

1∫

−1

dzs Pl(zs)A(s, t), (2)

threshold singularities of A(s, t) in the t and the u channel also 
lead to branch points in the complex s plane. The associated cuts 
are generically referred to as the left hand cuts, even though, as 
it will be the case here, they don’t always lie on the negative 
real s-axis. In the following we consider only the S-waves (l = 0) 
and drop the angular momentum subscript on the partial waves. 
Higher partial waves are suppressed at thresholds due to the an-
gular momentum barrier factors.

In the cases considered here, 
√

s is of the order of several GeV 
and there are several open channels contributing to the right hand 
side discontinuity. As long as their thresholds are far from the 
region of interest they will not lead to rapid variations in s. It 
is therefore sufficient to focus on the channels, which open near 
the XYZ production thresholds. For simplicity we assume that the 
relevant channel consists of two identical mesons with mass m. 
In the cases considered in the following section these will corre-
spond to the B B̄∗ or the D D̄∗ state. Here, for simplicity, we ignore 
the mass difference between the pseudoscalar and vector mesons. 
We assume that masses satisfy the following relation, M � 2m and 
2m > M ′ , i.e. we take mass of the decaying/produced quarkonium 
to be slightly above/below the open flavor threshold. The mass of 
the light particle, μ is much smaller compared to masses of the 
other mesons that all contain heavy quarks, μ << m, M, M ′ , so 
in the following we take μ = 0. For μ �= 0 the amplitude has a 
slightly different analytical structure. The difference, however, does 
not affect the behavior near the 2m threshold.

The contribution of the 2m channel to the discontinuity of the 
M + μ → M ′ + μ S-wave amplitude, is given by

�A(s) = B∗(s)ρ(s)C(s)θ(s − 4m2). (3)

Here B(s) and C(s) are the S-wave projections of the amplitudes 
B(s, t(s, zs)) and C(s, t(s, zs)) describing the reactions, M ′(p3) +
μ(p4) → m(q1) + m(q2) and M(p1) + μ(−p2) → m(q1) + m(q2), 
respectively. The phase space factor ρ(s) is given by ρ(s) =√

1 − 4m2/s. It should be noted that amplitude discontinuity, 
�A(s) = (A(s + iε) − A(s − iε))/2i is in general a complex func-
tion of s and not equal to Im A(s), as sometimes assumed [11,17]. 
This has important consequences when considering phase of the 
amplitude, which is often used to discriminate between resonant 
and non-resonant behaviors.

We reconstruct A(s) from its discontinuity approximated by 
Eq. (3) since, in the region of interest, the difference between 
�A(s) and the true discontinuity is expected to be a smooth func-
tion of s,

A(s) = 1

π

∫
str

ds′ B∗(s′)ρ(s′)C(s′)
s′ − s

. (4)

where str = 4m2. If A(s) is to have a strong dependence on s, the 
numerator under the integral has to vary rapidly with s. Rapid 
variations are determined by nearby singularities. As discussed 
above, if direct channel bound states are excluded, the only physi-
cally allowed singularities of partial waves are branch points. Thus 
in order for the integral in Eq. (4) to develop a singularity the 
branch points of the numerator have to either appear at the end-
point of the integration region or pinch the integration contour.

We note here, that in [17] the amplitudes B(s) and C(s) were 
chosen proportional to an exponential, exp(−(s − str)/s0) with 
s0 = O (1 GeV2). Such behavior was motivated by a quark model. 
Non-relativistic quark model calculations often involve gaussian 
wave functions and one could imagine that a calculation, in which 
the scattering amplitude is derived from a diagram involving quark 
exchanges between interacting mesons, would produce energy de-
pendence that falls off exponentially. Such a model, at best, is valid 
for non-relativistic relative momenta and has incorrect crossing-
properties that prevents it from being used in a dispersive analysis. 
A dispersive analysis requires that the amplitudes vanish at infin-
ity in all directions in the complex s-plane or, in the worst case, 
grow polynomially. Instead, the amplitudes in [17] have an essen-
tial singularity at infinity. Such a singularity is unphysical, it vio-
lates causality, which requires the amplitudes to be polynomially 
bound. If a proper Lorentz covariant quark model was constructed 
the quark exchange mechanism would correspond to u-channel 
exchanges that do not overlap with exchanges of normal, i.e.
quark–antiquark, mesons. Such “forces” lead to s-channel partial 
wave amplitude singularities located far to the left from s-channel 
unitary cuts and as such do not produce enhancements in the 
s-channel physical region. For example the form exp(−(s − str)/s0)

might be replaced by (str + s0)/(s + s0). The latter vanishes in all 
directions at infinity and with s0 > 0 it is often used to approx-
imate singularities located far away to the left from the physical 
region. When such a form factor is used in Eq. (4) (in place of the 
B and C ) it results in a normal, not enhanced threshold cusp.

In the following we show that A(s) develops a pinch singularity 
through C(s) but not for through B(s). Since C(s) is the s channel, 
S-wave projection of the M + μ → m + m amplitude

C(s) = 1

32π

1∫

−1

dzsC(s, t(s, zs)) (5)

we use the t-channel dispersion relation to write,

C(s) = 1

32π2

∞∫

λ2
min

dλ′ 2C1(s, λ′ 2)Q (s, λ′ 2) (6)

where

Q (s, λ2) ≡
1∫

dzs

λ2 − t(s, zs)
. (7)
−1
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Here C1 is the t-channel discontinuity of C(s, t) at fixed-s and λ2
min

is the location of the lowest mass singularity. The lowest mass that 
can be exchanged in the t-channel is the pseudoscalar or vector 
(here, for simplicity, assumed degenerate and stable) open flavor, 
e.g. D or D∗ , meson. In this case C1(s, λ2) = Gδ(λ2 − m2) (ignor-
ing spin of the exchanged particle) and the constant G is given 
by the product of couplings of the exchanged meson to the (Mm)

and (mμ) meson pairs. For larger λ2 unitarity in the t-channel, 
relates the discontinuity C1(s, λ2) to the product of amplitudes 
M + m → m + (nμ) and m + μ → m + (nμ) representing the in-
teraction between the external meson pairs (Mm) and (mμ), and 
intermediate states containing, besides the heavy meson, other 
hadrons, e.g. n light mesons, (nμ). It will be shown below that 
the relevant singularities of C(s) originate from a small interval 
in λ2 that corresponds to t-channel intermediate states contain-
ing a few particles. Complicated t-channel intermediate states are 
therefore not relevant when looking for sources of threshold cusp 
enhancement.

The key is the function Q (s) defined in Eq. (7). It is the S-wave 
projection of the t-channel amplitude describing an exchange of an 
object of mass λ. As a function of s and zs the momentum transfer 
t is given by

t(s, zs) = M2 + m2 − s + M2

2
+ (s − M2)

√
s − 4m2

2
√

s
zs. (8)

Typically, the s-channel partial wave projection of a t-channel ex-
change leads to an amplitude with branch points located to the left 
from the s-channel thresholds and therefore outside the s-channel 
physical region. Singularities in Q (s) near the s-channel physical 
region can appear, however, because of unequal mass kinematics. 
Formally Q (s) is given in terms of the l = 0 Legendre function of 
the second type,

Q (s, λ2) = 2
√

s

(M2 − s)
√

4m2 − s
log

λ2 − t−(s)

λ2 − t+(s)
(9)

where t±(s) ≡ t(s, ±1). Determination of Q (s) on the physical 
sheet where the dispersion relation, Eq. (4), is evaluated, corre-
sponds to an appropriate choice of branch cuts of the logarithm 
and the square roots.

For λ2 real, the function Q (s) on the physical sheet is obtained 
by continuing in M2 from above the real axis, M2 → M2 + iε [24]. 
The function has four branch points, s = 0, −∞ and s±(λ2), given 
by the two independent solutions of the equation t±(s±(λ2)) = λ2. 
The motion of the s± branch points as a function of λ2 is shown 
in Fig. 1 and Fig. 2. There are four characteristic regions, which we 
enumerate here,

i) λ2 > λ2
a = (M + m)2,

ii) λ2
a > λ2 > λ2

b = (M − m)2,
iii) λ2

b > λ2 > λ2
c = M2/2 − m2,

iv) λ2
c > λ2.

For large values of λ2, i.e in region i), Eq. (9) represent a gen-
uine “force” effect of a particle exchange. Branch points of Q (s)
are located on the negative s-axis with cuts extending between the 
point s = s+(λ2) and s = 0 and the points s = −∞ and s = s−(λ2). 
As illustrated by the arrows in Fig. 1, when λ2 → ∞, s+(∞) = 0
and s−(∞) = −∞ i.e., cuts disappear and the exchange reduces to 
a point-like interaction. At λ2 = λ2

a , the two s± branch points col-
lide and as λ2 decreases into region ii) the branch points move 
into the complex plane. In this region the left hand cut extends 
over the entire negative real axis and along an arc in the com-
plex plane between s+ and s− . As λ2 approaches λ2

b from above, 
s+/− approach the real axis from below and above, respectively. 
Fig. 1. (Color online.) Motion of the s±(λ2) branch points in the complex s-plane as 
a function of λ2. The two arrows indicate the limits as λ2 → ∞. As λ2 decreases 
s− moves to the right above the real axis. For ∞ > λ2 > λ2

b , s+ moves to the right 
below the real axis. For λ2

b > λ2 > λ2
c , s+ moves to the left below the real axis. 

As λ2 decreases below λ2
c , s+ circles the real axis below threshold and moves to 

the right above the real axis. The point a represents is located near λ2
a . Point b is 

near and above λ2
b . When M2 approaches the real axis, s±(λ2

b) pinch the real axis 
at s = sb = M2m/(M − m). The point c is near and below λ2

c . For λ2
c > λ2 branch 

points s±(λ2) are located on the same side of the real axis and do not produce a 
singularity in A(s) when s approaches real axis from above. Pinching occurs for λ2

in region iii), i.e. λ2
b > λ2 > λ2

c .

Fig. 2. (Color online.) Behavior of the real parts of s±(λ2) as a function of λ2 in the 
region corresponding to the box shown in Fig. 1.

This happens in the physical region of the s-channel. As long as 
M2 is slightly above the real axis the two branch points s± never 
cross the real s-axis. In the limit ε → 0 they pinch it instead. This 
is the origin of a singularity of A(s). As λ2 decreases towards λ2

c , 
s+ moves to the left, circles the threshold at λ2 = λ2

c and, avoiding 
the unitary cut, when λ2 decreases below λ2

c into region iv), moves 
above the real axis. In region iv) the branch point s− stays above 
the real axis and moves to the right as λ2 decreases. For s in the 
physical region, i.e. approaching the real axis from above we can 
draw the following conclusions. Since the s± branch points never 
cross the unitary cut, the integral in Eq. (4) is well defined. When 
λ2 is in region i) or ii) the numerator in Eq. (4) has singularities 
far away from the physical region and the only singularity of A(s)
is the threshold branch point. For λ2 in region iii) s and s+ are on 
the opposite sides of the integration contour and A(s) develops a 
pinch singularity of a log-type at s = s+ . As λ2 decreases below 
λ2

c the threshold point, s = 4m2 is once more the only singularity 
of A(s). The real axis singularity for λ2 in region iii) can also be 
traced to the complex singularities of A(s) for other values of λ2. 
For example, in region ii) A(s) has a singularity on the second Rie-
mann sheet reached by going down the unitary cut from above. As 
s+ approaches the real axis from below i.e. λ2 moves from region 
ii) to iii), this second sheet singularity moves towards the real axis.

When M < 2m, which is the case of amplitude B(s), there is no 
pinching. This is because the condition (M −m)2 > λ2 > M2/2 −m2
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Fig. 3. Left panel: representation of A(s) given by Eq. (10). Right panel: for real s, A(s) is equivalent (up to arbitrary normalization), to a Feynman triangle diagram in a scalar 
theory [27], A(s) = ∫ 1

0 dα1dα2dα3δ(1 − α1 − α2 − α3) [α1λ2 + (α2 + α3)m2 − α1α3μ
2 − α2α3s − α1α2 M2 − iε

]−1
. The internal lines represent scalar particles with masses 

m and λ and squares of momenta of the three external lines are M2, μ2 and s, respectively.
Fig. 4. (Color online.) Example of |A(s)| obtained using Eq. (10). See the text for 
interpretation of the results.

requires that the mass of the t-channel exchange is smaller than 
the mass of the lightest open flavor meson, λ < m. Thus B(s) is 
expected to be a smooth function and in the following we approx-
imate it by a constant. In this approximation, A(s) given by

A(s) = A0

∞∫

4m2

ds′
∞∫

λmin

dλ′ 2 C1(s′, λ′ 2)ρ(s′)Q (s′, λ′ 2)

s′ − s
, (10)

This is equivalent to a triangle diagram shown in Fig. 3 thus 
Eq. (10) has the same singularity structure as the triangle diagram 
in perturbation theory with the branch points s± corresponding to 
the leading Landau singularities [25–27].

To illustrate the points discussed above we consider a model 
with an exchange of a single particle with mass λ2. In this case 
C1(s, λ′ 2) = δ(λ′ 2 − λ2) and, in arbitrary units, we choose M = 10
and m = 4. In Fig. 4 we show modulus of A(s) as a function of s
for different values of λ2. The constant A0 in Eq. (10) is chosen 
such that |A| is normalized to unity at threshold, |A(4m2)| = 1. 
For the choice of masses given above, λ2

c = 34 and λ2
b = 36. For 

λ2 = 100, i.e. in region ii) the numerator in Eq. (10) has branch 
points in the s-plane far to the left from the threshold and the 
only s-plane singularity of A(s) is the threshold branch point. As 
λ2 decreases and reaches a point slightly above λ2

b the branch 
points s±(λ) approach the real axis. This produces a bump in s
close to sb = M2m/(M − m) = 8.1652, which originates from the 
second sheet singularity discussed above. At λ2 = λ2

b pinching be-
gins i.e. in addition to the threshold singularity the amplitude de-
velops a singularity at sp = sb . As λ2 decreases towards λ2
c the 

s+(λ) branch point moves to the left bringing the pinch singular-
ity closer to threshold. When λ2 reaches λ2

c , the singularity at sp

collides with the threshold singularity producing a sharp peak at 
s = 4m2. When λ2 decreases further the pinch singularity moves 
away from the real axis to the second Riemann sheet reached 
by moving through the unitary cut from below. This singularity 
is far away from the physical region leaving the point s = 4m2

as the only visible singularity of A(s) in the physical region [28]. 
Enhancement of the normal threshold cusp and/or appearance of 
the pinch singularity near threshold can happen for λ2 in a lim-
ited range. This is important for phenomenology, since it implies 
that only a small part of the t-channel spectral function is rel-
evant. Physical interpretation of the kinematics corresponding to 
region iii) was given in [29]. The strongest effect occurs in the case 
M = 2m when λ2

b = λ2
c In this case pinch and end-point (threshold) 

singularities overlap producing effectively a pole of the numera-
tor in Eq. (10) at s = 4m2. The numerator behaves like a pole 
only for s > 4m2. To the left of s = 4m2 there is a branch cut 
of infinitesimal length joining the branch points at s±(λ2

b). The 
physical origin of this pseudo-pole corresponds to the limit of the 
exchanged m particle going on-shell when the μ particle becomes 
soft.

3. Phenomenology of the Zc(3900) and Zb(10610)

In the following we apply the formalism described above to 
the case of the two isovector, Z states, the Zc(3900) and the 
Zb(10610). The Zc(3900) is observed as a peak in the J/ψπ mass 
distribution near the D D̄∗ threshold. The effect is seen in the de-
cay of Y (4260) to J/ψππ . The Zb(10610) corresponds to a peak 
in ϒ(nS)π (n = 1, 2, 3) near the B B̄∗ threshold in the reaction 
ϒ(5S) → ϒ(1S)ππ . What follows is only an illustration and not a 
comprehensive study. For realistic comparison with the experimen-
tal data it would be necessary to include background contribution 
as has been done, for example in [14].

3.1. Zc(3900)

In the notation of Section 2 we choose (in units of GeV) 
M = 4.260, m = (mD + mD∗ )/2 = 1.936. This gives λ2

c = 5.33 and 
λ2

b = 5.40, respectively. The t channel exchange of a single D or D∗
meson corresponds to λ2 = 3.49 and 4.03 respectively i.e. the sin-
gle pole in the t-channel gives a function Q (s) with branch points 
in the region iv) and therefore is not expected to significantly en-
hance the amplitude near the Zc peak.

At larger values of λ2 the next t-channel singularity of C corre-
sponds to exchange of a Dπ or a D∗π system. In addition to the 
continuum these two-body systems have several resonances. The 
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Fig. 5. Magnitude of the amplitude A(s) for Y (4260) → J/ψππ . The dashed line 
corresponds to the narrow width approximation of Eq. (11) and the solid line corre-
sponds to Eq. (12). The amplitude and the data are normalized to unity at threshold.

lowest resonance is the D∗
0(2400). Ignoring the Dπ continuum, i.e.

using the narrow width approximation, one obtains,

CPole
1 = δ(m2

D∗
0
− λ2). (11)

The D∗
0 exchange falls entirely into the region iii) (λ2 = 5.37) and 

thus produces a sharp peak at s+(5.37) = (3.87)2. This is shown 
in Fig. 5. In a realistic case, however, the Dπ channel should by 
represented by a distribution that takes into account the Dπ con-
tinuum and the resonances. For example, one can approximate the 
C1 spectral function by

C1(s, λ2) = Im �(λ2) (12)

where

�(λ2) =
⎡
⎣m̄2

D∗
0
− λ2 − 1

π

∞∫

ttr

dt′ ρ(t′)N(t′)
t′ − λ2 − iε

⎤
⎦

−1

, (13)

ttr = (mD0 + mπ )2. Choosing m̄D∗
0
= 2.67 and N(t) = g2/(t + 2)

with g = 1.5,  = 10, Eq. (12) reproduces the Breit–Wigner line 
shape with parameters corresponding to the physical values for the 
mass and the width of the D∗

0 [30]. The comparison between �(t)
and the Breit–Wigner formula is shown in Fig. 6. The reason why 
C1 has no s-dependence in this model is because we ignored spin 
of the t-channel Dπ system. This is justifiable since s-dependence 
from the spin of an exchanged object is a smooth function. Integra-
tion over the t-channel mass distribution of the Dπ spectrum, as 
expected, has the effect of smearing the sharp peak obtained in the 
narrow resonance approximation. Nevertheless the cusp at thresh-
old remains enhanced by presence of the nearby branch points 
Q (s). There are other D-mesons that can contribute in the mass 
region of the Zc(3900) and in a phenomenological analysis of the 
data should be considered. For example the D1(2420) is much 
more narrow that the D0(2400), however, its nominal mass places 
it in region ii).

In Fig. 7 we compare the real and the imaginary part of A(s)
obtained in the narrow width approximation, (cf. Eq. (11)) with 
those computed using Eq. (12). The amplitudes are different from 
the case when the left hand cuts are far away from the thresh-
old branch points (cf. Fig. 8). The numerator under the integral in 
Fig. 6. Comparison between C1 given by Eq. (12) with the imaginary part of the 
Breit–Wigner formula, ∝ [m2 − t − m�]−1 with PDG values for mass m = 2.318 and 
width � = 0.267 of the D∗

0. Normalization of the amplitudes is arbitrary.

Fig. 7. (Color online.) Real and imaginary part of A(s) computed using Eqs. (11)
(labeled pole) and using Eq. (12), labeled C1.

Eq. (4) is a complex function of s′ and so is the amplitude below 
threshold, s < 4m2. Above threshold, in the narrow width approxi-
mation, for λ2 in region iii), the branch points of the numerator are 
located on the opposite side of the real axis producing an imagi-
nary amplitude for s > λ2

b .

3.2. Zb(10610)

We apply the same analysis to the decay ϒ(5S) → ϒ(1s)ππ . 
In this case we use M = 10.86, and m = (mB + mB∗ )/2 = 5.302. 
The t channel exchange of B or B∗ corresponds to λ2 = 27.87 and 
λ2 = 28.36, respectively, which are below λ2

c = 30.86. That is, just 
as in the case of the Zc(3900), one-particle-exchange contribu-
tions fall into the region iv) where threshold cusp is not enhanced. 
In the relevant mass range, the Bπ or B∗π spectrum have only 
one known resonance, the B∗

H with mass m = 5.698 and width 
� = 0.128. In the narrow width approximation this corresponds to 
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Fig. 8. (Color online.) Modulus (solid black), real (solid red) and imaginary (dashed 
red) parts of the amplitude for ϒ(5S) → ϒ(1S)ππ obtained using the formula of 
Eq. (12) with m̄D∗

0
→ m̄B∗

J
= 6.036 and g = 7.5. As discussed in the text, the rele-

vant range of λ2 corresponds to the region ii) which produces a singularity in the 
amplitude located to the left of the unitary branch point. The real and imaginary 
parts thus exhibit behavior that is typical for an amplitude with a left hand side 
singularity.

Fig. 9. Comparison of the formula in Eq. (12) for the bottomonium with the imag-
inary part of the Breit–Wigner formula obtained using the PDG parameters mB∗

J
=

5.698, �B∗
J
= 0.128.

λ2 = 32.47 and is above the pinch region, which corresponds to 
a narrow mass window between, 30.86 < λ2 < λ2

b = 30.89. It is 
only the low mass tail of the Bπ distribution that overlaps with 
this very small region where the pinch singularity of A(s) occurs. 
For example, the mass of the Bπ system where pinching over-
laps with threshold corresponds to λ = λc = 5.555, which is less 
than one resonance width, �, below the Breit–Wigner mass of the 
B∗ J resonance. Therefore, even though the resonance is away from 
the pinch region it can nevertheless enhance the normal threshold 
cusp. This is illustrated in Fig. 8. The comparison between Eq. (12)
with Bπ system parameters and the corresponding Breit–Wigner 
formula is shown in Fig. 9.
4. Summary

Motivated by the recent discovery of the XYZ peaks in char-
monium and bottomonium spectra and by theoretical models that 
propose to explain their origin in terms of normal threshold cusp 
enhancements, we preformed a systematic analysis of 2-to-2 am-
plitudes in the kinematic region of interest. We found that am-
plitudes containing quarkonium with mass above the open flavor 
threshold, the amplitude C in notation of Section 2, can have sin-
gularities in the s-plane that enhance the threshold cusp. For the 
enhancement to occur, the absorptive part of the amplitude has to 
have a singularity on the second Reimann sheet close to the phys-
ical region. When this happens the dispersive integral develops a 
pinch singularity and when the singularity lying below the real 
axis coincides with threshold, it enhances the normal threshold 
cusp. This, however, only occurs provided the t-channel spectral 
function is large in a narrow window of masses corresponding 
to the region iii). An amplitude with the quarkonium mass be-
low the open flavor meson (i.e. the amplitude B) is not expected 
to be significantly enhanced. This can be understood by consider-
ing, for example, the case M = 2m as discussed in Section 2. We 
thus find that in the kinematical region studied here, threshold 
cusps are enhanced by the same type of left hand cut singular-
ities as present in triangle graphs. Such a mechanism has been 
proposed in [11]. In Ref. [17] both the B and the C amplitudes 
were assumed to be enhanced, contrary to what is expected based 
on the arguments presented here. Furthermore, in the previous 
studies the amplitudes were given an analytical form that is not 
physical. In relation to the XYZ physics, triangle diagrams were 
used in [12–14]. These works did not, however, present a system-
atic study to explain which exchanges are relevant. In fact, it was 
assumed that it is the exchanges in the amplitude B and not C
that are important. For example in [14] an exchange correspond-
ing to our amplitude B was found to produce an effect that could 
in fact describe the data quite well. It would be interesting to 
analyze the singularity structure of that amplitude and compare 
with our predictions. We have performed a preliminary analysis 
of J/π and ϒ(1S)π amplitudes and shown that the correspond-
ing triangle singularities can potentially produce enhancement in 
the amplitude qualitatively consistent with the data. It should be 
noted, however, that such a mechanism cannot be considered as 
the final answer. If singularities of C were far away to the left from 
the physical region they would represent a genuine “force” i.e. vir-
tual particle exchange, an approximation to the left hand cut that 
can be unitized in a standard way [24]. This point was also raised 
in [31] against findings obtained with the model of [17]. The sit-
uation is however, even more complex since singularities in the 
physical region found in the triangle diagrams are due to opening 
of new channels and these will have to be taken into account in 
the unitary relation.
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