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I. FORMULATION OF THE PROBLEMS 

We study here two questions concerning solutions of the differential 
equation 

Lx = x” +f(t) x = 0, f E GP, 03). (1.1) 

The restriction to piecewise continuous f’s is not essential here; it insures the 
existence of a fundamental set of solutions of (1.1) on [0, m), but it can be 
weakened somewhat without complicating anything in what follows. 

First, let f(t) = 1 + q(t), and assume that Jo3 1 q(7) 1 d7 < 03. One can 
show then that (1.1) has solutions y1 and yz such that 

y1(t) = cos t + o(l), 

yz(t) = sin t + o(l), (1.2) 

as t---m. See [2, Chapter 51 and [l, Theorem (2-lo), pp. 60-62, p. 1351. 
From (1.2) it follows that any solution y of (1.1) can be expressed in the 
form 

y(t) = k cos (t - &J + o(l) (l-3) 

as t -+ 00, where k and #, are constants, k 2 0 and I+%, is determined up to 
an additive multiple of 2~. Consider, in particular, the solution y of (1.1) 
with initial data (cos 0, sin 0), - 77/2 < 0 _< r/2. Then as t --t 0, y(t) = 
cos (t - 0) + o(t), and there exist continuous functions v and # such that 
for every T E [0, 03) and t E [0, co), 

y(t) = W(T) cos [(t - T) - (#(T) - T)] + o(t - T) (l-4) 
as t---t 7. 

* This work was performed partially under the auspices of the Atomic Energy 
Commission. 
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This follows since y2 + Y’~ > 0; by using the Taylor formula for y at 
t = 7 one finds that v and # are uniquely determined by 

y(T) = V(T) COS (1/1(T) - T), y’(T) = V(T) sin (#(T) - T), 

VW = 4 4 E cw, 9, v(0) = 1. (1.5) 

Comparing (1.4) with (1.3) one can conclude that +(m) = lim,,, $(t) exists. 
The number 

F = VW) - 0 (1.6) 

is called the phase shift and our objective is to compute it. 
Next, let f(t) = - 1 + q(t) and assume again that s” ] q(T) 1 dT < 03. 

In this case the DE (1.1) has two solutions .zi and z2 such that as t -+ 00 

.3(t) = e-V + o(l)], 

x2(t) = et[l + o(l)]. (1.7) 

See, e.g., [l, pp. 125-61. Any solution y of the DE will behave like x2 as 
t --+ 00 unless it is a constant multiple of .zi. On the other hand, a solution 
y of the DE is uniquely determined by its initial data y(0) and y’(0). It will 
be a multiple of zi if and only if 

Y’(O) = 0, if z;(o) = 0. (l-8) 

Our second question concerns the determination of the ratio zzi(O)/,z~(O). 
This also amounts to the characterization through their initial data of the 
class of solutions of the DE which vanish as t -+ ~0. 

The two problems are treated by exploiting a theory of polar representa- 
tions of solution of second order linear, homogeneous, differential equations, 
developed in Section II. Using the results of Section II we obtain in Section 
III the formula (3.10) for the phase shift, and in Section 4 the formula (4.3) 
for the ratio zi(O)/z~(O) mentioned above. Sections V and VI contain sugges- 
tions concerning the determination of functions u and d appearing in formulas 
(3.10) and (4.3). 

II. POLAR REPRESENTATION OF SOLUTIONS 

Our study exploits the existence of an amphde u E Cl(Z) n C:(Z) and a 
phase g E G(.Z) n C:(Z) such that on Z, 

(a) u > 0, 
(b) g’ > 0, 
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(c) if y is a solution of (1.1) then there exist constants a and 0 such that 

y(t) = au(t) cos (g(t) - e). (2-l) 

Here I is the interval of definition of f, not necessarily restricted to the 
interval [0, 03). Without loss of generality we assume that 0 EI and that 
g(0) = 0. Clearly, if a and 8 are such constants, (- 1)” a and 8 + nn will 
do likewise for every integer n. 

The representation (2.1) of y will be called polar representation (u, g), 
and (u, g) will be referred to as a polar pair. The study of such representations 
is based solely on the existence theory for solutions of (l.l), and, as noted 
already in Section I, the restriction to f~ C,(I) is sufficient (though not 
necessary) for such a theory. 

Polar representations apparently were first studied by E’lsin [4-61 and 
independently used by Courant and Snyder [3]. Although they seem to 
play an important role in the study of solutions of second order linear dif- 
ferential equations, there is no mention of them in the current standard 
texts on the subject. A deterrent to their use may lie in that formula (2.1) 
allegedly predicts an infinite number of zeros, while solutions of homoge- 
neous linear differential equations sometimes may have only a finite number 
of zeros. This would preclude the possibility of such representations. The 
paradox is resolved, however, if one notes that the range of g may be bounded. 

THEOREM 2.1. I f  there exists a polar pair (u, g), then there exist solutions 
y1 and yz of Lx = 0 with positive Wronskiun W(yl, yJ such that 

u(t) = %5pnT;(t)> 

(2.2) 

PROOF. Let yi and yz be the solutions of Lx = 0 with initial data (u(O), 
u’(0)) and (0, u(O) g’(0)) respectively. Since the coefficient of x’ in Lx is zero, 
their Wronskian is constant and 

WOI, Yz) 0) = W(Yl, Yz) (0) = Q(O) g’(O) > 0. 

Using the assumed existence of a polar pair one concludes that 

x(t) = 44 --g(t) 

yz(t) = u(t) sin g(t). 
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Squaring and adding these two, one gets the first of the formulas (2.2). 
Computing the Wronskian, one gets 

W(Yl, Yz) (t) = W) g’(t)9 

and the second of formulas (2.2) follows. 
Theorem (2.1) associates with each polar pair (u,g) a pair (yi, ya) of 

solutions of LX = 0. Of course, such association need not he unique. How- 
ever, it conjectures formulae for determination of polar pairs and facilitates 
the proof of an existence theorem for polar pairs. 

THEOREM 2.2. Let (yl, yJ be a fundamental set of solutions of Lx = 0 with 
positive Wronskian W(yl, yp). Then the paif (u, g) defined by formulas (2.2) 
is a polar pair. 

PROOF. We verify that (u,g) has all the properties of polar pairs. 
Conditions (a) and (b) are satisfied since yr and ya do not vanish simultane- 
ously and W(yl, yJ > 0. (u,g) have the required smoothness properties 
since yr, ys E Cl(l) n C:(I), and W(y,, ya) = constant. By direct computa- 
tion, one verifies that W(u cos g, u sing) = W(yI, yz) > 0, and L(u ei”) = 0. 
This means that (u cos g, u sing) is a fundamental set of solutions of Lx = 0. 
Thus, ify is any solution of Lx = 0, 

y(t) = 01 u(t) -g(t) + B u(t) sing(t), 

and the representation (2.1) for y follows by choosing a = 2/oIz + f12, 
and 0 such that a cos 0 = (Y, a sin 0 = ,!I. 

Theorem (2.2) not only asserts the existence of a polar pair, hut associates 
a polar pair with each fundamental set of solutions of Lx = 0 with positive 
Wronskian. Theorem (2.1) asserts that each polar pair can be so associated. 
We shall now discuss the set of polar pairs and establish relations between 
them. Observe first that if (u, g) is a polar pair associated with the funda- 

mental set (rl, YJ, then (I k I u, g) is a pair associated with the fundamental 
set (kyl, &s), where k # 0. (This follows from W(ky,, ky,) = k2 W(yl, yJ.) 
Two pairs (u, g) and (G, g) will be called distinct if Zz + ku for some constant k. 
To study distinct pairs it will suffice to consider only those associated with 
fundamental sets (yl, ys) such that W(yI, yJ = 1. Such pairs will be called 
normal, and from now on, a polar pair will mean a normal polar pair, unless 
stated otherwise. In view of Theorem (2.1), a polar pair is normal if and 
only if u2g’ = 1. 

Polar pairs form a two parameter family. To show this we take a fixed 
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fundamental set (zr, za) (with W( .zr, za) = 1). Then any other fundamental 

set (r17 y2) is 

where a, b, c, and d are real, and ad - bc = 1. The amplitude u associated 
with (yr, ys) is then given by the formula 

u”(t) = y;(t) + y;(t) = (u” + c”) z:(t) + 2(ab + cd) q(t) z,(t 

The identity 

(a6 + Cd)2 + (ad - Cb)2 = (a2 + c”) (b2 + d2) 

implies now that u depends on values of u2 + c2 and b2 + d2 restricted by the 
condition ad - bc = 1, and not on a, b, c and d individually. This result is 
also included in the following theorem establishing explicit relations between 
polar pairs. 

THEOREM 2.3. If  (u,g) and (z&g) ure two polar pairs then there exist 
numbers LY. 2 1 and 0, - 3712 < (T < 7~12, such that 

az2(t) = [a - VP - 1 cos 2(g(t) + I?)] z?(t), 

. _ 
sing(t) = 4, - 2/012-1 COS 2ozy/~ cos2(Ro)-to)’ 

(2.3) 

Conversely, ; f  (u,g) is a polar pair and 01, 0 are two numbers such that 012 1 
and - r/2 < u < 7~12, then the pair (zi, g) defined by the formulas (2.3) with 
the additional requirements ti > 0, g(O) = 0, g’ > 0, is a polar pair. The two 
pairs are distinct if 01 > 1. 

PROOF. We begin with the identities 

C(t) sin g(t) = “(0’ u(t) ~ sin g(t), 
40) 

aqt) cos g(t) = 9 cos g(t) + W4 a> (0) u(t) sin g(t), (2) 

which follow from that both sides in each represent the same solution of 
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the DE Lx = 0. Squaring (1) and (2) and adding one gets the first of formulas 
(2.3) on setting 

a = & [(z&” + ($+)” + W(u, 4 w] , 

cos ,&)a = 01 - PKw40)12 sin 2a = wMw w4 n) (0) 
&CT ’ 2/c?- 1 * 

If either u(0) # $0) or u’(0) # z?(O), OL > 1, and (T is defined. If u(0) = z?(O) 
and u’(0) = C’(O), OL = 1 and the choice of u is immaterial since formulas (2.3) 
then reduce to the statement (u, g) = (ZZ, j). From (1) one nezt gets 
sin g(t) = [u(O) u(t)/ii(O) C(t)] sin g(t), and the second formula (2.3) follows 
from the first. 

To prove the converse, one verifies that the equations (2.3) together with 
the conditions zi > 0, g(O) = 0, g’ > 0 determine a pair (a, g), and imply that 

. - u(t) sin g(t) 
I”(t) sm g(t) =da _ 2/012 _ 1 cos 2a 3 

u(t) cosg(t) = Cm sin 24 44 sin g(t) 
da: - dGF=T cos 2a 

(1) 

+ 1/a - %@-=i cos 2a u(t) cos g(t). (2) 

The conclusion follows by observing that 

L(C e4 = 0, W(zZ sing, C cos g) = W(u sin g, u cos g) f  1, 

and5#uunlesscu=l. 
The first of the formulas (2.3) yields an important characterization of polar 

pairs stated in the following theorem. 

THEOREM 2.4. Assume that I r) [0, m) and that lim,,, u(t) exisfs. Let 
lim t+m u(t) = k. Then: 

(a) ifk = 09, lim,,, zi(t) = 03 for all amplitudes C; 
(b) ;f k = 0, lim,,, Q(t) = 0 for all amplitudes zi; 
(c) ;f 0 < k < 00, then lim,,, C(t) does not exist unless U = u. 

PROOF. Parts (a) and (b) follow from 
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To prove part (c) one observes that since u is bounded, g --t ~0 as t -+ 00. 
Thus cos 2(g + u) has no limit as t + 00, and the same is true of OL - d$ - 1 
cos 2(g + u) unless (II = 1. Thus lim,,, C(t) exists only if OL = 1, i.e., when 
ii = u. 

Theorem (2.4) h s ows then that if there exists an amplitude possessing a 
bounded nonzero limit as t -+ 00, this amplitude is unique. We shall refer to 
it as the preferred amplitude. 

So far polar pairs were characterized in terms of solution of Lx = 0 via 
Theorems (2.1) and (2.2). In applications one should prefer to discuss 
solutions of Lx = 0 by using their polar representation. Thus one needs an 
intrinsic characterization of polar pairs which follows from the next theorem. 

THEOREM 2.5. If (u,g) is a polar pair, then Lu = u-~. Conversely, for 
any t, E I, a > 0 and any b, the differential equation 

Lx = x-3 (2.4) 

has exactly one solution u E Cl(I) n C:(I) such that u(t,) = a, u’(t,,) = b and 
(u, g), where g(t) = JA dT/u2(T) is a polar pair. 

PROOF. If u is an amplitude, there exists a fundamental set (yl, y2) of 

solutions of Lx = 0 such that I&&, y2) = 1 and u = y/y: + y$ By direct 
substitution one verifies then that Lu = u-~. 

To prove the converse, we first observe that the DE (2.4) satisfies standard 
conditions for existence and uniqueness of solutions on I x (0,~) x (- m, m), 
see e.g., [2]. There exists then a unique solution u defined on a maximal 
interval J C I satisfying the required initial and regularity conditions. Now 
let Z, and x2 be solutions of Lx = 0 with initial data zl(t,) = a, zi(tJ = b, 
z,(t,J = 0, zi(t,) = l/a. Consider v E Cl(Z) n C$) defined by 

v(t) = &f(t) + z;(t). 

Since H+Q, z2) = 1, v is an amplitude and Lv = v3. Since v(t,) = a, 
v’(t,,) = b, it follows by uniqueness that u = v on J. Since v is defined on 1, 
it is a continuation of u to I; this shows however that J=1, since J is maximal 
interval for U. Thus u = v on I, u is an amplitude, 
g(t) = ji &/u~(T) is the associated phase. 

and by Theorem (2.1), 

Remarks. 

1. The equation (2.4) for the amplitudes is easily derived as follows. Let 
T = g(t), z(T) = a cos (T - 0) in the polar representatjon of y, Eq. (2.1). 
Then 

i?++=o, (2.5) 
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Since Ly = 0, one obtains the requirement 

L(uz) = (Lu) x + (2u’g’ + ug”) i: + u(g’)” ii = 0. (2.6) 

For normal polar pairs u2g’ = 1 so that the coefficient of t is zero, and that 
of 2 is u-~. Equation (2.4) now follows from (2.6) by using (2.9, on the set 
on which x # 0. 

2. The formulas of Theorem (2.3) can be obtained from the preceding 
remark. Since z is a solution of a second order linear differential equation, 
it has a polar representation 

Z(T) = EW(T) cos [h(T) - 01. 

Here w and h have the properties 

R(T) = w-2(7-), ti + w = w-3, (2.7) 

the second of these being the amplitude equation associated with (2.5). Thus, 

y(t) = Q u(t) cos [g(t) - e] = nu(t) w(g(t)) cos [h(g(t)) - e] 

Now, since 

g vwNl = &w) g’(t) = [W 4.&)>l-2, 

one concludes that (U * w(g), h(g)) is a polar pair for solutions of Lx = 0. 
Thus if u is an amplitude of solutions of Lx = 0, and w is an amplitude of 
solutions of (2.5), then zi = u - w(g) is also an amplitude of solutions of 
Lx = 0. (This also follows by direct substitution: 

LC = L(” * w(g)) = (Lu) w(g) + (2u’g’ + ug”) C(g) + z&+)2 C(g) 

= (Lu) w(g) + u-3 C(g); 

since Lu = r3, and w + ti = wp3, one gets Lzi = ii-“.) By considering 
the initial conditions on w one can show that every amplitude zi of solutions 
of Lx = 0 can be represented this way with fixed u. The first of formulas 
(2.3) now follows by using the general solution of (2.7) which can be obtained 
in closed form, namely, 

W(T) =va - &2=-i cos 2(T + u), a > 1. 
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The formula for the corresponding phase 2 is obtained by integrating 
(h(g))‘. Thus 

= m + arc cot [dm sin 20 + (a - dct2 - 1 cos 2~) cot g(t)] (2.8) 

for t such that nrr 5 g(t) 2 (n + 1) Z. This explicit formula for g is equi- 
valent to the implicit formula (2.3). 

3. From formula (2.8) one easily concludes that g - g is a periodic func- 
tion of g with period r, which vanishes at kr and whose range is included in an 
interval of length rr. (It is, of course, defined only on the range of g.) Further- 
more if 0 and 0 are such that 

cot 0 = (a - dm cos 20) cot 0 + dm sin 20 (2.9) 

then 

cot (g - e) = [a - &F - 1 cos 2(g + u)] cot (g - e) 

- dm sin 2(g + o), 

showing that g - 0 = & if and only if g - 19 = km. This is in agreement 
with the fact that if a solution of Lx = 0 has p zeros in some interval, then 
any other solution of Lx = 0 must have at least p - 1 and at most p + 1 
zeros; and that if au(t) sin [g(t) - 01 and &i(t) sin [g(t) - 81 are two polar 
representations of the same solution then sin (g(t) - 8) must vanish when- 
ever sin (g(t) - 0) does. 0 is determined by formula (2.9) up to an integral 
multiple of 7r. 

III. THE PHASE SHIFT PROBLEM 

We now consider again the DE (1.1) and assume that f(t) = 1 + q(t), 
j’” 1 q(7) ] d7 < m. We first show that there exists a preferred amplitude u, 
that lim,,, u(t) = 1 and that lim,,, (g(t) - t) exists. 

Referring back to solutions y1 and ya of (1 .l) having the property (1.2), we 
observe that z = y1 + iy, is the unique solution of the integral equation 

x(t) = eit + jr q(7) sin (t - T) X(T) d7. (3.1) 
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Let w be the solution of the integral equation 

x(t) = 1 + 1: q(~) sin (t - T) e-i(t-z) X(T) dr (3.2) 

obtained from (3.1) through the substitution x(t) + x(t) eit.l Since, as is 
easily verified, w(t) = 1 + o(l), w’(t) = o(l), and w # 0 for t sufficiently 
large, a continuous argument arg w can be defined by 

arg w(t) = Im log w(t), Im log 1 = 0, (3.3) 

for t sufficiently large. Since z(t) = w(t)eit one obtains for y1 and yz the 
representation 

rl(t) = I w(t) I ~0s Ct + arg w(t)1 

y2(t) = I w(t) I sin [t + arg w(t)] (3.4) 

valid at least for t sufficiently large, and lim,,, arg w(t) = 0. 
From (3.4) we conclude that the pair (I w 1, g) where 

g(t) = t + arg w(t) + 0, 

for some (T, is polar for t sufficiently large, but it is not necessarily a normal 
polar pair. Since an amplitude cannot vanish on [0, a)), it follows that w f 0 
on [O,m) so that (3.3) defines arg w on [0, m), and the representation (3.4) 
is valid on [0, ~0). Thus the polar pair ( j w I, g) is also defined on [0, 03). Since 
lim t+co I w(t) ] = 1, it follows from Theorem (2.4) that a preferred ampli- 
tude u exists. Also, 

F+i (g(t) - t) = iir (arg w(t) + 0) = 0. 

We still have to show that lim,,, u(t) = 1. Now, 

W(yl,y,) (t) = I w(t) 12g’(t) = I w(t) j2 [l + (arg w(t))‘] = constant. 

This shows that lim,,, (arg w(t))’ exists. It must be zero for otherwise 
lim t-tw arg w(t) would not exist. One now gets: 

W(yl,y2) (t) = constant = ‘,ij% W(yl,y2) (t) = 1. 

1 The existence of a unique solution of (3.2) is easily established. One considers 

the Banach Space [C[t,, a), 11 u 11 = supto 5<t <co / u(t) I} where i0 is such that 
lz 1 q(T) 1 d7 = k < 1, and one shows that the transformation defined by the right 
side of (3.2) maps the sphere {U I I j u /I 5 l/(1 - k)} into itself and is contracting. 
This establishes the solution on [to, co). A continuation to [0, a~) is next achieved by 

showing that the interval on which (3.2) defin es a solution is nonempty and both 
closed and open in [0, co). 
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Thus (1 w j,g) is, after all, a normal polar pair. Since it is a preferred pair, 
it follows, by uniqueness of preferred pairs, that u = 1 w 1. Hence, 

p% u(t) = 9-i 1 w(t) / = 1. 

From the above and Theorems (2.4) and (2.5) we see that the preferred 
amplitude is fully determined by the requirements 

u” + (1 + 4) u = u-3, u(m) = 1. (3.5) 

In Section V we shall consider some questions concerning the numerical 
determination of u. Here, we assume that u is known on [0, w), and, 
in particular, that the numbers a = u(O), b = u’(0) are known and that 

4(t) = s” d / “( > 
solvtd 

r u T is the associated phase. The phase shift problem will be 
now in terms of these. 

Consider the solution y of (1.1) with initial data (cos 0, sin e), - ~rr/2 < 
0 <n/2. By Theorems (2.1) and (2.2), there exist constants k > 0 and 
- n/2 < X < ~12 such that 

r(t) = k u(t) cos (g(t) - a, 

From the identification at t = 0 one gets 

t E [O, a). (3.6) 

X = arc tan (u” tan 0 - ab). (3.7) 

Comparing (3.6) with (1.5) we see that 

k u(t) cos [g(t) - X] = v(t) cos [qqt) - t], 

I2 u’(t) cos [g(t) - X] - $ sin [g(t) - X] = v(t) sin [4(t) - t]. (3.8) 

We will show now that as t -+ 03 

z)(t) - t = x -g(t) + o(1). (3.9) 

Consider the set S = {t 1 t - t,/(t) = n~r/2} of zeros of y and y’. Let t, and t, 
be two consecutive zeros of y, n,, and n,-the corresponding values of n; 
they are both odd. Since between two consecutive zeros of y there is exactly 
one zero ti of y’, and t - z)(t) is continuous, we conclude that n2 = n, + 2e, 
rz; = n, + E, where ni = (2/r) (ti - (G(t;)) and E = 1 or - 1. IJsing induc- 
tion one now concludes that on S, (t - a)(t)) is a monotone function into a set 
of consecutive multiples ofa/2. Since - #(O) = - 0 < r/2 and t - 4(t) + 03 
as t + 05, it follows now that (t -- #(t)) is increasing on S onto all positive 
multiples of r/2. 
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Since g(t) is increasing on [0, 00) and t - #(t) is increasing on S, it follows 
from (3.8) that g(t) - X = (n + 4) rr whenever t - #(t) = (n + 4)~. For 
t, < t < t,, n,7r/2 < t - $(t) < n,rr/2 and nr42 <g(t) - X < n,x/2. Thus 

w - t = x - g(t) + 6, ISj<iT. c*> 

Assume next that X - g(t) # (n + 8) n. Dividing the second of the iden- 
tities (3.8) by the first, one gets 

tan [a)(t) - t] = & tan [X - g(t)] + $$f . (**I 

g _ (4’ (WC)’ --=-= 
u 2u2 2 I w  I2 

Re g = o(l), 

and l/u2 = 1 + o(l) as t - 00. Thus (**) implies that 

#(t) - t = x -g(t) + o(l), (mod 4, (***I 
as t -+a. The truth of (3.9) now follows from (*) and (***). 

From (3.9) we obtain 

It;& #(t) = #Cm) = X + v+i (t -g(t)) = X + 1; [l - --&I dT. 

This now yields the final formula for the phase shift (1.6). 

v = #(a) - 8 = Srn [l - &] dT - 8 + arc tan (ua tan 6 - ab). (3.10) 
0 

IV. DETERMINATION OF SOLUTIONS BEHAVING LIKE ect AS t-m 

We now consider the second problem, Section I, p. 2 which makes sense 
when f(t) = - 1 + q(t), and s” / q(7) 1 dT < 03. Let C be the amplitude 
with initial data (1,O); it is defined in view of Theorem (2.5). Let j be the 
corresponding phase. From (1.7) and Theorem (2.1) ti(t) N ket for some 
k > 0 as t -+ 03. Consequently, 

exists. 
The solution 

y(t) = a ii(t) sin [g(t) -g(a) + 191, a # 0, (4.1) 

6 
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of (1.1) is unbounded unless 0 = nr. Consequently, if al(t) = e-t[l + o(l)] 
as t --+ 03, then 

xl(t) = a C(t) sin [g(t) -g(a)] (4.2) 

for some a # 0. The desired ratio z,(O)/x;(O) characterizing z1 through its 
initial data is now easily computed in terms of initial data of ti. One gets 

- = - cot [g(a)], 
3(O) 

if g(m) # nr. 

If g(w) = rzr, (4.2) implies that al(O) = 0. 
If an arbitrary amplitude u is used in place of C, one obtains in place of (4.3) 

a slightly more complicated formula, 

4(O) u’(O) -=- 
%(O) 40) - &) cot kP)l, (4.4) 

where g(-) = s,” &+9(r). That both (4.4) and (4.3) are the same follows 
by using the formula (2.8) together with definitions of 01 and 0 given in 
Section II. 

V. DETERMINATION OF THE PREFERRED AMPLITUDE 

In order to compute the phase shift of solutions of the DE (1.1) through 
formula (3.10) we must know the preferred amplitude u on [O,a) and in 
particular, the values a = u(O) and b = u’(O). The amplitude is determined 
by the conditions (3.5) and generally must be found by a suitable numerical 
integration of the nonlinear second order differential equation. Since the 
domain of integration is infinite, important errors may result. 

We shall show here that v = ua is determined as a solution of a linear 
equation; furthermore, that if 4 has an asymptotic expansion in powers of lit 
as t -+ m---the expansion then necessarily begins with a term in I/P--then v 
and v’ have also easily computable asymptotic expansions. The asymptotic 
expansion for v may supply its values with sufficient accuracy on its 
domain of definition except for a finite interval terminating at zero, thus 
alleviating the computational problem. 

We first derive the equation for v. Multiply the DE (3.5) by u’ and inte- 
grate from t to 03, obtaining 

u’2 + 242 + u-2 - 2 
s 

; q(7) U(T) u’(7) d7 = 2. (5.1) 
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Next multiply (5.1) by 9, set u2 = o, differentiate and divide by v’, obtaining 
the desired equation for V, 

v” + 4v = 4 + 2 [-; 44 a’(~) dT - P] - (5.2) 

The last step is permissible unless V’ = 0 on some open set. This will occur 
only if q = 0 for t 2 t, with some t,; in that case, however, u = 1 for t 2 t, 
and one can verify directly that (5.2) is a consequence of the DE (3.5). 
Conversely, one can easily verify that a unique solution of (5.2) with the 
terminal condition $00) = 1 exists and that z, > 0, fi = U. 

Assume now that 

(5.3) 

and consider again x = yr + iy, where yr and ya are the solutions of (1.1) 
having the property (1.2). As is well known, see e.g. [2, Chapter 51, z has an 
asymptotic expansion, 

z(t) w eit 2 qy.2 (5.4) 

Since, as shown in Section III, u = 1 w 1 = 1 x 1 so that v = 1 z 12, it follows 
from (5.4) that z, has an asymptotic expansion 

v(t) - jg v,t-“, t.Jo = 1. 
7%=0 

(5.5) 

The coefficients w, may be obtained by using (5.4) but they are much more 
simply obtained by a formal substitution of (5.3) and (5.5) in (5.2). This 
yields, on identifying the coefficients of the t-n, the linear recurrence relation 

a, = 1, 211 = 0 

% = - a [b - 1) b - 2) %-2 + 2 ng (1 + t) q.-.v,.] , n 2 2. (5.6) 
lJ=O 

As an example consider the Bessel Equation 

t”y” + ty’ + (P - m2)y = 0, m - real. (5.7) 

e The z, are determined by z. = 1, z,, = - 8 [(n - 1) .zG1 + l/n 8::: 4”fl---YZ”I. 



436 KOLODNER 

This equation is not of form (l-l), but on setting x = y $-one finds that 

X” + 1 - 
c 

ma - $ 

i 
x = 0. 

t2 

(Here, of course, the previous theory is applicable only on I = [a, m) with 
a > 0.) Here q = - a/P, a = m2 - $, q2 = - a, q,n = 0 for n > 2. The 
recurrence relation (5.6) now yields 

(2n)! v  -- it (4m2 - (20 + 1)2), 
2n - 16’Q!)2 o=. n2 1, 

V - 0. 2n+1 - (5.8) 

Under certain restrictions one can determine the phase shift of a solution 
even when the differential equation has a regular singularity at t = 0. 
Specifically assume that f in (1.1) is analytic on (0, m) but has a pole of order 
at most two at t = 0, and that lim,,, @f(t) = k 5 a. Then the eigen- 

exponents of the solutions of Lx = 0 are A+ = 8 & di - k (see, e.g. [2, 
Chapter 41). The differential equation has now a fundamental set of solutions 
yi and y2 such that as t + 0, 

Y&l = OW), y2 = O(fi log t), if k = +, 

a(t) = O(t”-), y2 = O(t”+), if k < $. 

It follows that any amplitude J behaves near t = 0 as d/t log t if k = 4 

and as ta- if k < $. Since 2h- = 1 - 2/1--4k < 1, we conclude that 

1 t dr 
lim __ 
r-10+ E U”(T) 

exists, so that the phase g can be defined at 0, and the solutions of Lx = 0 
still have a polar representation at 0 with lim,,, ii(t) = 0 or + 00. 

The initial phase of a solution y cannot be determined anymore by the 
formula (1.4). If however we agree to call the number 0 appearing in the 
polar representation of y the initial phase, then the phase shift q will be given 
by the formula 

q = $2 [t - g(t)1 = j,” [l - $1 dT, 

where again u is the preferred amplitude. Observe that in the singular case 9) is 
the same for all solutions of Lx = 0. 



SECOND ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS 437 

If K > $ the eigenexponents AT are complex and C(t) = O(+) as t -+ 0. 
But then lim,,, 
phase of a soluti&r 

J’ &/s~(T) does not exist and one cannot speak of the 
& t = 0. 

For the Bessel Equation K = i - m2 ( i and the above considerations 
apply. If m = p $ Q, where p is an integer, the asymptotic series for u2 
terminate. Thus they yield exact solutions on (0, m) which can be used for 
the computation of 9. We get in particular, 

u(t) = I, if p =o, 

if p=l, 

if p = 2. 

This is in agreement with the formula ‘p = (- 4 + m/2) rr for the phase shift 
of Bessel functions obtained by using their conventional asymptotic expan- 
sions. See e.g. [7, vol. II, p. 851. 

VI. DETERMINATION OF THE AMPLITUDEFOR THE SECOND PROBLEM 

In this problem the amplitude zi is determined by the conditions 

22’ + [- 1 + q(t)] 21 = c-3, 

C(O) = 1, S’(0) = 0. (6.1) 

See Section IV. Here again recourse must be made to a suitable numerical 
procedure. If however q is analytic at zero, and q has an asymptotic expansion 
in powers of t-l as t --t 00, one can use a power series for ii near t = 0 and an 
asymptotic expansion for C as t -+ 03. 

We shall show here that a power series for v = ri2 can be determined by 
means of a linear recurrence relation. One proceeds as in Section V with 
minor modifications. Since zi + constant, zi’ + 0. Multiplying (6.1) by 3 
and integrating from 0 to t one gets 

s 

t 
$2 - g + g-2 + 2 o q(T) C(T) C’(T) dT = 0. (6.2) 

On multiplying (6.2) by v = c2, differentiating through and dividing by o’ one 
gets 

V” -4v+2 [j:, q(T) V’(T) dT + q(t) V] = 0. (6.3) 

Thus v is a solution of a linear equation with initial data v(0) = 1, v’(0) = 0. 
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Assume that 4 is analytic for 1 t 1 < p, i.e., 

q(t) = 2 q,t”. (6.4) 
7Z=O 

Then every solution of (6.3) is analytic on / t 1 < p, and one gets for w 

v(t) = 2 t&P, 
?l=O 

(6.5) 

wherev,=l,w,=Oand 

V n+3 = (n + & + 2) [4% - 22 (1 + ;) %-A] s3 (6.6) 

If as t ---t a,4 has an asymptotic expansion 

(6.7) 

then v has an asymptotic expansion of the form 

w(t) - e2t 2 v,t+. 

T&=0 
(64 

Indeed, let al and x2 be the solutions of Lx = 0 mentioned in (1.7), i.e., 

xl(t) = O(e-t), 

x3(t) = et[l + o(l)]. (6.9) 

It now follows from the formula preceding Theorem (2.3) that 

v - kz;, (6.10) 

where k is a positive constant. The assertion (6.8) is now a consequence of 
that zs/et has an asymptotic power series. 

s The series (6.5) has a remarkable feature: it converges to a positive sum (on [0, p)) 
no matter what are the coefficients q,,. 
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