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Regulation of mRNA decay plays a crucial role in the post-transcriptional control of cell growth, survival, differ-
entiation, death and senescence. Deadenylation is a rate-limiting step in the silence and degradation of the
bulk of highly regulated mRNAs. However, the physiological functions of various deadenylases have not been
fully deciphered. In this research, we found that poly(A)-specific ribonuclease (PARN)was upregulated in gastric
tumor tissues and gastric cancer cell linesMKN28 and AGS. The cellular function of PARNwas investigated by sta-
bly knocking down the endogenous PARN in theMKN28 and AGS cells. Our results showed that PARN-depletion
significantly inhibited the proliferation of the two types of gastric cancer cells and promoted cell death, but did
not significantly affect cell motility and invasion. The depletion of PARN arrested the gastric cancer cells at the
G0/G1 phase by upregulating the expression levels of p53 and p21 but not p27. The mRNA stability of p53 was
unaffected by PARN-knockdown in both types of cells. A significant stabilizing effect of PARN-depletion on p21
mRNA was observed in the AGS cells but not in the MKN28 cells. We further showed that the p21 3′-UTR trig-
gered the action of PARN in the AGS cells. The dissimilar observations between the MKN28 and AGS cells as
well as various stress conditions suggested that the action of PARN strongly relied on protein expression profiles
of the cells, which led to heterogeneity in the stability of PARN-targeted mRNAs.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Regulation of gene expression is crucial for almost all physiolog-
ical and pathological processes. The number of active transcripts in
the cytoplasm is determined by a number of rate-limiting steps in-
cluding transcription, processing, transportation, localization,
translation repression and decay [1,2]. The fate of a mature mRNA
is predominantly regulated by the untranslational region (UTR) at
the 5′- and 3′-end. Particularly, the bulk of eukaryotic mRNAs contain
a long template-independent poly(A) tail at the 3′-end. The shortening
of the poly(A) tail, which is called deadenylation, is the rate-limiting
step of the degradation of most eukaryotic mRNAs [3]. Deadenylation
is executed by deadenylases, which are a group of 3′-exoribonucleases
with a high preference of poly(A) as the substrate. In most organisms,
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there are a number of deadenylases with distinct domain compositions
and physiological functions [2,4]. According to the nature of the nucle-
ase domain, deadenylases are divided into two classes: the endonucle-
ase–exonuclease–phosphatase (EEP) superfamily and the DEDD/DnaQ-
like 3′–5′ exonuclease domain superfamily. The EEP superfamily
contains various Ccr4 orthologs and PDE12, while the Caf1 orthologs
and poly(A)-specific ribonuclease (PARN) belong to the DEDD super-
family. The various deadenylases and their binding partners are evolved
to endow the cell diverse methods to regulate mRNA turnover [2,4].

By modulating the poly(A) tail length of mRNAs and mRNA fates
thereby, deadenylases have been found to participate in many vital cel-
lular processes such as mitotic division, oocyte maturation, differentia-
tion and responses to various stresses [2,4–8]. Whenever there is a
need of metabolic changes, the fates of a certain subset of mRNAs will
be regulated by either enhancing or decreasing mRNA stability. For in-
stance, the cells undergo dramatic changes to cease both transcription
and translation during mitosis. Thus the cell cycle progression is not
only regulated by the accumulation and modification of executed pro-
teins but also the number of active transcripts [9]. Basically, the cell
cycle is controlled by cyclin-dependent kinases (CDKs) and the associat-
ed activators and inhibitors [10]. The Cip/Kip family proteins, which in-
clude p21Waf1/Cip1 (p21), p27kip1 (p27) and p57kip2 (p57) are well-
characterized CDK inhibitors in regulating cell cycle phase transitions
from G1 to S and G2 to M [10,11]. Among them, p21, an important tran-
scriptional target of p53 [12], is a critical regulator ofmany physiological
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and pathological processes involving development, stem cell renewal,
senescence and tumorigenesis [13,14].

In addition to transcriptional regulation by p53, the protein level of
p21 is also controlled by regulators affecting p21 mRNA stability or
p21 protein stability [14,15]. Similar to the other highly regulated
mRNAs, the p21 mRNA possesses a long 3′-UTR of ~1500 nt, which
contains binding sites of various miRNAs and RNA-binding proteins
[15]. One of the most characterized cis-acting elements at the 3′-UTR
of p21 is the AU-rich element (ARE), which recruits several ARE-
binding proteins such as theHu/Elav family proteins.miRNAs are gener-
ally destabilizing, while the RNA-binding proteins can either enhance or
reducemRNA stability. Previous studies have shown that the p21mRNA
can be stabilized by the Hu/Elav family proteins [16,17], RBM24 [18],
RNPC1/RBM38 [19], ZONAB/DbpA [20] and Ccr4d/ANGEL2 [21], while
be destabilized by the KH-domain containing proteins [22,23] and
FXR1P [24]. It seems that the increase of p21mRNA stability is associat-
ed with the p53 signaling pathway since most of the above stabilizing
factors are targets of p53, while the reduction of p21 mRNA stability is
usually p53-independent.

Considering that most regulated mRNAs are degraded via the
deadenylation-dependent pathway [25], deadenylases are expected to
participate in the regulation of p21 mRNA stability. However, only
Ccr4d/ANGEL2has been characterized thus far to elevate p21mRNAsta-
bility by binding with the 3′-UTR directly [21]. Meanwhile, the deple-
tion of Ccr4b/CNOT6L in NIH 3T3 cells increases the mRNA stability of
p27 but not p21 [26]. Among the various deadenylases, PARN is unique
due to its highly processive deadenylation activity in a cap-dependent
manner (reviewed in [5]). PARN has been shown to participate in
rapid deadenylation mediated by ARE [27], which has been shown to
be a stabilizing element in the p21 mRNA. PARN can be recruited to
the ARE-containing mRNAs by the KH-domain containing proteins
[28], tristetraprolin (TTP) [29], CUG-BP [30] and exosome [27]. Since
two of the Ccr4 family proteins have been shown to have no impacts
on the promotion of p21 mRNA deadenylation [21,26], herein we
asked whether PARN plays such a role in the cells. The proposal of p21
mRNA deadenylation triggered by PARN can be indirectly supported
by several physiological functions of PARN. Recently it has been
shown that PARN is involved in DNA-damage response via the
p38MAPK/MK2 pathway [31] and/or recruitment by CstF-50 [32].
Knockdown of PARN increases the migration rate of mouse myoblasts
[33]. Moreover, PARN has been found to have a high expression level
in acute leukemias [34]. These observations suggest that PARN plays a
role in cellular processes involving the action of p21. To further eluci-
date the cellular functions of PARN, the expression of PARN was stably
knocked down in two human gastric cancer cell lines, MKN28 and
AGS. Our results showed that depletion of PARN resulted in cell prolifer-
ation inhibition and cell cycle arrest at the G0/G1 phase. Furthermore,
we showed that depletion of PARN led to a significant increase of p21
expression. However, the two gastric cancer cell lines showed
heterogeneity in response to PARN knockdown. The increased p21 ex-
pression inMKN28 cells wasmore likely to be caused by the compensa-
tory upregulation of the other deadenylases such as Ccr4d, while that in
AGS cells was due to the stabilization of the p21 mRNA induced by
PARN-depletion directly.

2. Materials and methods

2.1. Materials

Rabbit anti-PARN and anti-Dcp1a antibodies were from Abcam. An-
tibodies against human Ccr4a, cyclin D1, cyclin E2, CDK2, CDK4, p21,
p27, p53, poly(ADP-ribose) polymerase (PARP), caspase 3 and RIPK1
were purchased from Cell Signaling Technology. Horseradish peroxi-
dase (HRP)-conjugated secondary antibodies were obtained from Ther-
mo Fisher Scientific. Cy5-conjugated anti-rabbit secondary antibody
was from Jackson ImmunoResearch Laboratories. The hCaf1a antibody
was from Abnova. The transfection reagent Lipofectamine™ 2000 was
purchased from Invitrogen and Vigofect was from Vigorous. Moloney
murine leukemia virus (M-MLV) reverse tanscriptase, hygromycin B
and Hoechst 33342 were obtained from Invitrogen. The gastric tumor
tissues were kindly gifted by Professor Zhou HM (Tsinghua University)
and thedescription of the tissues has been described elsewhere [35]. Ac-
tinomycin D, agarose, ribonuclease A (RNase A), propidium iodide,
H2O2, hydroxyl urea (HU), cisplatin, Triton X-100, bovine serum albu-
min (BSA), NaCl and mouse anti-β-actin antibody were purchased
from Sigma. Tris, EDTA, dextran sulfate, deionized formamide, formam-
ide, and crystal violet were purchased from Amresco. Sodium
deoxycholate, sodium dodecyl sulfate (SDS) and paraformaldehyde
were from Merck. RNase inhibitor was from Promega and EvaGreen
dyewas from Biotium. Fluoromount-Gwas from Southern Biotechnolo-
gy Associates. All other chemicals were of analytical grade.

2.2. Cell culture

MKN28 and AGS cell lines were purchased from the China Center of
American Type Culture Collection (ATCC, Wuhan, China) and cultured
in Dulbecco's modified Eagle's medium (DMEM, Gibco) with 10% FBS
(fetal bovine serum, Gibco) at 37 °C with 5% CO2.

2.3. Establishment of PARN-depleted stable cell line

Stable PARN-depleted cell line was obtained by down-regulation of
endogenous PARN expression by shRNA treatment. The oligonucleo-
tides encoding the small hairpin RNA (shRNA) were as follows: 5′-
GATCCATCTCGAAGAACAGCCCTGTTCAAGAGACAGGGCTGTTCTTCGAG
ATGCTTTTTTGGAAA-3′ (sense); and 5′-AGCTTTTCCAAAAAAGCATCTC
GAAGAACAGCCCTGTCTCTTGAACAGGGCTGTTCTTCGAGATG-3′ (anti-
sense). The shRNA oligonucleotides were cloned into the linearized
vector pSilencer hygro (Ambion). The plasmids were transfected into
the MKN28 and AGS cells using Lipofectamine™ 2000 (Invitrogen) ac-
cording to the instructions of the manufacturer. The pSilencer hygro
negative control vector was supplied within the kit (Ambion) and the
sequence of the negative control was 5′-GATCCACTACCGTTGTTATAGG
TGTTCAAGAGACACCTATAACAACGGTAGTTTTTTGGA-3′. The cells were
maintained under a selective culture medium containing hygromycin
B with a concentration of 200 μg/ml and 400 μg/ml for the MKN28
and AGS cells, respectively. The stable PARN-knockdown cell lines
were obtained after 15–20day selection. The specificity and knockdown
efficiency of PARNwere checked by real-time reverse transcription PCR
(RT-PCR) and Western blot analysis.

2.4. Real-time RT-PCR

The total RNA was extracted from the cells using a Qiagen RNA ex-
traction kit. In each reaction, 1 μg total RNA was reverse-transcribed
into cDNA using the reverse tanscriptase of M-MLV. The obtained
cDNA was diluted 2× with Tris–EDTA, and then 1 μl diluted cDNA was
analyzed by quantitative PCR using a Stratagene MX3005p cycler and
EvaGreen dye with three repetitions. The primers used for PCR were
as follows: PARN forward, 5′-CGGAATTCGGCGAGTAGAACC-3′; PARN re-
verse, 5′-CCTCCTCTATGGCCTGGTACA-3′; p21 forward, 5′-GGCGAGGC
CGGGATGAGTTG-3′; p21 reverse, 5′-CTGCCGCCGTTTTCGACCCT-3′;
p27 forward, ′-ATCACAAACCCCTAGAGGGCA-3′; p27 reverse, 5′-GGGT
CTGTAGTAGAACTCGGG-3′; p53 forward, ′-GAGGTTGGCTCTGACTGT
ACC-3′; p53 reverse, 5′-TCCGTCCCAGTAGATTACCAC-3′; hcaf1a forward,
5′-AAGGTGGATTACAGGAGGTGG-3′; hcaf1a reverse 5′-TGAACCAGAA
CCAAGGCCATA-3′; hcaf1b forward, 5′-AGATCCGAGAAATCGTGCTCA-
3′; hcaf1b reverse, 5′-ATTGCACCGCAGAAGCTGATA-3′; hccr4a forward,
5′-TACCCGCAGAACTCGGAAAC-3′; hccr4a reverse, 5′-CAGCAGCCGT
CTTGTTCCAT-3′; hccr4b forward, 5′-CTGCCGTCAGCATCATTCAC-3′;
hccr4b reverse, 5′-TCCATCATATCCACGCTCCTT-3′; hccr4d forward,
5′-CTACACCGTGGGAGAATCTGC-3′; hccr4d reverse, 5′-GATGTCTGGCTC



Fig. 1. Upregulation of PARN in human gastric cancer cell lines and tumor tissue samples.
(A) RelativemRNA level of PARN in theMKN28 andAGS human gastric cancer cell lines by
semi-quantitative RT-PCR (left) and quantitative real-time PCR analysis (right). The nor-
mal stomach tissue was used as a control. The abundance of PARN mRNA by real-time
RT-PCR was quantified by the GAPDH mRNA and normalized by the value of the control.
(B) Real-time RT-PCR analysis of PARN mRNA expression in six pairs of human gastric
tumor tissue samples. The abundance of PARN was quantified by the GAPDH mRNA and
normalized by the value of the normal tissue in each pair of sample. The error bars are
standard deviations from three repetitions of the total RNA samples from one patient
(*p b 0.05, **p b 0.01).
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AGGTTGTCA-3′; PAN2 forward, 5′-ACCCAAGTCTGCTACAGAATGT-3′;
PAN2 reverse, 5′-CACGCTGTGCAATTCAGAGTA-3′; PAN3 forward, 5′-
GGATGGAGGTGCTTTAACTGA-3′; PAN3 reverse, 5′-GATCATGGGCTGAA
TATGGCTT-3′; GAPDH forward, 5′-CGCTCTCTGCTCCTCCTGTT-3′;
GAPDH reverse, 5′-CCATGGTGTCTGAGCGATGT-3′; 18S rRNA forward,
5′-CAGCCACCCGAGATTGAGCA-3′ and 18S rRNA reverse, 5′-TAGTAGCG
ACGGGCGGTGTG-3′.

2.5. Western blotting

Whole cell lysates were prepared in RIPA buffer (50mMTris pH 8.0,
150 mM NaCl, 1% Triton X-100, 1 mM EDTA, 0.5% sodium deoxycholate
and 0.1% SDS). The lysates (40 μg) were boiled in 5× protein loading
buffer, separated by a 12.5% SDS-PAGE and transferred to a PVDFmem-
brane (GE). Bound primary antibodies were detected with HRP-
conjugated secondary antibodies (1:3000 dilution) using SuperSignal
West Pico Chemiluminescent Substrate (Thermo Fisher Scientific).

2.6. Cell proliferation assay

Cell proliferation was evaluated by the 3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
inner salt (MTS) assay and the AlamarBlue assay. As for the MTS assay,
cell proliferation rates were determined using the CellTiter 96 Aqueous
One Solution Proliferation Assay Kit (Promega). The PARN-depletion
stable cell lines were seeded into 96-well culture plates with a density
of 1 × 103 cells/well. After cultivation for 0, 1, 2, 3, 4 and 5 days, the
MTS solution was added to the medium and the cells were incubated
for another 1 h. Cell viability was determined by measuring the absor-
bance at 490 nmusing amicroplate reader (Bio-Rad). For the AlamarBlue
assay,MKN28 andAGS stable cells (2×103 cells/well)were seeded in 96-
well plate. After 24 h cultivation, the cells weremoved to 100 μl fresh cul-
ture medium and then 10 μl alamar blue (Invitrogen) was added to each
well. After 4 h incubation with the dye, cell viability was analyzed by de-
tecting the fluorescence emitted at 585 nm after excited at 570 nm on a
multiwell plate reader (FLUOstar Omega).

2.7. Colony formation assay

Cells (1 × 103) were seeded in 10-cm dishes. The culturing medium
containing hygromycin B was replaced every 3–4 days. After being
seeded for 2 weeks, cells were stained with 0.1% crystal violet and
then photographed. The soft agar assay was performed in 6-well plates.
Cells (1 × 104) were resuspended in the DMEM medium with 0.7%
agarose (Sigma-Aldrich) and seeded onto 6-well plates, which had
been precoated with 1% base agarose. Cells were cultured for 2 weeks
and then stained with 0.005% crystal violet.

2.8. Cell cycle assay

Cells were fixed with 70% ethanol at 4 °C overnight. After washing
with PBS, cells were incubated with RNase A (100 μg/ml) in PBS for
30 min at 37 °C and then stained with propidium iodide (50 μg/ml).
The percentages of cells in the G0/G1, S and G2/M phases of the cell
cycle were determined by FACSCalibur (BD Biosciences) and analyzed
with ModFit LT 3.0.

2.9. Cell apoptosis assay

Cells at 90% confluence were exposed to UV light or treated with
hydrogen peroxide (H2O2), hydroxyl urea (HU) and cisplatin. After
treatment, the cells were harvested, rinsed in PBS and resuspended in
annexin V bindingbuffer. Then the cellswere incubatedwith propidium
iodide (PI) and FITC-labeled annexin V (BD Biosciences) according to
the manufacturer's instructions. Apoptosis analysis was carried out on
a FACSCalibur flow cytometer (BD Biosciences).
2.10. Cell motility assays

The cellmotilitywas assessed bywoundhealing, transwell and inva-
sion assays. As for thewound healing assays, cells were seeded in 6-well
plates and cultured until they approached confluence. The monolayer
was scratched with a 200 μl pipette tip. After 0, 24 and 48 h cultivation,
the cultures were imaged by an Olympus IX71 invertedmicroscope and
the wound size was measured. Transwell migration assay was per-
formed by suspending 5 × 104 cells in serum-free DMEM and plated
on 24-well Millicell chambers (8-μm pore size, Millipore) without
matrigel coating. Invasion assay was performed by adding 5 × 105

cells in serum-free DMEM to the upper chamber, which was precoated
with 5 mg/ml matrigel (Vigorous). Then the medium containing 10%
FBS was added to the lower chamber as a chemoattractant for both
the transwell and invasion assays. After 24 h cultivation, cells in the
upper chamber were removed with a cotton swab and then stained
with 0.5% crystal violet. The migration and invasion ability of the cells
were determined by dissolving the stained cells with 10% acetic acid
and measuring the absorbance at 560 nm.
2.11. Immunofluorescence microscopy

The MKN28 and AGS cells were grown on glass coverslips. After 20 h
incubation, cells were fixed in 4% paraformaldehyde for 30min, followed
by a 30 min permeabilization in 0.2% Triton X-100 in PBS. Then the cells
were blocked in PBS containing 10% goat serum for 1 h at ambient tem-
perature. Immunostainingwas carried out using Dcp1a (Abcam) primary
antibodies at 4 °C overnight, washed three times with PBS and incubated
with the Cy5-conjugated anti-rabbit secondary antibody (Jackson
ImmunoResearch Laboratories) for 1 h at room temperature. The nuclei
were counterstained with Hoechst 33342 (Invitrogen) for 1 min and
rinsedwith PBS. The cellsweremounted using Fluoromount-G (Southern



Fig. 2. Effect of PARN-knockdown on cellmotility. (A)Western blot analysis of the knockdown efficiency in the stableMKN28 andAGS cell lines used for further analysis.β-Actinwas used
as an internal control of protein loading. (B) Effect of PARN-depletion on cell motility by wound healing assay. MKN28 (top) and AGS (bottom) cells were grown to 90% confluency and
scratched with a pipette tip. The initial wound sizes were different for MKN28 and AGS cells because that MKN28 cells were prone to grow into clusters. To ensure the repeatability of the
experiments, the initial wound size of MKN28 cells was larger than that of AGS cells. After scratch, the sizes of the wounds were determined after 24 h and 48 h incubation.
(C) Quantification of the changes of wound size along with incubation time. Data are mean ± SD of three independent experiments. *p b 0.05. (D) PARN-depletion does not affect cell
motility monitored by transwell assay. MKN28 and AGS cells (5 × 104) were plated on 24-well Millicell chambers without coating by matrigel. After 24 h cultivation, the cell motility
was determined by dissolving the crystal violet stained cells with 10% acetic acid and measuring the absorbance at 560 nm. The data of the PARN-depleted cells were normalized by
those of the control cells. Relative quantification data are mean ± SD of three independent experiments. (E) PARN-depletion does not affect cell invasion ability. The cells (5 × 105)
were plated on 24-well Millicell chambers precoated with 5 mg/ml matrigel. After 24 h cultivation, the cell invasiveness was determined by dissolving the crystal violet stained cells
with 10% acetic acid and measuring the absorbance at 560 nm. The data of the PARN-depleted cells were normalized by those of the control cells. Relative quantification data are
mean ± SD of three independent experiments. No significant difference was observed for the results of the transwell and invasion assays (p N 0.2).
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Biotechnology Associates) and analyzed by a Carl Zeiss LSM 710 confocal
microscope.

2.12. RNA fluorescence in situ hybridization

Poly(A)+ RNAs were visualized by fluorescent in situ hybridization
(FISH) as described previously [36]. In brief, cells were seeded on glass
coverslips for 24 h, fixed with 4% paraformaldehyde in PBS and dena-
tured in 70% formamide at 70 °C. The cells were permeabilized and
blocked for 40 min by 0.5% Triton X-100/2% BSA in PBS, followed by
2 h of prehybridization at ambient temperature in hybridization buffer
(4 × SSC, 5% dextran sulfate, 2% BSA, 35% deionized formamide and 10
U RNase inhibitor). Hybridization was carried out overnight at ambient
temperature in a humidified dark chamber in the presence of 300 ng/ml

image of Fig.�2


526 L.-N. Zhang, Y.-B. Yan / Biochimica et Biophysica Acta 1853 (2015) 522–534
Cy5-conjugated oligo(dT)30 probe in hybridization buffer. After washing
with 4 × SSC and 35% deionized formamide for three times, the cells
were counterstained with Hoechst 33342 (Invitrogen) and mounted
with Fluoromount-G. Immunofluorescence images were obtained by a
Carl Zeiss LSM 710 confocal microscope.

2.13. Luciferase reporter assay

The luciferase reporter assay was performed as described previously
[21]. In brief, cells were seeded into 24-well plates before transfected
with the p21 promoter, 5′-UTR or 3′-UTR luciferase reporter constructs.
pRL-TKwas used as an internal control. After transfected for 24h, the lu-
ciferase activity was measured using the dual luciferase kit (Vigorous)
according to the manufacturer's protocol.

2.14. Bioinformatics analysis

The ONCOMINE database (https://www.oncomine.org/resource/
login.html), a cancer microarray database and online data-mining plat-
form [37], was used to search for the changes of PARN mRNA level in
various types of cancers including gastric cancer. The bioinformatics
analysis was performed using a threshold (p-value) of 1 × 10−4, a
threshold (fold change) of 1.5 and a data type of mRNA. There are 9
datasets with PARN mRNA levels in gastric cancers, and all of the 9
datasets were used for the analysis.

2.15. mRNA stability assay

For the mRNA stability measurement, MKN28 and AGS cells
were cultured in 12-well plates in the DMEM medium. Transcription
Fig. 3.Depletion of PARN inhibits cell proliferation. (A) Cell proliferationmonitored by theMTS
either 200 μg/ml (MKN28) or 400 μg/ml (AGS) hygromycin B. The growth curves for MKN28 a
assay.MKN28 and AGS cells (2 × 103 cells/well) cultivated for 24 h and then treatedwith 10 μl a
PARN-depleted cellswere normalized by those of the control cells. (C) Colony formation assay. T
ml (MKN28) or 400 μg/ml (AGS) hygromycin B for 2 weeks and then stained with crystal viole
repetitions of one of the biological replicates and all assays were verified using at least one dif
inhibition was accomplished by addition of 5 μg actinomycin D for 0,
2, 4, 6, 8, 10 or 12 h. After treatment, the total RNA was extracted by
standard procedures. Then the amount of p21, p27 or p53 mRNA was
determined by real time RT-PCR by using GAPDH as an internal control.
The datawere normalized by the untreated sample. To avoidmisleading
results caused by the toxic effect of long-term actinomycin D treatment,
mRNA half-life was determined only for thosemRNAswith a significant
decrease within 4 h of actinomycin D treatment. The half-life of mRNAs
was obtained by fitting the time-course data using the first-order expo-
nential decay kinetics.
2.16. Quantification and statistical analysis

Relative quantification was estimated by comparing the PARN-
depleted cells with the control cells cultivated under the same condi-
tions and normalizing the data of the PARN-depleted group by the
control group in each biological replicate. Most cell experiments
were performed and analyzed with at least three independent bio-
logical replicates, which were performed separately using different
sets of cells. The MTS assay, AlamarBlue assay, colony formation
assay and quantitative PCR experiments were performed with at
least two biological replicates. To avoid the misleading statistical
analysis caused by large errors between different sample prepara-
tions, the presented data of these assays were from one biological
replicate with at least three repetitions. Statistical analysis was per-
formed using GraphPad Prism 5. The unpaired two-tailed Student's t
test was used to compare the sets of data with at least three repeti-
tions by assuming a Gaussian distribution. A p value less than 0.05
was considered significant.
assay. TheMKN28 and AGS cells were cultured in the DMEMmediumwith the addition of
nd AGS cells were determined by MTS assay. (B) Cell viability detected by the AlamarBlue
lamar blue. The fluorescence at 585 nmwasmeasured after 4 h incubation. The data of the
heMKN28 and AGS cells (1 × 103)were cultured in theDMEMmedium containing 200 μg/
t. The number of colonies was counted. All presented data in Fig. 3 are mean± SD of three
ferent biological replicate. *p b 0.05, **p b 0.01, and ***p b 0.001.

https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
image of Fig.�3


Fig. 4.Depletion of PARN induces cell cycle arrest at the G0/G1 phase. (A) Representative profiles of cell cycle progression analyzed by flow cytometry using propidium iodide staining. The
DNA contents of the control and PARN-knockdown cells were measured by propidium iodide staining and sorted by flow cytometry. (B) Percentages of cells in the G0/G1, S and G2/M
phases. Thepercentage of eachphasewas quantified from theflowcytometry analysis of 20,000 cells. (C) Effect of PARN-depletion on the expression of cell cycle-relatedproteins.Western
blot analysis was performed for the cell lysates prepared from the control and PARN-depleted cells. The proteins were identified and quantified by antibodies against cyclin D1, CDK4,
cyclin E2, CDK2, p21, p27, p53 and PARN. β-Actin was used as an internal control for protein loading of Western blotting. (D) Quantitative analysis of the protein expression changes
of p21, p27 and p53. The quantification of cyclin D1, cyclin E2, PARN, CDK2 and CDK4 are shown in Supplemental Fig. S4. Quantitative data in panels B and D are mean ± SD of three in-
dependent biological replicates. *p b 0.05, **p b 0.01.
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3. Results

3.1. Expression level of PARN in human gastric cancer cells and tissues

Previous studies have shown that PARN has a high expression
level in acute leukemia [34] and has been proposed to be a potential
cancer therapeutic target [7]. To examine the expression status of
PARN in human gastric cancer, semi-quantitative and real-time RT-
PCR was used to examine the mRNA level of PARN in two human gas-
tric cancer cell lines and six pairs of gastric tumor tissues from
patients described elsewhere [35]. The results (Fig. 1) indicated
that PARN was upregulated in both of the two gastric cancer cell
lines. Meanwhile, significantly elevated PARN expression was found
in two tumor samples (#1 and #3) among the six pairs of tissue sam-
ples, while PARN downregulation was also observed in sample #2. We
further analyzed the changes of PARN expression in various cancers
via the online cancer microarray database ONCOMINE [37]. PARN was
found to be upregulated in many types of cancers (Supplemental
Fig. S1). Particularly, upregulation of PARN mRNA level was found in 5
out of 9 datasets of gastric cancers.
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Fig. 5. Effect of DNA-damaging treatments on cell cycle arrest induced by PARN-depletion. (A) Percentages of cells in the G0/G1, S and G2/M phases quantified by three flow cytometry
analysis of 20,000 cells. Representative profiles are presented in Supplemental Fig. S6. (B) Expression levels of p21 (top) and p27 (bottom) byWestern blot analysis. RepresentativeWest-
ern blot results are shown in Supplemental Fig. S7. MKN28 and AGS cells at 90% confluence were exposed to UV light or treatedwith the DNA-damaging reagents and then the cells were
harvested. The whole cell lysates were used forWestern blot analysis using the antibodies against p21 and p27. β-Actin was used as a loading control. Data are mean± SD of three inde-
pendent experiments.
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3.2. PARN-depletion inhibits cell proliferation

To investigate the potential roles of PARN in tumorigenesis, stable
cell lines with the depletion of endogenous PARN were achieved by
shRNA-mediated knockdown in MKN28 and AGS cells. Five clones in
MKN28 cells and six clones in AGS cells were obtained, and the knock-
down efficiencies were checked by real-time RT-PCR and Western
blotting (Supplemental Fig. S2). The clones with N80% knockdown effi-
ciency at both the mRNA and protein levels were selected for further
research (Fig. 2A).

Previously PARN-knockdownhas been shown to increase themotility
of mouse C2C12myoblasts bymodifying the fates of mRNAs required for
cell migration and adhesion [33]. Thus the effect of PARN-knockdown in
the gastric cancer cells was first investigated by the wound-healing
assay (Fig. 2B). The size of the wound was measured at 24 h and 48 h
after the monolayer of cells was scratched (Fig. 2C). The migration rates
of both MKN28 and AGS cells were inhibited by the depletion of PARN
after 48 h incubation, but the difference was minor for cells incubated
24 h after scratching. Meanwhile, the results from both transwell and
invasion assays indicated that the knockdownof PARNdid not influence
the migration and invasion rates of the gastric cancer cells (Fig. 2D and
E). Thus the decrease in wound healing rate by PARN-knockdown
observed at 48 h was more likely to be caused by the difference in cell
proliferation but not cell motility. Moreover, the differential effect of
PARN-knockdown observed in mouse myoblasts and gastric cancer
cells also suggested that cancer cells might utilize different regulatory
mechanisms of cell motility from mouse myoblasts/normal cells.

The effect of PARN-knockdown on cell proliferation was examined
by MTS assay, AlamarBlue assay and colony formation experiments.
The time-course study by MTS assay indicated that the depletion of
PARN significantly retarded cell proliferation after 2–3 day incubation
for both of MKN28 and AGS cells (Fig. 3A). Meanwhile, AlamarBlue
assay also indicated that the cell viability was significantly inhibited
by PARN-knockdown after 24 h cultivation (Fig. 3B). Consistently, se-
vere reduction of proliferation rate induced by PARN-depletion was
also observed by colony formation experiments for both types of cells
(Fig. 3C).We failed to formcolony byMKN28 cells in soft agar. Nonethe-
less, the soft agar assay of AGS cells confirmed that PARN-depletion
resulted in an inhibitory effect on the colony formation ability (Supple-
mental Fig. S3).

3.3. PARN depletion leads to cell cycle arrest by upregulating p21 expression

To investigate the mechanism underlying the inhibitory effect of
PARN-depletion on cell proliferation, cell cycle progression was ana-
lyzed by flow cytometry using propidium iodide (PI) staining (Fig. 4A
and B). For both gastric cancer cell lines, the depletion of PARN induced
a significant elevation in the proportion of G0/G1 phase cells (9% and
22% increase in MKN28 and AGS cells, respectively) accompanied with
a reduction in the amount of S phase cells (7% and 15% decrease in
MKN28 and AGS cells, respectively). The effect of PARN-depletion on
cell populations at the G2/M phase was minor and the difference
might be caused by the indirect effect of arresting cells at the G0/G1

phase. These observations suggested that PARN might involve in cell
cycle regulation and the depletion of PARN inhibited cell cycle progres-
sion by retarding the phase transition from G0/G1 to S.

The arrest of the cells at the G0/G1 phase was confirmed by the sig-
nificant decrease in the amount of the G1/S-specific cyclin D1, while
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Fig. 6. PARN-depletion promotes cell death. (A) Representative profiles of AGS cell death determined by annexin V binding (horizontal) and PI exclusion (vertical) followed by flow cy-
tometry. The profiles of theMKN28 and AGS cells treated by various DNA-damaging reagents are shown in Supplemental Fig. S8. (B) Percentages of apoptoticMKN28 and AGS cells qual-
ified from the annexin V-positive populations. (C) Percentage of necrotric cells qualified from the PI-positive and annexin V-negative populations. The cells are treatedwith various DNA-
damaging reagents and UV irradiation. N.C. represents cells without any treatment. The percentages of apoptotic and necrotric cells were quantified from 10,000 cells. (D) Changes in
RIPK1 expression. (E) Changes in the amounts of cleaved RIPK1. Representative Western blot analysis of the changes in the expression of PARP, caspase 3 and RIPK1 is shown in Supple-
mental Fig. S9. No significant changes were found for PARP and caspase 3 expression levels. Data are mean ± SD of three independent experiments. *p b 0.05.
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the other cell cycle promotion factorswere not affected by the depletion
of PARN (Fig. 4C and Supplemental Fig. S4). It is worth noting that the
function of cyclin E can rescue many of the phenotypes of cyclin D1-
deficient mice [38]. As shown in Fig. 4C, the level of cyclin E2 was unaf-
fected by PARN-knockdown, implying that the down-regulation of
cyclin D1 might not be the predominant cause of the growth inhibition
effect of PARN-depletion. Thus the expression levels of the major nega-
tive regulators of the G1–S transition (p53, p21 and p27) were exam-
ined by Western blotting in PARN-depleted MKN28 and AGS cells
(Fig. 4C and D). The results indicated that knockdown of PARN led to a
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Fig. 7. PARN-depletion did not affect the formation of intracellular poly(A)+ foci. (A) Formation of poly(A)+ RNA granules detected by FISH. The poly(A)+RNAswere hybridizedwith Cy5-
conjugated oligo-(dT)30 in the control and PARN-depletedMKN28 and AGS stable cells. The nuclei were counterstainedwith Hoechst 333242. After staining, the cells were visualized and
analyzed by immunofluorescence confocal microscopy. (B) Formation of cytoplasmic P-bodies. Dcp1awas used as themarker protein of P-body. Quantification analysis of the numbers of
P-bodies in the cells is shown in Supplemental Fig. S10. The scale bar represents 10 μm.
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significant upregulation of p21 and p53 proteins, but no changes in p27
expression for both cell lines (Fig. 4C and D). Thus the phonotype in
PARN-depleted MKN28 and AGS cells was more likely to be caused by
the accumulation of p53 and the CDK inhibitor p21. Moreover, upregu-
lation of p21 expression was observed for all PARN-depleted stable cell
lines grown from various cloneswith N80% knockdown efficiency (Sup-
plemental Fig. S5).

We further investigated whether the effect of PARN-depletion on
cell cycle progression was affected under DNA-damaging conditions
(Fig. 5 and Supplemental Fig. S7). The DNA-damaging treatments influ-
enced the cell cycle progression differentially. Depletion of PARN could
arrest MKN28 cells at the G0/G1 phase for most DNA-damaging treat-
ments except for cells treated by cisplatin. As for AGS cells, PARN-
depletion induced cell-cycle-arrest was retained only for UV treatment.
For the control cells, p21 upregulation by most DNA-damaging
Fig. 8.Changes in themRNA level and stability of p21, p27 and p53 induced by PARN-depletion. (A)
RT-PCR (n=3). (B)mRNA stability of p21 (left), p27 (middle) and p53 (right).mRNA stabilitywas
μg/ml. Then the changes in the mRNA levels of p53 and p21were obtained by real-time RT-PCR
actinomycin D treatment were fitted by the first-order exponential decay kinetics and the fitted d
mentmight be affected by alterations in cellular physiology and thuswere not used forfitting. The
The half lives of p27were 0.7 ± 0.4 h, 1.4 ± 0.2 h, 0.9 ± 0.2 h and 1.2 ± 0.2 h for the control MKN
cells, respectively. No significant difference was observed for the fitted half-lives of p27 among gro
PARN-depletion on the mRNA levels of the other deadenylases determined by real time RT-PCR
protein levels of the other deadenylases were not checked due to the lack of highly specific an
(n=8). MKN28 and AGS cells were transfected with p21 promoter-driven luciferase reporter con
(F) Effect of PARN-depletion on p21 5′- and 3′-UTR luciferase reporter activity (n= 3). MKN28
constructs. pRL-TKwas co-transfected and used as an internal control. Luciferase reporter activitie
data are mean ± SD of at least three repetitions from one of the biological replicates. *p b 0.05, **
treatments was pronounced in AGS cells, while minor in the MKN28
cells. Nonetheless, PARN-depletion led to similar patterns of changes
in p21 and p27 expression in the two cell lines when treated by various
DNA-damaging reagents or UV. In detail, the expression level of p27was
unaffected by stress conditions as well as PARN-depletion (Fig. 6B).
Meanwhile, PARN-depletion induced upregulation of p21 was found
for cells treated by H2O2 and UV. No significant effect of PARN-
depletion was observed for cells treated by HU. Surprisingly, treatment
by cisplatin, one of the most potent chemotherapy drugs widely used
for cancer treatment, reversed the effect of PARN-depletion-induced in-
crease of p21 expression. Furthermore, our results suggested that the ef-
fect of cisplatin as well as cancer therapy of p21-gene transfer with
cisplatin might be unsatisfactory in PARN-depleted tumors. Further re-
search is needed to elucidate the underlyingmechanism of this surpris-
ing observation.
Steady-statemRNA levels of p21 (left), p27 (middle) and p53 (right) determined by real time
determined by treating theMKN28 andAGS cells by actinomycinDwith a concentration of 5
analysis at various time intervals (n= 3). The data of mRNA with a fast decay within 4 h of
ata are shown as solid lines. The changes inmRNA amounts after 4 h of actinomycin D treat-
half life of p21 in control AGS cellswas 1.1±0.1 h,while those in the other groupswere N4 h.
28 cells, the PARN-depletedMKN28 cells, the control AGS cells and the PARN-depleted AGS
ups (p=0.21), and the best fitted half-life of p27was 1.1± 0.2 h for all groups. (C) Effect of
(n= 3). (D) Effect of PARN-depletion on the protein levels of human Caf1a and Ccr4a. The
tibodies. (E) Effect of PARN-depletion on p21 promoter-driven luciferase reporter activity
structs. The measured luciferase activity was normalized by the activity of Renilla luciferase.

and AGS cells were transfected with pGL3-basic vector, p21 5′-UTR or p21 3′-UTR luciferase
sweremeasured and expressed as ratios of firefly luciferase to Renilla luciferase. Quantitative
p b 0.01, and ***p b 0.001.
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3.4. PARN-depletion promotes cell death

The above results showed that the PARN-depletion cells were
arrested at the G0/G1 phase probably via upregulation of p53 and p21.
Both p53 and p21 are key regulators in cell growth and survival. The
arrested cells generally have two distinct fates: returning back to the
cell cycle or initiating cell death pathways. The effect of PARN-
knockdown on cell death was analyzed by bivariate flow cytometry
using annexin V and PI staining. PI stains the necrotric cells, while
annexin V stains the apoptotic cells [39]. Thus the cells separated by
flow cytometry can be divided into four populations of PI-negative
and annexin V-negative, PI-positive and annexin V-negative, PI-
negative and annexin V-positive as well as PI-positive and annexin V-
positive cells, which corresponds to normal cells, primary necrotric
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cells, late apoptotic/secondary necrotric cells and early apoptotic cells,
respectively. The results shown in Fig. 6A indicated that the depletion
of PARN led to an about two-fold increase in the average values of
both annexin V-positive apoptotic cells and PI-positive necrotric cells
for both cell lines.

Although cell death was promoted by PARN-depletion in both of
the gastric cancer cell lines, the results were not so pronounced
due to the limited numbers of apoptotic and necrotric cells. Thus
we further investigated whether the effect of PARN-depletion on
cell death could be amplified under DNA-damaging conditions stud-
ied by bivariate flow cytometry (Supplemental Fig. S8). As shown in
Fig. 6B and C, the DNA-damaging reagents affected the two types of
gastric cancer cell lines differentially. DNA-damage promoted apo-
ptosis in MKN28 cells, while increased necrosis in AGS cells. None-
theless, no significant difference in apoptosis and necrosis was
observed between the control and PARN-depleted cells, implying
that the cell-death promoting effect of PARN-depletion might be
neutralized by these DNA-damaging agents. Under UV treatment, a
significant increase was induced by PARN-depletion for both of
the annexin V-positive and PI-positive populations. However, the
two-fold increase was at the same level as the impact of PARN-
depletion on untreated cells, implying that the stress conditions
did not significantly affect cell death induced by PARN-depletion in
the two gastric cancer cells.

No detectable cleavage of PARP and caspase 3was found in both gas-
tric cell lines under various DNA-damaging treatments, while the ex-
pression of RIPK1 was upregulated by PARN-depletion (Supplemental
Fig. S9). Upregulation of RIPK1 induced by PARN-depletion was more
pronounced in AGS cells than in theMKN28 cells.Moreover, the amount
of RIPK1 in PARN-depleted cells was unaffected by DNAdamage, but in-
creased in the control cells (Fig. 6D). Only a small portion (b10%) of
RIPK1 was cleaved and quite dissimilar effects of DNA damage and
PARN-depletion was observed for the two gastric cell lines (Fig. 6E). In
AGS cells, the behavior of the cleaved RIPK1 were similar to uncleaved
RIPK1, which might be caused by the increase of RIPK1 expression in-
duced by DNA damage and PARN-depletion. Thus the increased cell
death caused by PARN-depletion was at least partially via the RIPK1-
mediated pathway.

3.5. PARN-depletion does not affect the formation of RNA granules

The translational-repressed or degradable mRNAs may accumulate
into cellular foci (RNA granules) that can be stained by RNA probes
[40]. Although the behavior of PARN has not been investigated in the
formation of the well-characterized cytoplasmic RNA granules, the pro-
cessing body (P-body) and stress granule, PARN has been shown to be a
component of exosome [27]. To assess whether PARN-depletion affect-
ed the formation of RNA granules globally, the distribution of poly(A)+

RNAs was visualized by FISH using a fluorescent Cy5-oligo(dT)30 probe.
For both gastric cancer cells, most of the poly(A)+ fociwere found in the
nucleus,while aminor amount could also be identified in the cytoplasm
of MKN28 cells. A comparison between the control and PARN-depleted
cells (Fig. 7A) indicated that the knockdown of PARN did not affect the
formation of various poly(A)+ foci. Specifically, the P-bodies, which are
proposed to be cytoplasmic sites of mRNA decay, were stained by a P-
bodymarker protein, Dcp1a [41]. Both types of cells possessed consider-
able amounts of P-bodies, while AGS cells contained even more
(Fig. 7B). Neither the number nor the size of the P-bodies was affected
by the depletion of PARN (Supplemental Fig. S10). These observations
suggested that PARN contributed little to the RNA granule formation
in the gastric cancer cells.

3.6. PARN-depletion stabilizes the p21 mRNA

The results in Fig. 4 indicated that the expression levels of p53 and
p21 were significantly increased in the PARN-depleted gastric cancer
cells. The effect of PARN-depletion on the mRNA levels of p53, p27 and
p21 was investigated by real-time PCR analysis (Fig. 8A). Consistent
with the results at the protein level, no significant changes were ob-
served for the abundance of the p27 mRNA, while both of p53 and p21
were upregulated by PARN-depletion. The upregulation of p53 in
MKN28 cells was more pronounced than that in AGS cells, while that
of p21 was higher in AGS cells. The time-course studies were achieved
by blocking transcription by actinomycin D and then measuring the re-
sidual mRNA level at a given time. Surprisingly, the p53 transcripts
maintained at a high level after treated for 12 h in both cell lines
(Fig. 8B). Unlike p53, the p27 transcripts were degraded quickly with a
half-life of less than 1 h and PARN-depletion had no impact on the
decay of p27 in both gastric cancer cell lines. The p21 transcripts
decayed slowly inMKN28 cells, and the depletion of PARNdid not affect
the decay rate. A rapid decay of the p21 transcripts was observed in AGS
cells with a half-life of ~1 h. PARN-knockdown in AGS cells could suc-
cessfully stabilize p21 and the amounts of p21 mRNAs remained un-
changed within 4 h of actinomycin D treatment. Unlike in MKN28
cells, the expression levels of the othermajor mammalian deadenylases
(Ccr4a, Ccr4b, Ccr4d, Caf1a, Caf1b and PAN2–PAN3) were unaffected by
knockdown of PARN in AGS cells (Fig. 8C and D, right panels). Thus it
seems that the stabilization of p21 mRNAs was directly linked to
PARN-depletion in AGS cells.

Luciferase assays were performed for the promoter and UTR of
p21 to further investigate whether PARN triggered the decay of the
p21 transcripts directly or not. The PARN-depleted MKN28 and AGS
cells were transfected with the p21 promoter-, 5′-UTR- or 3′-UTR-
driven luciferase reporter constructs as described previously [21].
The luciferase activities of the cell lysates were determined after
24 h transfection and the results are shown in Fig. 8E. Consistent
with the mRNA stability results, the luciferase activities were almost
identical for all those assayed in MKN28 cells. As for AGS cells, no
significant difference was observed between the control and PARN-
depleted cells when transfected with the p21 promoter- or 5′-UTR-
driven luciferase reporter constructs. A three-fold increase in the
luciferase activity was induced by PARN-depletion when the lucifer-
ase gene expressed in AGS cells was driven by p21 3′-UTR. Thus the
results in Fig. 8 suggested that the p21 mRNA was degraded in a
deadenylation-dependent pathway directly mediated by PARN in
AGS cells but not in MKN28 cells. The accumulation of steady-state
p21 in the PARN-depleted MKN28 cells was more likely to be an
indirect effect of PARN-knockdown, probably by the compensatory
expression of Ccr4d (left panel of Fig. 8C).

4. Discussion

Although the mechanism of deadenylase function remains a huge
challenge, it is increasingly clear that various deadenylases play an
important role in diverse cellular processes by regulating mRNA
fates. Particularly, some members in both of the Ccr4 and Caf1 fami-
lies have been found to participate in cell proliferation. Depletion of
Ccr4b/CNOT6L retards the growth of NIH 3T3 cells by increasing the
mRNA stability of p27 [26]. Overexpression of Ccr4d/ANGEL2 inhibits
the proliferation of MCF-7 cells by elevating p21mRNA stability [21].
Caf1a/CNOT7 and Caf1b/CNOT8 has been identified to be anti-
proliferation proteins through binding with B-cell translocation
gene proteins (BTG1 and BTG2) [42–47]. Ccr4a/CNOT6 and Ccr4b/
CNOT6L contribute to cell survival and the prevention of cell death
and senescence [48]. In this research, we showed that depletion of
PARN significantly retarded the proliferation of two types of gastric
cancer cells via stabilizing the mRNA stability of p21. To our knowl-
edge, this is the first deadenylase that is identified to effectively
destabilize the p21 mRNA, one of the key regulators in cell growth
and survival.

PARN is highly conserved in higher eukaryotes, but is not identified
in yeast and fly [2,4,5]. Previous functional studies have shown that
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PARN is involved in several crucial physiological processes such as the
meiotic maturation of frog oocytes [49], embryogenesis and stress
response in plants [50,51] and stage-specific protein production in
Trypanosoma brucei [52]. As for the cellular processes, PARN can regu-
late cell motility in mouse myoblasts [33], maturation of mammalian
H/ACA box snoRNA [53], miRNA biogenesis [54] and DNA damage re-
sponse (DDR) [31,32,55]. Although the intact picture of PARN functions
has not been fully deciphered yet, the above pioneering studies have
strongly support the opinion that PARN is not a major deadenylase for
cytoplasmic deadenylation, but mainly functions in highly regulated
mRNA decay by targeting a small subset of mRNAs [5,33]. Our results
also support such an opinion since the depletion of PARN did not
affect the formation of nuclear and cytoplasmic poly(A)+ foci including
P-bodies (Fig. 7). Meanwhile, among the cell proliferation regulators
tested here, PARN-depletion only affects the decay rate of p21 mRNA.

Although it is clear that PARN participates into a certain cellular pro-
cess by specifically modulating the stability of a small subset of mRNAs
[33], the action of PARN seems to strongly depend on the status or pro-
tein expression profiles of the cells. Previously PARN-knockdown has
been shown to reduce cell adhesion and cell movement of mouse
C2Cl2 myoblasts [33]. However, our results suggested that PARN was
not required for themigration and invasion of two different gastric can-
cer cell lines,MKN28 and AGS.More importantly, although growth inhi-
bition induced by PARN-depletionwas observed for both ofMKN28 and
AGS cells, the underlying mechanisms might be quite different. Both
cells had elevated expression levels of p53 and p21. Previously it has
been shown that p53 is one of the targets of PARN in the HCT116 cells
under nonstressed conditions [55]. However, herein we showed that
the stability of the p53mRNAwas unaffected by PARN amounts in gas-
tric cancer cells. PARN-depletionmight affect factors regulating p53, but
not target p53 directly. The depletion of PARN significantly increased
p21 mRNA stability in AGS cells but not in MKN28 cells. Thus PARN
targeted the p21 mRNA 3′-UTR and trigged its decay directly in the
AGS cells, but affected the p21 mRNA stability via an indirect and com-
plicated pathway in the MKN28 cells. One of the major differences be-
tween the MKN28 and AGS cells is that AGS possesses wild-type p53,
whileMKN28 has amutated one [56]. Thus it seemed that the increased
amount of p53 did not contribute to the upregulation of p21 in MKN28
cells. A possible reason is the compensatory expression increase of
Ccr4d/ANGEL2, which has been shown to stabilize p21 in MCF-7 cells
by elevating p21mRNA stability [21]. It is unclear yet why a compensa-
tory effect of deadenylase expression was induced in MKN28 but not
AGS cells by PARN-knockdown. Nonetheless, the dissimilar effect of
PARN-depletion on p21 stability in the two types of gastric cells sug-
gested that the action of PARN may be precisely regulated though
PARN has the intrinsic property to trigger p21 decay.

The strong dependence of PARN function on cellular conditions was
also observed in the action of PARN during DDR. The 80 kDa subunit of
the cap-binding complex (CBP80) can inhibit the deadenylase activity
of PARN [57]. During DDR, the cleavage stimulation factor-50 (CstF-
50) removes the inhibition effect of CBP80 and activates PARN in the
HeLa cells. Lately p38/MK2 has been shown to be able to phosphorylate
PARN during DDR, which subsequently releases the Gadd45α mRNAs
from the degradation pathway in the p53-defective tumor cells [55].
Very recently PARN has been proposed to be activated by the binding
of p53 during DDR in the colon cancer HCT116 cells [55]. A close inspec-
tion into the results in literature as well as the results herein strongly
support the opinion that the cellular functions of deadenylase are de-
pendent on the protein expression profile of a certain type of cells or
under a given stress condition. Our results also suggested that besides
the well-characterized genetic heterogeneity in cancers, the heteroge-
neity at the post-transcriptional level such as mRNA stability could not
be neglected in mechanistic studies and drug design.

It remains unclear for the cis-acting element(s) and trans-
acting factor(s) mediating the targeting of PARN to the p21 mRNA 3′-
UTR. We failed to pull-down potential PARN binding partners by
immunoprecipitation experiments. Although a significant difference
was observed between the two types of gastric cancer cells, the same
phenotype but different mechanisms also raise a big challenge to iden-
tify the key regulators mediating the action of PARN. Nonetheless, it is
clear that the 3′-UTR but not the promoter in the DNA, ORF or 5′-UTR
in the p21 mRNA is the key region containing PARN-responsive cis-
acting element(s). As mentioned in Section 1, the p21 mRNA pos-
sesses a long 3′-UTR and several cis-acting elements such as ARE
has been identified. However, most elements and the corresponding
factors have been found to stabilize p21 [15]. Recently, several p21-
destabilizing RNA-binding proteins have been identified in certain
cell types [22–24]. However, it remains elusive for the relationship
between these RNA-binding proteins and the various deadenylases.

Accumulating evidence supports the idea that mRNA decay plays a
crucial role in human health and diseases. However, the knowledge re-
mains very limited for the regulators of mRNA decay and the pairwise
relationships for elements–factors–deadenylases [2]. PARN has been
proposed to be a potential target of cancer treatment [7] and is highly
expressed in acute leukemias [34] and gastric cancers (this research).
Further research is needed to fully decipher the physiological/patholog-
ical functions and the key mRNA targets of PARN as well as the other
deadenylases.
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