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ABSTRACT 

Let F” denote the set of irreducible n X n tournament matrices. Here arc our 
main results: (1) For all n > 3, every matrix in K has at least three distinct 
eigenvalues; such a matrix has exactly three distinct eigenvalues if and only if it is a 
Hadamard tournament matrix. (2) For all n 2 3 there is a matrix in Y” having n 
distinct eigenvalues. (3) If cr, denotes the maximum algebraic multiplicity of 0 as an 
eigenvalue of the matrices in z, then ln /21-2 < CY, Q n -6 for all n 2 8. Each 
algebraic multiplicity m with 1~ m < ln /21- 2 is achieved for the eigenvalue 0 by 
some matrix in z for every n > 6. (4) If r,, is the minimum Perron value (i.e. 
spectral radius) of all matrices in r”, then 2 < r,, < 2.5 for all n > 8. 

1. INTRODUCTION 

A tournament matrix of order n is an n X n (0, 1) matrix M satisfying 
M + M’ = J - I, where J is the n X n matrix of all ones. It has been 
observed recently that the rank of a tournament matrix of order n is at least 
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n - 1 (see de Caen and Hoffman [9]>. Subsequently, Maybee and Pullman 
[15] showed that if A is an eigenvalue of an n x n tournament matrix M, then 
rank(M - AZ) = n - 1 or Re A = - i. Thus the geometric multiplicity of an 
eigenvalue is one except when its real part is - f; in this case, we show in 
Section 2 that the algebraic and geometric multiplicities coincide. What can 
be said about the algebraic multiplicities of the eigenvalues of a tournament 
matrix? That question is the subject of our paper. 

Let T,, be the n X n (O,l> matrix [tij] having tij = 1 if and only if i < j; 
this is a transitive n X n tournament matrix. It is reducible when n > 1 and 
clearly has A = 0 as an eigenvalue of algebraic multiplicity n and geometric 
multiplicity 1. Other reducible tournament matrices can easily be con- 
structed having eigenvalues of various algebraic multiplicities. Therefore we 
confine ourselves to the irreducible case. 

In Section 2, we note that irreducible tournament matrices of order n > 3 
must have at least three distinct eigenvalues. In Section 3 we characterize 
those having exactly three; specifically, in Theorem 3.2 we show that for 
n 2 3, such matrices are precisely the n X n Hudumard tournament 
matrices-namely, the tournament matrices H of order n = 3 (mod 4) 
satisfying HH’ = [(n + 1)/4]1+ [(n - 3)/4]J. Hadamard tournament matrices 
of order n are known to be coexistent with the skew Hadamard matrices of 
order n + 1. Such matrices exist for infinitely many n. 

In contrast to Section 3, we study in Section 4 a sequence of n X n 
irreducible tournament matrices U,, having n distinct eigenvalues. The 
matrix U,, is obtained from the transitive tournament z’, by exchanging the 
entries in the (l,n) and (n, 1) positions. In Theorem 4.1 we compute the 
characteristic polynomial of U, and deduce in Theorem 4.2 that U, has n 
distinct eigenvalues. The U,, have the interesting property that they have 
only one real eigenvalue, the Perron value (also called the Perron root) when 
n is odd, and only two real eigenvalues (the Perron value and a negative one) 
when n is even. We calculate the eigenvectors of U,, as functions of its 
eigenvalues, and show that no eigenvector has a zero entry. 

The result of Section 3 shows that for infinitely many n, the algebraic 
multiplicity of a nonreal eigenvalue of an irreducible tournament matrix of 
order n can be (n - 1)/Z, the maximum possible for nonreal eigenvalues. 
How large can the algebraic multiplicity of a real eigenvalue be? In Section 
5, we study this question by presenting, for each n > 6 and each 1~ m < 
[n /2J - 2, irreducible tournament matrices of order n having 0 as an 
eigenvalue of multiplicity m (Theorem 5.3). Letting LY, denote the maximum 
algebraic multiplicity of 0 as an eigenvalue of an n X n irreducible touma- 
ment matrix, the previous result shows that ln /2] -2 < cy, for n > 6. Fur- 
ther, we show in Corollary 5.1.1 that an ,< n -6 for all n 2 8, by investigat- 
ing the minimum Perron value, r,,, of the irreducible tournament matrices of 
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order n. Brauer and Gentry [3] h 
3 

s owed that fi is a lower bound on rr,, for 
all n > 4. We show that, in fact, 2 < r,, < 2.5 for all n z 8 (see Theorem 5.1). 

Throughout this paper, we will employ some of the terminology and 
results of both nonnegative matrix theory and graph theory. The relevant 
background information on these topics can be found in Horn and Johnson 
[ll] and in Bondy and Murty [l], respectively. 

2. GENERAL REMARKS 

In what follows, we will use some basic facts concerning the eigenvalues 
of tournament matrices. These results can be found in [2] and [17], but for the 
sake of completeness, we will sketch the proofs here. Given an n X n 
tournament matrix M, let x be an eigenvector of M corresponding to the 
eigenvalue A. Pre- and postmultiplying the equation M + M’ = J - I by x* 
and x respectively yields (2 Re A + 1)x*x = x*ji’x, where j is the all ones 
vector. Thus we have Re A > - i (see [2]), with equality holding if and only if 
x *j = 0 (see [17]). Applying the Cauch y c -S *h wartz inequality to x*ji tx gives 
(2Re A + 1)x*x = r*ji’x < jljx*x = nx*x, with equality holding if and only 
if x is a scalar multiple of j. It follows that the Perron value of a tournament 
matrix is at most (n - 1)/2 (see [2]), with equality holding if and only if the 
tournament matrix is regular, that is, each of its row sums is (n - I)/2 (see 

1171). 
It has been shown by Maybee and Pullman [I51 that if A is an eigenvalue 

of a tournament matrix, then its geometric multiplicity is one whenever 
Re A f - i. On the other hand, given a tournament matrix M with eigen- 
value A and Re A = - i, the following argument shows that the geometric 
and algebraic multiplicities of A are the same. 

If the two multiplicities are different, then there is an eigenvector x 
corresponding to A and a generalized eigenvector y satisfying My = Ay + x. 
Then x*My + x*M’y = x*Jy - x*y. Since x*J= 0, we have x*(Ay + x)+ 
Ax*y = - x* y, which yields x*x = 0, a contradiction. Thus no such y can 
exist, so that the algebraic and geometric multiplicities of A must coincide. 

Next we note that if M is an irreducible tournament matrix of order 
n > 3, then M has at least three distinct eigenvalues. This follows from the 
fact that the trace of M2 is zero, so not all of the eigenvalues of M can be 
real. Thus M has at least one conjugate pair of nonreal eigenvalues, as well 
as a Perron value, for a total of at least three distinct eigenvalues. Evidently 
the algebraic multiplicity of a nonreal eigenvalue of an n x n tournament 
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matrix is at most (n - O/2. In the next section, we characterize the class of 
such matrices that achieve equality. 

3. TOURNAMENT MATRICES WITH THREE 
DISTINCT EIGENVALUES 

A tournament matrix H of order n is a Hadamard tournament matrix if it 
satisfies the equation HH t = [(n + 1)/4]1+ [(n - 3)/4]J. Note that necessar- 
ily n = 3 (mod 4). We remark that the question of the existence of such 
matrices is a difficult one, since Hadamard tournament matrices of order n 

are known to be coexistent with skew Hadamard matrices of order n + 1. See 

Geramita and Seberry [lo] for a discussion. 

PROPOSITION 3.1. Let H be a Hadamard tournament matrix of order n. 

Then H has eigenvalues (n - 1)/2 (with algebraic multiplicity one) and 

- $ + i&/2 (each with algebraic multiplicity (n - O/2). 

Proof. Let p(h) = de&AZ - H) and c = (n -3)/4. Then p”(h) = 

det(AZ - H)det(hZ - H’) = det[A2Z - A(H + H’) + HH’] = det[(c - A)J + 
(A2 + A + c + l)Z] = [A" + A + c + 1+ n(c - A>](A2 + A + c + ljn-‘, the last 
equality following from the general fact that det(aZ + bJ) = (a + nb)a”- ‘. 

Thus we have 

so that 

Having seen that Hadamard tournament matrices have exactly three 
distinct eigenvalues (and hence their nonreal eigenvalues have maximum 
algebraic multiplicity), the question arises whether these are the only such 
irreducible tournament matrices. Our next result will help us to answer this 
question in the affirmative. 
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THEOREM 3.1. Suppose that M is an irreducible nonnegative matrix of 

order n 2 4, with integer entries and Perron value p. Further suppose that the 
trace of M” is zero and that M has exactly three distinct eigenvalues. Then n 

is odd, p is an integer, and (n - I)/2 divides p. 

Proof. Let the eigenvalues of M be p, A I, and A,. Since the trace of 
M2 is zero, A, and A, must be a complex conjugate pair, say (Y k i/3, with 
/3 # 0. Further, p is an algebraically simple eigenvalue, so A, and A, must 
both have algebraic multiplicity (n - 1)/2; in particular, n is odd. The trace 
of M2 is zero. Since M is nonnegative, its diagonal entries are zero, so the 
trace of M is also zero. It follows from these two facts that (Y = - p/(n - 1) 

and p = p&/(n - l), so that the eigenvalues of M are p and p(- l+ 
iG)/(n - 1). 

Note that the traces of M3 and M4 are both integers. Since [p/(n - 

1>13( - 1 + i&j3 = p”[ - 1 + 3n + i&(3 - n>l/(n - 1j3, we see that the trace 
of M3 is p3 +(n - l>p3( - 1+3n)/(n - 1j3 = p3n(n + l)/(n - 1)’ = i, E N. 

Also [p/(n - 1)14(- 1 + i&j4 = p4[1 - 6n + n2 + i&(4n - 4)]/(n - 114, 

and hence the trace of M4 is p4 +(n - l)p4(1-6n + n’>/(n - 1j4 = 
p4n(n - 3Xn + l)/(n - 1j3 = i, E N. Taking quotients, we find that i, /i, = 

p(n - 3)/(n - 11, so that p is a rational number. Since p is a rational root of 
det(AI - M), which is a manic polynomial with integer coefficients, p must 
be an integer. Since A, and A, are algebraic integers, so is A, + A, = 
-2p/(n - 1). It follows that - 2p/(n - 1) must be an integer, so that 
(n - 1)/2 divides p. n 

THEOREM 3.2. Suppose that M is an irreducible tournament matrix of 

order n > 3. Then M has exactly three eigenvalues if and only if M is a 
Hadamard tournament matrix. 

Proof. The sufficiency is just Proposition 3.1. To see the other implica- 
tion, we may assume that n > 3, since 

[ 0 0 1 0 0 1 0 0 1 1 
and its transpose are the only irreducible 3 X3 tournament matrices, and 
both are Hadamard tournament matrices. Consider an irreducible touma- 
ment matrix M of order n >, 4 with three distinct eigenvalues. Since Theo- 
rem 3.1 applies to M, its Perron value is at least (n - 1)/2. But the Perron 
value of any tournament matrix of order n is at most (n - 1)/2, so the 
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maximum eigenvalue of M is (n - 1)/2, and hence M is a regular touma- 
ment matrix; i.e., MJ = JM = [(n - l)/Z]J. Note that M is a normal matrix, 
since MM’ = MJ - M - M2 = JM - M - M” = M’M. From the proof of 
Theorem 3.1, we see that the eigenvalues of M are (n - I),/2 and - if 

i&/2. 

Since M is normal, there is an orthonormal basis of 43” consisting of 
eigenvectors of M, say j (which is a Perron vector) and wk, k = 1,2,. . , n - 1. 

As noted above, MM’ = MJ - M - M” = [(n - 1)/2]J - M - M”. Thus 
MM’j =[(n -1)/2]Jj - Mj - M’j =[(n -1>‘/4]j ={[(n -3)/4]J+[(n +l)/ 
4]Z}j. Since jtwk = 0 for 1 Q k < n - 1, we have MM’wk = M]wk - Mw, - 

Mewk = [(n + 1)/4] wk = {[(n -3)/4]J +[(n + 1)/4]Z)w,. Thus MM’ and 
Kn - 3)/415 + [(n + D/411 a ree on the orthonormal basis, so M is a g 
Hadamard tournament matrix. n 

REMARK 3.1. The last part of Theorem 3.2 can be deduced at least two 
other ways: by noting that (M - [(n - 1)/2]1}{ M2 + M + [( n + 1)/4]Z} = 0 

and using the fact that the null space of M - [(n - 1)/2]~ is spanned by j; or 
by applying a theorem of Ryser (see [IS]) characterizing (0,l) matrices with 
maximum determinant as design matrices. 

4. A FAMILY OF TOURNAMENT MATRICES 
WITH DISTINCT EIGENVALUES 

Recall that U,, is obtained from the transitive tournament matrix T, by 
exchanging its (1,n) and (n, 1) entries. Each U,, is irreducible, since its 
directed graph has the Hamilton cycle (1,2,. . , n - l,n, 1). Let p,(h) = 
det(AZ - U,,). 

We will use the following technique for calculating p,(h) and other 
characteristic polynomials (see [B, p. 321; [14]). Given an n X n (0,l) matrix 
with 0 diagonal, we denote its associated directed graph by D. Let S be a 
union of vertex disjoint directed cycles in D; such an S is called a disjoint 

cycle union. Let v(S) be the number of vertices in S, and let c(S) be the 
number of cycles in S. Then 

det( AZ - M) = c ( - l)c(s)An-vcs), 
S 

(4.1) 

where the sum is taken over all disjoint cycle unions in D (including the 
empty one). 
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FK. 1. 

THEOREM 4.1. FW each n > 3, p,(A) = A”-“(A’ + 1) -(A + II”-‘. 

Proof. The directed graph associated with U, is shown in Figure 1. 

Each nonempty disjoint cycle union in the graph is a single cycle of the form 
(n, 1, i,, i,, . . , i,, n), where 2 < i, < i, < . ** < i, < n - 1. Thus the 
nonempty disjoint cycle unions are in one-to-one correspondence with the 
subsets of {2,3,. . . , n - 1). It follows that 

p.(A)=h”-~~2(n~2)An-k-“=An+A.-‘-(htl)””. n 

k=l 

THEOREM 4.2. The eigenvalues of U,, all have algebraic multiplicity one. 

Further, when n is odd, the only real eigenvalue of V, is the Perron value, 

while if n is even, there is only one more real eigenvalue, a negative one 

which is strictly greater than - j-. 

Proof. Since p,(O) # 0, we have p,(A) = 0 if and only if A’ + 1 = (1 + 
A-‘)“-“. Set g(A) = A2 + 1 and h,(A) = (l+ A-1)“-2. Since g is increasing 
(without bound) for positive A while h, decreases from TV to 1 for positive A, 
we see that their graphs have a unique intersection for A > 0, which 
corresponds to the Perron value of U,,. When A < 0, note that when n is odd, 
h,,(A) < 1 while g(A) > 1, so that p, has no negative roots for odd n. If n is 
even, then h, increases without bound from 1, and g decreases from $ to 1 
as A runs between -i and 0; note that if A < - i then p,(A) cannot be 0. 
Thus the graphs of h, and g have a unique intersection for negative A, and 
it occurs for some A between - i and 0. Hence p, has a simple negative 
root [in the interval ( - i, O)] when n is even. 

To show that all of the complex roots of p, are also simple, consider what 
happens if p, has a complex root, say A = p + iv (V z 0) of multiplicity at 



186 D. DE CAEN ET AL. 

least two. Certainly n 2 5 and p,(A) = p’,(h) = 0. This yields both (1 + 

A-‘)“-2 = A2 + 1 and (1+ A-‘)“-3 = -2A3/(n -2). Thus A” + 1 = (l+ 

A-‘)[ -2A3/(n -2)], w ic h’ h can be rearranged as A3 + (n /2)A” + (n - 2)/2 
= 0. Substituting A = p + iv and taking real and imaginary parts (respec- 
tively) of the last equation, we have p3 - 3p.v” + (72 /2X$ - v”) + (n - 2)/2 

= 0 and v(3p2 + np - v’) = 0. Thus v2 = 3~~ + np, which upon substitu- 
tion into the latter yields 8~’ + 4np’ + ( n2/2>p = (n - 2>/2, or ~(p + 
n/4)’ = (n -2)/16. If I_L < 0, then p < - n/3, because v2 = 3~’ + nF > 0, 

contradicting the necessity of p > - k if A is an eigenvalue of a tournament 
matrix (see [2]). Hence, writing 4~ + n = 6, p must be the unique positive 
solution to 1_~6~ = n -2, from which it follows that p < l/n. 

Now (A2 + 112 = II- 2p2 - np + i2vp12 = 16~’ + 8n$ + (n2 - 4)~~ - 
2np + 1. We have ]A” + 112 < 2+ 16/n4 +4/n” < 2.1856 because p < l/n 
and n > 5. On the other hand, II+ A-‘12 = (l+ h/(pS)l’ = 1+2/6 +4/S” 

+ n/(pS’)> 1 +(rz/~Y)~, the last because ,uLs2 = n -2 and 6 > n. Thus 
(1+A~1~2>1+(1+4~/n)~2>l+(1+~)~2=1.743...,since~~1~n~5. 
As a result, I(1 + A-‘)“-“12 > (1.74)2 > 2.1856 > IA2 + l)“, and hence A can- 
not be a solution to (1 + A-‘)“-2 = A2 + 1. Consequently p, has no nonreal 
roots of multiplicity two or more. W 

THEOREM 4.3. The right eigenvectors of U,, corresponding to the eigen- 

value A are scalar multiples of y =(A~,~~-~,~-~,...,cx,~,A)~, where (Y = 
l+A-‘. 

Proof. Let z = U,y; we will show that z = Ay. Let the ith components 
of z and y be zi and yi respectively, 1 < i Q n. Multiplying y by W,, we 
have z r = CT:,@‘, z, _ i = A,z, = A2, and z, = A +Cy,,“-‘(~j for 2 < r < 
n-2. Evidently z,_i=Ay,_r and z,=Ay,. For 2 ,<r,<n-2, we have 
z = A +(l- ~“-l--r)/(l - (w) = Aa”-I--’ = Ay,. Similarly, zr = (1- a”-“)/ 

(i- a) = A(1 + A-‘)“-2 - A = Ay,, since A is a root of the characteristic 

polynomial of CJ,. n 

A similar argument shows that a left eigenvector of U,, corresponding to 
A is a scalar multiple of w = (A, 1, ct, cx2,. . . , anp3, A”). In particular when n 

is even, the right and left eigenvectors, y and w respectively, which are 
associated with the negative root of p,(A) have the sign pattern sgn(y’) = 

(+, -, +, -,...> + , - > = - sgn(w). Moreover, Theorem 4.3 also implies 
that no entry in any eigenvector of U,, is 0 (since 0 and - 1 are never 
eigenvalues of U,). See [13] f or a discussion of zero entries in eigenvectors. 

Tournaments and directed graphs whose adjacency matrices have distinct 
eigenvalues have been discussed in the graph theory literature. Specifically, 
Cameron [7] points out that the automorphism groups of such directed 



EIGENVALUES OF A TOURNAMENT MATRIX 187 

graphs must be abelian. As the referee for this work has noted, the fact that 
the automorphism group of the tournament corresponding to V, is abelian 
also follows from its degree sequence. 

5. MINIMUM PERRON VALUE AND THE MULTIPLICITY OF ZERO 

Let r,, denote the minimum possible Perron value over the class of 
n X n irreducible tournament matrices. Let (Y, be the maximum possible 
algebraic multiplicity of zero over the same class (we remark that cy, = 0 if 
3 < n < 5). Our first result relates these two quantities. 

LEMMA 5.1. Let M be an irreducible tournament matrix of order n 2 3 
with Perron value p. Let m, be the algebraic multiplicity of 0 as an 

eigenoalue of M. Then m, < n - l -2p, and in particular (Y, < n - l-277,. 

Proof. Let the spectrum of M be {p,h,,A, ,..., A,_,A,+I ,..., A,}, where 
Re Ai # 0 if and only if i < r. Since the trace of M is zero, we have 
p=-cr i=2 Re hi. But Re hi > - i for 2 < i < n, so r > 2p + 1. Thus we have 
m,<n-r<n-I-2p,fromwhichitfollowsthat a,<n-I-27~,. W 

The lemma above suggests that in order to find an upper bound on (Y,, 

we should try to estimate rr,,. In [3], Brauer and Gentry showed that rrn >“fi 
for n 2 3. We will improve that bound and show that the sequence of rrn’s is 
bounded above in our next theorem. 

THEOREM 5.1. For all n > 8, 2 < rn < 2.5. 

Proof. We consider the family of tournament matrices defined by S,, = 

[‘ijl> i,j=1,2 ,..., n, with sij=l if and only if j>i+l or j=i-1. Note 
that S, is obtained from the transitive tournament T,, by exchanging the 
entries in the first sub- and superdiagonals. Thus 
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FIG. 2. 

and 

0 0 

1 0 
0 1 

s,= : : 

0 0 
0 0 

-0 0 

1 1 1 
0 1 1 
0 0 1 

. . . 1’ 0’ 

. . . 0 1 

. . . 0 0 

. . . 1 

. . . 1 

. . . 1 
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0’ 1 

0 0 

1 o_ 

The transposes of these matrices were studied by Katzenberger and Shader 

[12]. Note that each S, of order n 2 3 is irreducible, since its digraph has the 

Hamilton cycle (n, n - 1,. . , 2,1, n). The directed graph D, associated with 

S, is pictured in Figure 2. 

Let Z,(A) = A and Z,(A) = det(hZ - S,,) for n > 2; we claim that for n > 4 

Z,(A)=(A+l)Z,,_,(A)-AZ,_,(A)-Z,_,(A). (5.1) 

To show the claim, first partition the disjoint cycle unions in D,, into sets T,, 

T,, and T3, where a disjoint cycle union S in D, is in T, if the arc (n, n - 1) 

is not in S, in Tz if the path (n - 2, n, n - 1) is in S, and in T3 if the arc 

(n, n - 1) is in S but the arc (n -2, n> is not. We have 

&,(A) = c (- l)c(s)A”-y(s) + c (_ l)c(s)A-‘(s) + C (_ ly(S)An-v(S), 
S E T, S E Tz S E T, 

(5.2) 

Since each S in T, is in D,_ 1, the first sum in (5.2) is AZ,,_ ,(A). If S is in 

T,, then it consists of the 3-cycle (n,n - 1,n -2,n) along with a disjoint 

cycle union in D,, _3, so that the second sum in (5.2) is - 1, _,(A). Finally, 
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the disjoint cycle unions S in T, are in one-to-one correspondence with the 
disjoint cycle unions in D, _ 1 which involve the arc (n - 1, n - 2) (i.e. those 
not in T, in D,_ il. It follows that the third sum in (5.2) is Z,_,(A) - AZ,_,(A), 
which yields (5.1). Note that setting A = 0 in Eq. (5.1) yields the recurrence 
relation for the determinants of the S,‘s that was found by Katzenberger and 
Shader in [12]. 

We will now show by induction that if A > 2.5 and n > 1, then l,,(A) > 
2Z,_ ,(A) > 0; this can be verified directly if n < 3. If A >, 2.5 and n > 4, then 
by the induction hypothesis we have 

l,(A)=(A+l)l,_,(A)-AZ,_,(A)-l,_,(A) 

> ln_,(A)a2Zn_,(A)>0 

It follows that the Perron value of S,, y, say, is less than 2.5 for any 
n > 3, so that 7r, < 2.5 for n > 3. A result of Moser and Harary (see [16, 
Theorem 3, p. 61) implies that when n > 3, every irreducible tournament 
matrix of order n contains an irreducible principal submatrix of order n - 1 
(also a tournament matrix). It follows from a theorem of Wielandt (see [ll, 
Theorem 8.4.5, p. 5091) that irreducible principal submatrices of an irre- 
ducible matrix A have Perron values at most that of A. Thus we see that 

Tn G =TT,+i for n z 3 (indeed, a similar argument shows that y, < y,,+ 1 for 
n > 3). A computer search of all irreducible tournament matrices of order 8 
(using a disk listing all tournament matrices of orders n < 8 kindly supplied 
by Professor R. Read) showed that ys = r8 = 2.0606.. . and hence 2 
< r, < 2.5 for all n > 8. n 

Both the rr”‘s and the yn’s are nondecreasing and bounded above, so it is 
natural to wonder about their respective limits. Led by an observation of the 
referee on the characteristic equation of the recurrence for l,, we have been 
able to show that 

-1tJGYGJF 
Y, ---) = 2.4844353... as n +m. 

2 

Brualdi and Li [6] conjecture that y, = r,, for any n > 3; numerical results 
using Professor Reads disk show that the latter statement holds when 
3<n<8. 

Applying the lower bound on 7~” and Lemma 5.1, we have the following 
result. 
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COROLLARY 5.1.1. For n > 8, (Y, < n - 6. 

We now examine a class of irreducible tournament matrices that yield a 

lower bound on CY,. 

For p, 9 > 1, denote the p X 9 matrix of ones by J,,, and of zeros by 

0 ,,,y. We define 

forall k,Za3. 

Evidently, each M,,, is a tournament matrix. In the terminology of Brualdi and 

Li [5], Mk l is the join of Uk, U,, and U,. A result of Katzenberger and Shader 

[12] ensures that ML [ is singular for 1, k > 3; the theorem below will find the 

algebraic multiplicity’of 0 as an eigenvalue of M,,,. 

THEOREM 5.2. For each 1, k 2 3, Mk l is an irreducible tournament 

matrix and 

Proof. Mk,l is irreducible, since its associated directed graph D has the 

Hamilton cycle (k + I, k + 1, k, 1,2,. . . , k - 1, k + 2, k + 3,. . . , k + I - 1, k + I>. 

The subgraph of D induced by the vertices 1, k, k + 1, and k + 1 is shown in 

Figure 3. 

We partition the disjoint cycle unions in D into sets T,, Tz, T3, and T4, 

where a disjoint cycle union S is in T, if the arc (k + 1, k) is not in S, in T, if 

Frc. 3. 
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thearcs(k+I,k)and(k,I)areinSbutthearc(k+Z,k+1)isnot,inTgif 
the arcs (k + 1, k) and (k + 1, k + 1) are in S but the arc (k, 1) is not, and in 
T4 if the arcs (k + 1, k), (k + 2, k + 1) and (k, 1) are in S. Thus we have 

det( AZ - M,,[) = c ( - l)c(S)~"-"(S) + ( - l)~(S)/yCS, 

SET, 2 

+ c (_l)C(S)/y(S) + c ( -l)cYY~s? (5.3) 
S E T, S E T4 

The disjoint cycle unions in T, are unions of a disjoint cycle union in the 
graph of IJ, and disjoint cycle union in the graph of U,; thus the first sum in 
(5.3) is p,(A>p,(A). If S is in T,, then it is (k + 1, k, 1, k + 1) or a single cycle 
of the form (k+l,k,l,i, ,..., i,,k+l), where 2<i,< e.0 <i,<k-1. It 
follows that the second sum in (5.3) is 

A similar argument shows that the third sum in (5.3) is - Ak-‘(l+ A)lm2. 
Finally, if S is in T4, then it is (k + I, k + 1, k, 1, k + I), or a single cycle of 
the form 

(k+Z,k+l,k,l,i, ,..., i,,jl, . . . . j,,k+l), 

where 2 < i, < . . . <i,<k-1 and k+2<j,<.*. <j,<k+l-1. 

It follows that the last sum in (5.3) is -(l+ A)k+‘-4. Hence we find that 
det(Ai - M,,,) = pk(A>p,(A) - A’-‘(1 + Ajk-’ - Ak-‘(1 + A)le2 - (1 + 
A)k+‘-4, and applying the formula for p,(A) in Theorem 4.1 yields the result. 

n 

REMARK 5.1. It is clear from its definition that M,,, is obtained from the 
reducible tournament matrix 

by exchanging the (k, k + 1) and (k + 1, k) entries. Note that det(AI - it@ = 
det(AI- U,>det(Al- U[>. Thus the effect of reversing the (k, k +l) and 
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(k + 1, k) entries in A I - &? (to obtain A I - Mk [) is to introduce the term 
-[Ak-‘(l + A)‘-” + A’-‘(1 + A)k-” +(l+ A)k+‘-4] into the determinant. 

TI-IEOREM 5.3. Foreveyna6 andevey l,<m<[n/2]-2 thereisan 

irreducible tournament matrix of order n having 0 as an eigenvalue with 

algebraic multiplicity m. 

Proof. From our formula in Theorem 5.2, we see that M, I has 0 as an 
eigenvalue of algebraic multiplicity m&k, l)-2. Thus, for each n > 6 and 

each l<m<ln/2J-2, M,,,+2,n-,,,-2 has 0 as an eigenvalue of algebraic 
multiplicity m. n 

COROLLARY 5.3.1. Fornag, [n/21--2<a,,<n-6. 

Using Professor Read’s disk, we found that erg = cy, = 1 and cyH = 2. 
Further, the 9 X 9 tournament matrix below in Example 5.1 is irreducible and 
has 0 as an eigenvalue of algebraic multiplicity 3. Thus, oy = 3 from 
Corollary 5.3.1. 

EXAMPLE 5.1. Let 

0 1 1 0 1 1 1 1 1 
001111111 
000111111 
100010111 

A=0 0 0 0 0 11 11 
000100011 
000001010 
000000001 

-0 0 0 0 0 0 1 0 0 

Its directed graph has the Hamilton cycle (9,7,6,4,1,2,3,5,8,9), so A is 
irreducible. Its characteristic polynomial is A9 - 7A6 - 8A5 - 9A4 - 3A3. Thus 
we see that when n = 9, the lower bound on (Y, (given in Corollary 5.3.1) is 
too small, while the upper bound is sharp. 

REMARK 5.2. Each of the matrices in Theorems 4.1, 5.1, and 5.2 and in 
Example 5.1 has the row sum vector (n - 2, n -2, n - 3, n - 4.. .3,2,1,1). 
Because of a characterization of tournament matrices with this row sum 
vector given by Brualdi and Li (see [S]), the disjoint cycle union technique 
for finding characteristic polynomials works well for such matrices. 
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