Simple Finite-Dimensional Jordan Superalgebras of Prime Characteristic

C. Martinez

Department of Mathematics, Oviedo University, 33007 Oviedo, Spain

and

E. Zelmanov

Department of Mathematics, Yale University, New Haven, Connecticut 06520 and KIAS, Seoul 130-012, South Korea

DEDICATED TO PROFESSOR HOLGER PETERSSON ON HIS 60TH BIRTHDAY

Communicated by Walter Feit

Received October 21, 1999

INTRODUCTION

V. G. Kac (see [K1]) classified finite-dimensional simple Jordan superalgebras over algebraically closed fields of zero characteristic.

Study of Jordan superalgebras of positive characteristics was initiated by I. Kaplansky [Kap1], [Kap2]. M. Racine and E. Zelmanov [RZ] classified finite-dimensional simple Jordan superalgebras of characteristics \(\neq 2 \) with semisimple even part.

In this paper we address the remaining case when the even part is not semisimple. Structure of these superalgebras is similar to structure of infinite-dimensional Jordan superalgebras of zero characteristic that correspond to the so-called superconformal algebras of contact brackets (see [KL], [KMZ], [NS], [R]).
DEFINITIONS AND EXAMPLES. All algebras are considered over a field F of characteristic $\not= 2$.

A (linear) Jordan algebra is a vector space J with a binary operation $(x, y) \to xy$ satisfying the following identities:

1. $(xy)z = x(yz)$
2. $(x^2)y = x^2(yx)$

For an element $x \in J$, let $R(x)$ denote the right multiplication $R(x) : a \to ax$ in J. Then linearization of (2) yields the following identity in the operator form:

\[
R((xy)z) + R(x)R(z)R(y) + R(y)R(z)R(x) = R(xy)R(z) + R(xz)R(y) + R(yz)R(x)
\]

We will refer to it as “the Jordan identity.”

For elements x, y, z of a Jordan algebra J, by (x, y, z) we denote their Jordan triple product, $(x, y, z) = xy + yz + x^2(yx).

By $U(x, y)$ we denote the operator $U(x, y) : J \to J, U(x, y) : z \to (x, z, y)$, $U(x) = U(x, x)$.

For arbitrary elements $x, y \in J$, the operator $D(x, y) = R(x)R(y) - R(y)R(x)$ is known to be a derivation of J (see [J]).

We will need also the following identity:

\[
R(x)R(y)R(z) = \frac{1}{4}(-R((xz)y) + R(xy)R(z) + R(xz)R(y) + R(yz)R(x) + R(y)D(z, x) + R(x)D(z, y) - R(yD(z, x) + R(x)D(z, x)).
\]

By a superalgebra $A = A_\bar{0} + A_\bar{1}$, we mean a $\mathbb{Z}/2\mathbb{Z}$-graded algebra. Thus $A_{\bar{0}}$ is a subalgebra of A and $A_{\bar{1}}$ is an $A_{\bar{0}}$-bimodule.

EXAMPLE. Let V be a vector space. The Grassmann (or exterior) algebra $G(V)$ is the quotient of the tensor algebra $T(V)$ modulo the ideal generated by symmetric tensors $v \otimes w + w \otimes v; v, w \in V$. Clearly, $G(V) = G_\bar{0} + G_\bar{1}$, where $G_\bar{0}$ (resp. $G_\bar{1}$) is spanned by products of elements of V of even (resp. odd) length.

DEFINITION. Let V be a vector space of countable dimension. By the Grassmann envelope of a superalgebra $A = A_\bar{0} + A_\bar{1}$, we mean the subalgebra $G(A) = A_\bar{0} \otimes G_\bar{0} + A_\bar{1} \otimes G_\bar{1}$ of the tensor product $A \otimes G(V)$.

Let \mathcal{V} be a homogeneous variety of algebras (see [ZSSS]).
DEFINITION. A superalgebra \(A = A_o + A_T \) is called a \(\mathcal{V} \)-superalgebra if the Grassmann envelope \(G(A) \) lies in \(\mathcal{V} \).

In particular, if \(A = A_o + A_T \) is a \(\mathcal{V} \)-superalgebra, then \(A_o \in \mathcal{V} \) and \(A_T \) is a \(\mathcal{V} \)-bimodule over \(A_o \) (see [J]).

In this way one can define superalgebras, Jordan superalgebras, etc. Associative superalgebras are just \(\mathbb{Z}/2\mathbb{Z} \)-graded associative algebras.

Let \(A = A_o + A_T \) be an associative commutative superalgebra. If \(a \in A_i \), then we denote \(|a| = i\). By a bracket on \(A \) we mean a bilinear mapping \(\{ \, , \} : A \times A \rightarrow A \).

Starting with a bracket \(\{ \, , \} \) on \(A \), consider a direct sum of vector spaces \(J = J(A, \{ \, \, \}) = A + Ax \). We shall define a multiplication on \(J \).

For arbitrary elements \(a, b \in A \), their product in \(J \) is the product \(ab \) and \(a(ax) = (ab)x, (bx)a = (-1)^{|b|} (ba)x, (ax)(bx) = (-1)^{|a||b|} (ab) \).

The \(\mathbb{Z}/2\mathbb{Z} \)-gradation on \(A \) can be extended to a \(\mathbb{Z}/2\mathbb{Z} \)-gradation on \(J \) via \(J_o = A_o + A_T x, J_T = A_T + A_o x \). We call \(J \) the Kantor Double of \((A, \{ \, \, \}) \).

DEFINITION. A bracket \(\{ \, , \} \) on \(A \) is called a Jordan bracket if the Kantor Double \(J(A, \{ \, \}) \) is a Jordan superalgebra.

EXAMPLE. A bracket \(\{ \, , \} : A \times A \rightarrow A \) is called a Poisson bracket if \((A, \{ \, \}) \) is a Lie superalgebra and \(\{ ab, c \} = a \{ b, c \} + (-1)^{|b||c|} \{ a, c \} b \) for arbitrary elements \(a, b, c \in A \). An arbitrary Poisson bracket is a Jordan bracket (see [K1]).

It immediately follows from the Jordan identity that for an arbitrary Jordan bracket \(\{ \, , \} \)

1. \(D: a \rightarrow \{ a, 1 \} \) is a derivation of \(A \),

2. \(\{ a, bc \} = \{ a, b \} c + (-1)^{|a||b|} b \{ a, c \} - D(a)bc \).

For other properties of Jordan brackets, see [KM]. If the superalgebra \(A \) is generated by elements \(\{ a_i \} \), then a Jordan bracket \(\{ \, , \} \) is determined by the derivation \(D \) and by values \(\{ a_i, a_j \} \).

EXAMPLES (Jordan brackets of Neveu–Schwarz and Ramon, see [NS], [R], [KMZ]). Let \(A = F[t^{-1}, t, \xi_1, \ldots, \xi_n] \), where \(t \) is the even Laurent variable; \(\xi_1, \ldots, \xi_n \) are Grassmann variables.

1. \(D = \frac{\partial}{\partial t}, \{ \xi_i, \xi_j \} = - \delta_{ij}, \{ t, \xi_i \} = 0 \).

2. \(D = \frac{\partial}{\partial t}, \{ \xi_i, \xi_j \} = - \delta_{ij}, \{ t, \xi_i \} = 0 \).

Suppose that \(\text{char } F = p > 0 \). Let \(B(m) = F[a_1, \ldots, a_m | a_i^p = 0] \) denote the algebra of truncated polynomials in \(m \) even variables. Let \(G(n) \) be the Grassmann algebra on an \(n \)-dimensional vector space, \(G(n) = \langle 1, \xi_1, \ldots, \xi_n \rangle \). Then \(B(m,n) = B(m) \otimes G(n) \) is an associative supercommutative superalgebra.

Finite-Dimensional Jordan Superalgebras 577
The main result in this paper is the following.

Theorem. Let $J = J_0 + J_1$ be a finite-dimensional simple unital Jordan superalgebra over an algebraically closed field F of characteristic $p > 2$ whose even part J_0 is not semisimple. Then either there exist integers m, n and a Jordan bracket on $B(m, n)$ such that $J = B(m, n) + B(m, n)x$ is a Kantor Double, or J is isomorphic to an exceptional Cheng–Kac Jordan superalgebra $CK(B(m, d))$ corresponding to a derivation $d: B(m) \to B(m)$ (see Section 2).

1. **GENERAL RESULTS**

1.1. **Structure of the Even Part**

Let $J = J_0 + J_1$ be a finite-dimensional simple Jordan unital superalgebra over an algebraically closed field F of positive characteristic $p \neq 2$.

In what follows we will denote $A = J_0$ and $M = J_1$.

For a subspace $V \subseteq J$, by RV we denote the subspace $\{R(v), v \in V\}$. Let $R^M(A)$ denote the subalgebra generated by $(R(a): M \to M, a \in A)$ in $\text{End}_F(M)$.

For arbitrary odd elements $x, y \in M$, the operator $D(x, y) = R(x)R(y) + R(y)R(x)$ is a derivation of J. Let $\mathcal{D} = \mathcal{D}(M, M)$ denote the linear span of all such operators. Clearly, \mathcal{D} is a Lie algebra.

Definition 1.1.1. An F-algebra B is called differentially simple if it does not contain proper ideals that are invariant under all derivations.

The structure of such algebras was determined by R. Block.

Theorem 1.1.1 (see [B]). Let A be a finite-dimensional differentially simple F-algebra. Then either A is simple or $\text{ch} F = p > 0$ and $A \cong S \otimes B(n)$, where S is simple and $B(n)$ is an algebra of truncated polynomials.

Let $N(A)$ be the nilpotent radical of A and let I be the maximal nilpotent ideal of A which is \mathcal{D}-invariant. Then A/I is differentially semisimple; that is, it does not contain nontrivial nilpotent \mathcal{D}-invariant ideals.

Lemma 1.1.1. A finite-dimensional differentially semisimple Jordan algebra is a direct sum of differentially simple algebras.

Proof. Let A be a finite-dimensional differentially semisimple Jordan algebra. Let L be a minimal nonzero ideal of A which is invariant with respect to $\text{Der}(A)$. We claim that the algebra L is differentially simple. Indeed, let K be a $\text{Der}(L)$-invariant ideal of L. We will show that $\text{id}_A(K^3) \subseteq K$. Since $K\text{Der}(A) \subseteq K$ by the identity (D), it suffices to prove that $K^3A \subseteq K$ and $(K^3A)A \subseteq K$. We have $K^2A \subseteq (KA)K + KD(K, A) \subseteq$
K. Since the restriction of $\text{Der}(A)$ to L lies in $\text{Der}(L)$ and the ideal K is $\text{Der}(L)$-invariant, it follows that $KD(K, A) \subseteq K$. Hence $K^2 A \subseteq A$ and $K^3 A \subseteq (K^2 A)K + K^2 D(K, A) \subseteq K^2$.

Minimality of L implies that $K^3 = (0)$ or $K = L$. If $K^3 = (0)$, then $\text{id}_A(K)$ is a nilpotent (see [J], [ZSSS]) differentially invariant ideal of A. By differential semisimplicity of A, we have $K = (0)$.

We proved that L is differentially simple. By Block's theorem, $L = S \otimes B(n)$, where S is a simple Jordan algebra. In particular, L contains an identity element e which lies in the center of L. Then $A = L \otimes A(1 - e)$ is a direct sum of ideals. Now it remains to apply an induction assumption to $A(1 - e)$. Lemma is proved.

Denote $\overline{A} = A/I$ and let $\overline{A} = \overline{A}^{(1)} \oplus \cdots \oplus \overline{A}^{(r)}$ be a decomposition into a direct sum of differentially simple algebras.

Let $e^{(i)}$ be the identity element of $\overline{A}^{(i)}$. Clearly, $e^{(i)}$ is an idempotent element in \overline{A}. Let $\{e^{(i)}\}
mu$ be a maximal system of pairwise orthogonal idempotents of $\overline{A}^{(i)}$. So $\Sigma \mu e^{(i)} = \overline{A}$, and for each μ the subalgebra $\overline{A}^{(i)}(\overline{e}^{(i)})$ does not contain proper idempotents.

The system $\{e^{(i)}\}
mu$ can be lifted to a system of pairwise orthogonal idempotents $e^{(i)} \in A$, such that $\Sigma i, \mu e^{(i)} = 1$ (see [J]). Let $e^{(i)} = \Sigma \mu e^{(i)}$.

DEFINITION 1.1.2. An element $a \in J$ is said to be Peirce homogeneous if it lies in one of the subspaces $J U(e^{(i)}_\mu, e^{(j)}_\nu)$, $(i, \mu) \neq (j, \nu)$ or in $\Sigma i, \mu J U(e^{(i)}_\mu)$.

DEFINITION 1.1.3. An element $a \in J$ is said to be strongly Peirce homogeneous if it lies in one of the subspaces $J U(e^{(i)}_\mu, e^{(j)}_\nu)$ or in one of the subspaces $J U(e^{(i)}_\mu)$.

Define the trace functional $t: A \rightarrow F$ via $t(a) = \Sigma i, \mu \alpha_{i, \mu}$, where $\alpha_{i, \mu} \in F$, $\overline{a}U(e^{(i)}_\mu) = \alpha_{i, \mu}e^{(i)}_\mu$, for $a \in A$ (see [J]). In particular, $t(I) = 0$.

LEMMA 1.1.2 (see [Kap1]). Let x be a Peirce homogeneous element from M and let y be a strongly Peirce homogeneous element from M. Suppose that $t([x, y]) \neq 0$. Then there exists a scalar $0 \neq \psi \in F$ and an element $a \in N(A)$ such that

$$[x, y] \cdot y = \psi y + y \cdot a$$

Proof. From $t([x, y]) \neq 0$, it follows that $[x, y] \in \Sigma i, \mu A U(e^{(i)}_\mu)$, so $[x, y] = \Sigma i, \mu \alpha_{i, \mu} e^{(i)}_\mu + a$, $a \in N(A)$, $\alpha_{i, \mu} \in F$.

If $y \in MU(e^{(i)}_\mu)$, then $[x, y] = \alpha_{i, \mu} e^{(i)}_\mu + a$, $\alpha_{i, \mu} = t([x, y]) \neq 0$. So $[x, y] y = \psi y + y \cdot a$. Take $\psi = \alpha_{i, \mu}$.

If $y \in MU(e^{(i)}_\mu, e^{(j)}_\nu)$, then $[x, y] = \alpha_{i, \mu} e^{(i)}_\mu + \alpha_{j, \nu} e^{(j)}_\nu + a$ and $t([x, y]) = \alpha_{i, \mu} + \alpha_{j, \nu} \neq 0$. Hence $[x, y] y = 1/2(\alpha_{i, \mu} + \alpha_{j, \nu})y + ya$. Take $\psi = 1/2t([x, y])$. Lemma is proved.
LEMMA 1.1.3. \([IM, M] \subseteq I.\)

Proof. It suffices to prove that \(t([IM, M]) = 0.\) Indeed, \([IM, M] + I\) is an ideal of \(A\) that contains \(I\) and is \(D\)-invariant. Since \(\tilde{A} = A/I\) is a direct sum of \(D\)-simple algebras, the ideal \([IM, M] + I/I\) has to be a sum of some of them. But each summand has an element of nonzero trace. Consequently, \([IM, M] + I/I = (0);\) that is, \([IM, M] \subseteq I.\)

Notice that the previous argument proves that \(A\) does not contain \(D\)-invariant ideals of zero trace that contain \(I\) properly.

Let \(R\langle N \rangle\) denote the ideal generated by the subspace \(R(N)\) in the multiplication algebra \(R^M(A).\) Clearly (see [I]), there exists \(r \geq 1\) such that \(MR\langle N \rangle^r = (0).\) If \([IM, M]\) does not belong to \(I,\) then there exist integers \(1 \leq i < r, 0 \leq j < r\) such that \(t([MR(I), MR\langle N \rangle^j]) \neq 0\) (for example, \((i, j) = (1, 0)).\) Let \((i, j)\) be lexicographically maximal among all pairs with this property.

If \(y \in MR\langle N \rangle^j,\) then \(yU(e_{ij}^{(i)}, e_{ij}^{(j)}), yU(e_{ij}^{(i)}, MR\langle N \rangle^j).\) So we can assume that there exists a Peirce homogeneous element \(x \in MR(I)^i\) and a strongly Peirce homogeneous element \(y \in MR\langle N \rangle^j\) such that \(t([x, y]) \neq 0.\)

By Kaplansky’s Lemma, \(y = \lambda[x, y]y + yu,\) where \(a \in N(A), 0 \neq \lambda \in F.\)

So \(t([x, ya]) \neq 0\) or \(t([x, [x, y]y]) \neq 0.\)

But \([x, ya] \subseteq [MR(I)^i, MR\langle N \rangle^{j+i}]\) and \((i, j) < (i, j + 1).\)

Let us prove that \([x, y]y = xR(y)^2 \subseteq MR(I)^i.\) Indeed, if \(x = x'R(b_1) \cdots R(b_i), b_j \in I,\) then \(xR(y)^2 = (x'R(y)^2)R(b_1) \cdots R(b_i) + x'R(b_1R(y)^2) \cdots R(b_i) + \cdots x'R(b_iR(y)^2) \subseteq MR(I)^i.\)

Now it remains to prove that \([MR(I)^i, MR(I)^j] \subseteq I + [MR(I)^{h+1}, M]\) and use that \((2i, 0) > (i, j),\) since \(i \geq 1.\)

But if \(b_1, b_2 \in I, x_1, x_2 \in M,\) then \([x_1b_1, x_2b_2] = [(x_1b_1)b_2, x_2] - b_2D(x_1b_1, x_2)\) and \(b_2D(x_1b_1, x_2) \in I.\) Lemma is proved.

Denote \(I_{ij} = \{e_{ij}^{(i)}I, e_{ij}^{(j)}, A_{ij} = \{e_{ij}^{(i)}A, e_{ij}^{(j)}, M_{ij} = \{e_{ij}^{(i)}M, e_{ij}^{(j)}\},\) where \(e_{ij}^{(i)} = \sum_{\mu}e_{ij}^{(i)}.\)

LEMMA 1.1.4. If \(i \neq j,\) then \(id_j(I_{ij}) \cap A \subseteq I.\)

Proof. Let \(u_1, \ldots, u_l \in A \cup M\) be strongly Peirce homogeneous elements, \(w = R(u_1) \cdots R(u_l).\) Suppose further that \(I_{ij}w \subseteq A,\) but \(I_{ij}w \not\subseteq I\) and \(l\) is minimal with such property. Then

(1) There are no two consecutive elements \(u_k, u_{k+1}\) of the same parity.

Indeed, if two consecutive elements \(u_k, u_{k+1}\) lie in \(A\) (resp. in \(M\)), then, using the Jordan identity, we can move them to the right end of \(w\) modulo operators of length \(< l.\) Now Lemma 1.1.3 can be used.
(2) No element \(u_k \) lies in \(I \).

Indeed, moving \(R(u_k) \) to the right via the Jordan identity, we get
\[
w = (\cdots)R(u_k)+(\cdots)R(v), \quad v \in A \cup M \quad \text{modulo operators on length } < l.
\]
If \(u_k \in I \), then \(Aw \subseteq I \) by Lemma 1.1.3.

(3) For an element \(c \in I_{ij} \), the expression \(cw + I/I \) is skew-symmetric with respect to all elements \(u_k \) lying in \(A \) and symmetric with respect to all elements \(u_k \) lying in \(M \).

Since even (odd) elements do not follow one after another, the assertion follows from the Jordan identity and minimality of \(l \).

Clearly, \(l \geq 3 \). If \(u_1 \in A \), then we can assume that \(u_1 \in AU(e^{(\alpha)}, e^{(\beta)}) \).
If \(\alpha \neq \beta \), then \(u_1 \in I \), and we have shown that this is impossible. So, the only option is \(u_1 \in AU(e^{(*)}) \) or \(u_1 \in AU(e^{(j)}) \). But then \(I_{ij}R(u_1) \subseteq I_{ij} \), contradiction by minimality of \(l \). Hence \(u_1 \in M \), and consequently, \(u_2 \in A \).
Since \(u_2 \notin I \), we can assume that \(u_2 \in AU(e^{(*)}) \).
If \(\alpha \neq i \), then \(D(I_{ij}, u_2) = 0 \) and \(I_{ij}R(u_1)R(u_2) = I_{ij}R(u_1u_2) \).
The minimality of \(l \) finishes the proof in this case.

Let \(\alpha = j \). We have
\[
I_{ij}w = I_{ij}R(e^{(i)})R(u_1)R(u_2) \cdots
\leq I_{ij}(-R(u_2)R(u_1)R(e^{(j)}) + R(e^{(j)})R(u_1u_2))
\quad + R(u_2)R(u_1e^{(j)})) \cdots + I
\]
\[
= I_{ij}R(u_2)R(u_1)R(e^{(j)}) \cdots + I.
\]

Thus, without loss of generality, we can assume that \(u_2 = e^{(j)} \).
Let \(u_1 \in \{e^{(k)}, M, e^{(*)} + e^{(j)}\} \), where \(k \neq i, k \neq j \). Then \(u_1U(I_{ij}, u_2) = (0) \), which implies \(I_{ij}R(u_1)R(u_2) \subseteq I_{ij}R(u_2)R(u_1) + I_{ij}R(u_1u_2) \). This contradicts our earlier results.

If \(u_1 \in MU(e^{(*)}) + MU(e^{(j)}) \), then \(R(u_1) \) commutes with \(R(u_2) = R(e^{(j)}) \).
The only remaining case is \(u_1 \in M_{i,j} \).
Since \(I_{ij}w + I/I \) is symmetric in \(u_1 \) and \(u_3 \), we can assume also that \(u_3 \in M_{i,j} \). But then \(I_{ij}R(u_1)R(u_2)R(u_3) \subseteq \{e^{(*)}, A, e^{(j)}\} = I_{ij} \).
Lemma is proved.

Corollary 1.1.1. If \(i \neq j \), then \(I_{ij} = (0) \).

Proof. Since the superalgebra \(J \) is simple, \(id_{j}(I_{ij}) = (0) \) or \(J \). But \(id_{j}(I_{ij}) = J \) implies that \(\tilde{A} = J \cap A \subseteq I \), the contradiction.
Lemma 1.1.5. If $I \neq (0)$, then $s = 1$; that is, \overline{A} is differentially simple.

Proof. If $I \neq (0)$, then there is an index i such that $I_i \neq 0$. We can assume $i = 1$.

We will show that $id_f(I_{11}) \cap A \subseteq A_{11} + I$, and consequently, $\overline{A} = \overline{A}^{(1)}$ and $s = 1$.

Indeed, suppose that the assertion is not true. Choose an operator $w = R(u_1) \cdots R(u_l), u_i \in A \cup M$, such that $I_{11}w \subseteq A$, $I_{11}w \not\subseteq A_{11} + I$ and l minimal with this property. Then $l \geq 3$, since $I_{11}R(M)R(M) \subseteq I$ by Lemma 1.1.3.

Arguing as in the proof of Lemma 1.1.4, we can see that no two consecutive elements u_k, u_{k+1} lie in A.

Suppose that two consecutive elements u_k, u_{k+1} lie in M. If there is another odd element u_i among u_1, \ldots, u_l, then again using the Jordan identity, we can represent w as a linear combination of operators $\cdots R(u_k)R(u_{k+1})R(u_i) \cdots \cdot R(u_{k+1})R(u_k) \cdots$ of length l and operators of length $< l$. The identity (D) from the Introduction implies that for odd elements $x, y, z \in M$, the operator $R(x)R(y)R(z)$ is a linear combination of operators of length ≤ 2 and of operators of the type $R(x)D(y, z)$. We can move $D(y, z)$ to the right end and it remains to notice that $\overline{A}^{(1)}D(M, M) \subseteq \overline{A}^{(1)}$.

Suppose now that u_k, u_{k+1} are the only odd elements among u_1, \ldots, u_l. Because of the Jordan identity, we can assume $k = 1$.

Then $I_{11}R(M)R(M) = (0)$ by Lemma 1.1.3.

The element u_1 clearly lies in M. Hence $u_1 \in A$.

If $u_2 \in A_{jj}$, $j \neq 1$, then $R(I_{11})$ and $R(u_2)$ commute, so $I_{11}R(u_1)R(u_2) = I_{11}R(u_1 \cdot u_2)$, the contradiction.

Hence we can assume that $u_2 \in A_{11}$. If $u_1 \in M_{11}$, $i \neq 1$, then $(0) = u_1U(I_{11}, u_2)$, and therefore, $I_{11}R(u_1)R(u_2) \subseteq I_{11}R(u_1u_2) + I_{11}R(u_2)R(u_1)$, the contradiction.

Hence we can assume that $u_1 \in M_{11}$. Since for an arbitrary element $c \in I_{11}$, the expression $cw + A_{11} + I/A_{11} + I$ is symmetric in odd $u_i's$ and skew-symmetric in even $u_i's$, we can assume that $u_1, \ldots, u_l \in A_{11} \cup M_{11}$, the contradiction. Lemma is proved.

The following lemma was proved in [RZ].

Lemma 1.1.6. Let $I = (0)$. Then $s \leq 2$. If $s = 2$, then $M = M_{12}$.

Proof. Let $A = A^{(1)} \oplus \cdots \oplus A^{(s)}$ with $A^{(i)}$ \mathcal{D}-simple. If $i \neq j$, then $[M_i, M_j] = (0)$ and $[M_i, M_{ij}] = 0$, so $[M_i, M_{ij}]M_{ij} = (0)$.

Let $Ann_{ij} = \{ a \in A^{(i)} | aM_{ij} = (0) \}$. Then Ann_{ij} is an ideal of $A^{(i)}$. Since $M_{ij} = (A^{(i)}, M, A^{(j)})$ is \mathcal{D}-invariant, Ann_{ij} is also \mathcal{D}-invariant. So either $Ann_{ij} = (0)$ or $Ann_{ij} = A^{(i)}$, which is possible only if $M_{ij} = 0$.

Notice that we have proved that $[M_{hh}, M_{hh}] = (0)$ as soon as there is some other index $l \neq h$ with $M_{hl} \neq (0)$.

Suppose that $s \geq 2$. We will show that $M_{ii} = (0)$ for an arbitrary i. If there exists $j \neq i$ such that $M_{ij} \neq (0)$, then from the remark above it follows that $[M_{ij}, M_{ij}] = (0)$. Hence $M_{ii} \leq J$. Hence $M_{ii} = (0)$. If for an arbitrary $j \neq i$, $M_{ij} = (0)$, then $A^{(i)} + M_{ij} \leq J$, which contradicts $s \geq 2$.

Suppose that $s \geq 3$. Then there exists $k \neq i, j$ such that $\{e_i + e_j, M, e_k\} \neq (0)$. Otherwise $A^{(i)} + A^{(j)} + M_{ij} \leq J$, which contradicts simplicity of J.

Since $M_{ik} + M_{jk} \neq (0)$, one of them has to be nonzero. Suppose that $M_{ik} \neq (0)$. Then as we have seen above, $\text{Ann}_{ik} = (0)$.

From $\{M_{ij}, M_{ik}, M_{ij}\} = (0)$, it follows that $[M_{ij}, M_{ij}]M_{ik} = (0)$. If $[M_{ij}, M_{ij}] \not\subseteq A^{(j)}$, then $\text{Ann}_{ik} \neq (0)$. Hence $[M_{ij}, M_{ij}] \subseteq A^{(j)}$.

Suppose that there exists $l \neq i, j$ such that $M_{il} \neq (0)$. Then $[M_{ij}, M_{ij}] \subseteq A^{(i)}$ (see the argument above) and therefore, $[M_{ij}, M_{ij}] = (0)$. Hence $M_{ij} \leq J$. Hence $M_{ij} = (0)$, the contradiction.

So, for every $l \neq i, j$ we have $M_{il} = (0)$. Again this implies that $A^{(i)} + M_{ij} \leq J$, a contradiction. So $s = 2$ and $M = M_{12}$. Lemma is proved.

For elements $x, y \in M; u \in I; a, b \in A$, denote

$$t(x, y, u, a, b) = t[(x \cdot u) \cdot a, y \cdot b].$$

Lemma 1.1.7. The multilinear function $t: M \times M \times I \times A \times A \rightarrow F$ has the following properties:

1. $t(x, y, u, a, b) = -t(x, y, u, b, a)$.
2. $t(x, y, u, a, b) = t(x, y, u, a, b)$.
3. $t(x, y, u, a^2, b) = 2t(xa, y, u, a, b) = 2t(x, ya, u, a, b) = 2t(x, y, ua, a, b) = 2t(x, y, u, a, ab)$.

Proof. See Lemma 1.1.23 in [KMZ].

Lemma 1.1.8. For arbitrary elements $x, y \in M, u \in I, a, b, c, e \in A$, we have

1. $t(x, y, u, cD(a, b), e) = \sum_{\alpha}t(x_{\alpha}, y_{\alpha}, u, a, e) + \sum_{\beta}t(x_{\beta}, y_{\beta}, u, b, e)$ for some elements $x_{\alpha}, y_{\alpha}, x_{\beta}, y_{\beta} \in M$.
2. $t(x, y, uD(a, b), a, b) = 0$.

Proof. See Lemma 1.1.24 in [KMZ].

Let FJ denote the free Jordan algebra on the countable set of free generators x_1, x_2, \ldots (see [J], [ZSSS]).

As always, by $FJD(x_1, x_2)$ we denote the image of the derivation $D(x_1, x_2): FJ \rightarrow FJ$ and by $\langle FJD(x_1, x_2) \rangle$ we denote the subalgebra of FJ generated by $FJD(x_1, x_2)$.
Let $f(x_1, x_2, x_3) = (x_1 D(x_1, x_2)^2) D(x_1, x_2)$. In [Z1] it was proved that, for any $i \geq 1$, we have $x_i \cdot f^i \in \langle FJD(x_1, x_2) \rangle$.

Lemma 1.1.9. Let $f = f(a, b, c); a, b, c \in A$. Then

1. $t(M, M, I, f^4, A) = (0)$.
2. For an arbitrary element $e \in A$, we have $t(M, M, I, f^{12} e, A) = (0)$, $t(M, M, I, f^{24} e, A) = (0)$.

Proof. See Lemma 1.1.25 in [KMZ].

Let T be the ideal of the free Jordan algebra FJ generated by the set $f^{24}(FJ)$. The identity (D) (see the Introduction) implies that an arbitrary multiplication operator of FJ is a linear combination of operators of the type $D_1 \cdots D_r, D_1 \cdots D_r R(e) R(e)$, where $e \in FJ$, D_i are inner derivations. It was proved in [Z2] that in an algebra over an infinite field, the linear span of values of an arbitrary polynomial is differentially invariant. Hence $f^{24}(FJ) D_1 \cdots D_r$ lies in the linear span of $f^{24}(FJ)$. Hence, T is spanned by elements $f^{24}(a, b, c), f^{24}(a, b, c) e, (f^{24}(a, b, c) e) e$, where a, b, c, e are arbitrary elements from FJ. Now Lemma 1.1.9 immediately implies

Lemma 1.1.10. $t(M, M, I, T(A), A) = 0$.

Proof. See Lemma 1.1.26 in [KMZ].

Lemma 1.1.11. If $I \neq (0)$, then $T(\overline{A}) = (0)$.

Proof. Since \overline{A} is \mathcal{D}-simple and $T(\overline{A})$ is a \mathcal{D}-invariant ideal, then either $T(\overline{A}) = (0)$ or $T(\overline{A}) = \overline{A}$.

But $T(\overline{A}) = \overline{A}$ implies that $A = T(A) + I$. Then $t(M, M, I, A, A) = tr([M I] A, M I) A = 0$, by Lemmas 1.1.7 and 1.1.9. This proves that the ideal $I + [M I] A, M I] A$ is \mathcal{D}-invariant and has zero trace. So $[M I] A, M I] \subseteq I$. This implies that $id_I(I) \cap A \subseteq I$, and so $I = (0)$ by simplicity of J. Lemma is proved.

That is, we have proved that when $I \neq (0)$, then $s = 1$ and A/I is \mathcal{D}-simple with $T(A/I) = (0)$. Consequently, either

1. $A/I = F 1 + V$ is a simple Jordan algebra of a bilinear form, or
2. $A/I = B \otimes F[a_1, \ldots, a_n \mid a^n = 0]$ and B is a simple Jordan algebra of a bilinear form.

Lemma 1.1.12. $t([M \cdot I] A, M I] A) = 0$.

Proof. Let (i, j) be a lexicographically maximal pair such that $t([MD(I, A)]^j, MR(N^j)) = (0)$, where n denotes the nilpotent radical of A.

584 MARTINEZ AND ZEMLANOV
Notice that \(t([(MI) A, M]) = t([MD(I, A), M]) \) since \([(MA) I, M] \subseteq I \).
Again we can consider a homogeneous Peirce element \(x \in MD(I, A) \) and a strongly Peirce homogeneous element \(y \in MR(N)^+ \) such that \(t([x, y]) \neq 0 \). By Kaplansky’s Lemma, \(y = \psi[x, y]y + ya \), with \(0 \neq \psi \in F \), \(a \in N(A) \). Hence, \(t([x, ya]) \neq 0 \) or \(t([x, xR(y)^2]) \neq 0 \).

But \([x, ya] \in [MD(I, A)^+, MR(N)^{+1}] \) and \((i, j) < (i, j + 1) \).
Similarly, \([x, xR(y)^2] \in [MD(I, A)^+, MD(I, A)^+] \) \(\subseteq I + [MD(I, A)^{+1}, M] \) and \((2i, 0) > (i, j) \). This contradiction proves the lemma.

Lemma 1.1.13. \([M_I, M_I] \subseteq I \), where \(M_I = (MI) A \).

Proof. \(M_I A \subseteq M_I \). Indeed,

\[
((xu)a)b = xR(u)R(a)R(b) \\
\quad = -xR(b)R(a)R(u) - xR((ab)a) \\
\quad + xR(a)R(b) + xR(buR(a) + xR(ab)R(u)).
\]

The subspace \(K = [M_I, M_I] A \) is an ideal of \(A \). Let us show that \(MK \subseteq M_I \). Indeed,

\[
MR(a[x_1, x_2]) = M(-R(x_1)R(a)R(x_2) + R(x_2)R(a)R(x_1) \\
\quad + R(x_1)R(ax_2) - R(x_2)R(ax_1) + R(a)R([x_1, x_2]) \\
\quad \in AM_I + M[x_1, x_2].
\]

But \(M[x_1, x_2] \subseteq x_1D(M, x_2) + x_2[M, x_1] \subseteq M_I \), since \(M_I \) is \(\mathcal{D} \)-invariant.

Consequently, \(K \) is a \(\mathcal{D} \)-invariant ideal of \(A \) and \(\tilde{A} = A/I \) is \(\mathcal{D} \)-simple, as we have seen. This implies that either \(K + I = A \) or \(K + I = I \). But \(K + I = A \) implies that \(M = MA = MK + MI \subseteq M_I \), which is a contradiction because \(I \) acts nilpotently on \(M \). So \(K + I = I \); that is, \(K \subseteq I \).

Lemma 1.1.14. If the algebra \(A \) contains three pairwise orthogonal idempotents, then \(I = N \), where \(N \) denotes the nilpotent radical of \(A \).

Proof. Since \(\tilde{A} = \oplus_{i \leq 2} \tilde{A}^{(i)} \) and each \(\tilde{A}^{(i)} \) is either simple or \(\tilde{A}^{(i)} = B_i \) \(\oplus F[a_i | a_i^2 = 0] \) and \(B_i \) is simple, it follows that \(N/I \) is generated by central elements (the elements \(a_i \)). Let \(U = (N/I) \cap Z(\tilde{A}) \). Then \(N/I = \text{id}_U(\tilde{A}) = U\tilde{A} \). Let \(I = e_1 + e_2 + e_3 \), where \(e_i \) are idempotents in \(A \). Then \(M = \oplus M_{ij}, M_{ij} = (e_i, M, e_j) \). We have \(UD(M_{ij}, M_{ij}) \subseteq Z(\tilde{A}) \cap \{ \tilde{e}_i, \tilde{e}_j \} = 0 \), and \(UD(M_{ij}, M_{iks}) \subseteq Z(\tilde{A}) \cap \{ \tilde{e}_i, \tilde{A}, \tilde{e}_k \} = 0 \) for \(i, j, k \) distinct. Hence, \(UD(M, M) = 0 \) and \(N \) is \(\mathcal{D} \)-invariant. So \(N = I \). Lemma is proved.
COROLLARY 1.1.2. If $I = (0)$, $N \neq (0)$, then A is one of the following algebras:

(i) $F[a_1, \ldots, a_n | a_i^p = 0]$,
(ii) $F[a_1, \ldots, a_n | a_i^p = 0] \oplus F[b_1, \ldots, b_m | b_i^p = 0]$, $n \geq m \geq 0$ and $n \geq 1$,
(iii) $(F + V) \otimes F[a_1, \ldots, a_n | a_i^p = 0]$.

The following proposition summarizes the results proved in this section.

PROPOSITION 1.1.1. Let $J = A + M$ be a finite-dimensional simple unital Jordan superalgebra and let I denote the maximal nilpotent \mathcal{D}-invariant ideal of A, $\mathcal{D} = D(M, M)$. Then one of the following statements holds:

1. A is semisimple (this case was studied in [RZ]).
2. $I \neq (0)$, A/I is differentially simple. Furthermore, $T(\bar{A}) = (0)$.

Hence either

2.a. \bar{A} is a simple Jordan algebra of a bilinear form, or
2.b. $\bar{A} = B \otimes F[a_1, \ldots, a_n | a_i^p = 0]$ and B is a simple Jordan algebra of a bilinear form.

3. $A = F[a_1, \ldots, a_n | a_i^p = 0]$.
4. $A = (F + V) \otimes F[a_1, \ldots, a_n | a_i^p = 0]$.
5. $A = F[a_1, \ldots, a_n | a_i^p = 0] \oplus F[b_1, \ldots, b_m | b_i^p = 0]$.

As it has been mentioned before, case (1) was studied in [RZ], so we will consider in this paper the other cases (2)–(5).

2. THE CASE $I = (0)$

In this section we will consider all cases that correspond to $I = (0)$.

As we have seen in Section 1, we have three possibilities:

(a) $A = F[a_1, \ldots, a_n | a_i^p = 0]$ is an algebra of truncated polynomials, or
(b) $A = F[a_1, \ldots, a_n | a_i^p = 0] \oplus F[b_1, \ldots, b_m | b_i^p = 0]$ is a direct sum of two algebras of truncated polynomials, or
(c) $A = (F \cdot 1 + V) \otimes B(m)$ is a tensor product of a finite-dimensional simple Jordan algebra of a bilinear form with the algebra of truncated polynomials in m variables.

2.1. $A = F[a_1, \ldots, a_n | a_i^p = 0]$

In this section we will consider the case in which the even part A of the Jordan superalgebra J is an algebra of truncated polynomials, $A = F[a_1, \ldots, a_n | a_i^p = 0]$.
Let us denote $A_0 = \{ a \in A \mid t(a) = 0 \} = \{ a = \sum_{i_1,\ldots,i_n > 0} a_{i_1} \cdots a_{i_n} \mid a_{i_1} \cdots a_{i_n} \neq 0 \}$. Denote $\deg(a) = \min\{i_1 + \cdots + i_n \mid \alpha_{i_1} \cdots \alpha_{i_n} \neq 0 \}$.

Lemma 2.1.1. (1) For every $a \in A$ with $\deg(a) \geq 2$ and arbitrary elements $x, y \in M$, we have

$$t([x, yR(a)]) = t([xR(a), y]).$$

(2) For arbitrary elements $a, b \in A$, $x, y \in M$, $\deg(a), \deg(b) \geq 1$, we have

$$t([x, yU(a, b)]) = -t([xU(a, b), y]).$$

(3) $t([x, yD(a, b)]) = -t([xD(a, b), y]).$

Proof. (1) $[xR(a), y] - [x, yR(a)] = [ax, y] + [ay, x] = aD(x, y) \in A_0$ because $\deg(a) \geq 2$.

(2) If $b \in A_0$, then $[x, yU(b)] = 4(x, b, y)b - [xU(b), y]$. Since $(x, b, y)b \in A_0$, it follows that $t([x, yU(b)] + [U(b), y]) = 0$.

(3) The assertion immediately follows from the identity: $[x, yD(a, b)] + [xD(a, b), y] = [x, y]D(a, b)$. Lemma is proved.

Let R_i denote the linear span of all operators of the form $R(b_1) \cdots R(b_i)$ with $\sum_{j=1}^i \deg(b_j) \geq i$.

Lemma 2.1.2. For every operator $w \in R_i$, $i \geq 2$, there exist an operator $\tilde{w} \in R_2$ and operators $\omega_a \in R(A)$ such that $t([x, y\omega]) = t(\sum_a [x \tilde{w}, y \omega_a])$.

Proof. Let $\omega = R(b_1) \cdots R(b_i)$. If $r = 1$, then $\deg(b_1) \geq 2$ and we can use Lemma 2.1.1(1).

Suppose $r \geq 2$. Then $R(b_{r-1})R(b_r) = 1/2(D(b_{r-1}, b_r) + U(b_{r-1}, b_r) + R(b_{r-1}, b_r))$ and $t([x, y\omega]) = t(-1/2[xD(b_{r-1}, b_r), yR(b_1) \cdots R(b_{r-2})] - 1/2[xU(b_{r-1}, b_r), yR(b_1) \cdots R(b_{r-2})] + 1/2[x(b_{r-1}, b_r), yR(b_1) \cdots R(b_{r-2})])$. Lemma is proved.

Let us denote $\tilde{M} = \sum_{a, b \in A} FM(R(a)R(b) - R(ab))$. Our aim is to prove that $\tilde{M} = 0$.

Since A has no nilpotent \mathcal{D}-invariant ideals and A_0 is nilpotent, then A_0 is not \mathcal{D}-invariant. So there is an element $a \in A_0$ and some element $x \in M$ such that $aR(x)^2 = 1 + b$, with $b \in A_0$. The operator $R(1 + b)$ is invertible, $R(1 + b)^{-1} = Id + \sum_{i \geq 1} (-1)^i R(b)^i$. Hence $M = MR(aR(x)^2) \subseteq (MR(x)^2)a + (MaR(x)^2) \subseteq (Ax)a + Ax$.

If $\tilde{M} = 0$, then $M = Ax$, and consequently, $J = A + Ax$ is obtained from $A = F[a_1, \ldots, a_n \mid a_n^2 = 0]$ by the Kantor-doubling process.
LEMMA 2.1.3. \(\tilde{M} = (0) \).

Proof. For arbitrary elements \(a, b, c \in A \), we have

\[
(R(a)R(b)) - R(ab)R(c) \\
= R(a)(R(b)R(c) - R(bc)) \\
+ (R(a)R(bc) - R(a(bc))) - (R(ab)R(c) - R((ab)c)).
\]

Hence \(\tilde{M} \) is a submodule of \(M \). It is sufficient to prove that \([\tilde{M}, M] = (0) \).

In such case, \(\tilde{M} \subseteq J \), and it follows from simplicity of \(J \) that \(\tilde{M} = (0) \).

To prove that \([\tilde{M}, M] = (0) \), it is sufficient to prove that \(t([\tilde{M}, M]) = (0) \).

Indeed, the subspace \([\tilde{M}, M]\) of \(A \) is \(\mathcal{D} \)-invariant, and since \(I = (0) \), we know that there are no nonzero \(\mathcal{D} \)-invariant subspaces of \(A \) having zero trace.

Clearly, \(R_2 \) is an ideal of \(R(A) \), and for an arbitrary derivation \(d \in \mathcal{D} \), we have \([R_k, d] \subseteq R_{k-1}\) (since \([R(a), d] = R(ad)\)).

Claim. \(t([MR_i, M]) = (0) \) if \(i \geq 3 \).

Indeed, suppose the assertion is not true and let \(i \) be the maximal number with this property: \(t([MR_i, M]) \neq (0) \), but \(t([MR_{i+1}, M]) = (0) \).

If \(x, y \in M \), \(\omega \in R \) satisfy \(t([x\omega, y]) \neq 0 \) and the relevant elements are Peirce homogeneous, then by Kaplansky’s argument, \(y = \alpha x\omega R(y)^2 + \beta y\omega' \), \(\alpha, \beta \in F \), \(\omega' \in R_1 \). Hence, \(y = \alpha x\omega R(y)^2(1 - \beta\omega')^{-1} \) and \(y \in MR_{i-1} \).

Since \(i - 1 \geq 2 \), by Lemma 2.1.2 it follows that \(t([MR_i, MR_{i-1}]) = t([MR_{i+2}, M]) = (0) \). Claim is proved.

Now we can prove that \(t([\tilde{M}, M]) = (0) \). Indeed, the submodule \(\tilde{M} \) of \(M \) is \(\mathcal{D} \)-invariant. If \(x \in \tilde{M}, y \in M \) are Peirce homogeneous elements and \(t([x, y]) \neq 0 \), then again \(y = \alpha xR(y)^2 + \beta y\omega' \), \(\omega' \in R_1 \). Therefore, \(y = \alpha xR(y)^2(1 - \beta\omega')^{-1} \in \tilde{M} \subseteq MR_2 \). Now \(t([MR_2, MR_3]) \subseteq t([MR_4, M]) = (0) \). Lemma is proved.

The following proposition is due to King and McCrimmon.

PROPOSITION 2.1.1 (see [KM]). The Jordan superalgebra \(J = A + Ax \) is simple if and only if \(A \) is “bracket simple”; that is, \(A \) has no nonzero ideals \(B \) such that \(A, B) \subseteq B \).

EXAMPLE. Let us show that there is only one (up to isomorphism) structure of a simple Jordan superalgebra on the Kantor double \(F[a_1] + F[a_1]x \). Let us denote \(a = a_1 \) and suppose that \(aR(x)^2 = 1 + b \) with \(b \in A_0 \). Since the characteristic of \(F \) is \(p \neq 2 \), the element \(1 + b \) has a square root in \(F[a] \). Let \(h(a)^2 = 1 + b \). Let us take \(f(a) = h(a)^{-1} \).
and replace the element x by $xf(a)$. Then $aR(xf(a))^2 = [xf(a)a, xf(a)] = f(a)^2 [x, a] = f(a)^2 h(a) = 1$. That is, in this case, $J = A + Ax = F[a] + Fx + \sum_{i=1}^{p} F a^i x$ and

$$a^i a^j = a^{i+j}, \quad (a^i x) a^j = a^{i+j} x, \quad [a^i x, a^j x] = (i - j) a^{i+j-1}. $$

2.2. $A = F[a_1, \ldots, a_n | a_i^p = 0] \oplus F[b_1, \ldots, b_m | b_j^p = 0]$

In this section we will consider case (5) in Proposition 1.1.1, that is, the case when the even part A of the Jordan superalgebra J is a direct sum of two algebras of truncated polynomials. Let us assume $n \geq m$ and denote $A' = F[a_1, \ldots, a_n]$ and $A'' = F[b_1, \ldots, b_m]$. Then (see Lemma 1.1.6) $M = \mathcal{M}$. If e denotes the identity element of A' and f denotes the identity element A'', then for an arbitrary element $x \in M$, we have $xe = xf = 1/2 x$ and $1 = e + f.$ In particular, $(A', M, A') = (A'', M, A'') = (0)$.

For arbitrary elements $a, b \in A'$ (resp. $a, b \in A''$), we have $U_M(a, b) = 0$; that is, $R_M(a)R_M(b) + R_M(b)R_M(a) = R_M(ab)$.

Since $A'^2 = A'$, for an arbitrary derivation d of the algebra A, we have $A'd \subset A'$ (resp. $A'd \subset A''$). If $a \in A'$, $b' \in A''$, then $D(a, b') = D(a, b') = D(a, e) + D(e, b') = 0$. So $R(a)R(b') = R(b')R(a)$.

The Lie algebra $\mathcal{D} = D(M, M)$ acts on $R = R^M\langle A \rangle$, $[R(a), D] = R(aD)$. Let us denote as W the maximal nilpotent ideal of R that is \mathcal{D}-invariant. As in the previous section, $A' = Fe + A'_{0}$, $A'' = Ff + A''_{0}$. If R_{1} denotes the subalgebra of R generated by $R(a)$, where $a \in A_{0}' + A_{0}'$, then $R = F \cdot \text{Id} + R_{1}$ and R_{1} is the nilpotent radical of R. Since A_{0}' is nilpotent, it cannot be \mathcal{D}-invariant. So there are elements $x \in M$, $a \in A_{0}'$, $c \in A_{0}''$ such that $aR(x)^2 = e + c$. Since the element c is nilpotent, as we have seen above, the operator $R(e + c)$ is invertible and therefore $M = MR(aR(x)^2) = xR^M\langle A \rangle$.

First we will prove that $W \neq (0)$. Let us assume the contrary; that is, R is \mathcal{D}-semisimple. The subspace $D(A, A)$ is \mathcal{D}-invariant and $D(A, A) \subset R_1$. Hence $D(A, A) \subset W = (0)$. So R is a commutative associative algebra.

Let us note that the only element $w \in R$ that satisfies $xw = 0$ is $w = 0$. Indeed, $xw = 0$ implies that $Mw = xR^M\langle A \rangle w = xwR^M\langle A \rangle = (0)$.

Since R is differentially semisimple, Block's theorem asserts that $R = \bigoplus_{i=1}^{\alpha} B(n_{i})$, where $B(n_{i}) = F[\alpha_{1}, \ldots, \alpha_{n_{i}} | \alpha_{i}^p = 0]$.

Now we will show that $s = 1$. Indeed, $s = \dim_{F} R/N(R)$. Since $N(R) = R_{1}$ and $R = F1 + R_{1}$, it follows that $s = 1$. Consequently, if we denote $r = n_{1}$, we have $R = B(r)$, and $\dim_{F} R = p^{r}$. Since $\phi: R \to M, w \to xw$ is a bijective linear mapping, we have that $\dim_{F} R = \dim_{F} M$.

Claim. $p^{n} < \dim_{F} M$.

Indeed, let us show that $\eta: A' = B(n) \to M$, $a \to xa$ is an injective linear map. We know that $xa = 0$ implies $Ma = (0)$. Let us consider
$B' = \{ a \in A' \mid Ma = (0) \}$. Let us show that B' is an ideal of A', so it is an ideal of A. For arbitrary elements $b \in A'$, $y \in M$, $a \in B'$, we have $y(ab) = 2(ya)b = 0$, since $U(a, b) = 0$ and $R(a)R(b) = R(b)R(a)$.

Since A does not contain nontrivial nilpotent D-invariant ideals, if we assume that η is not injective, that is, $B' \neq (0)$, then B' cannot be nilpotent. This implies that B' contains some element which is invertible in A'. Hence $B' = A'$ and $MA = (0)$, which is a contradiction, because $e \in A'$ and $ye = 1/2y$ for every $y \in M$.

Injectivity of η implies that $\dim_F A' = p^n \leq \dim_F M$. If we assume that $p^n = \dim_F M$, then $M = \text{Im} \eta = xA'$. This implies that $[M, M] = [xA', xA'] \subseteq A'$ and so $A' + M \leq J$, which contradicts simplicity of J. This proves the claim.

As we have mentioned above, there is an element $a \in A'$ with $t(aR(x)^2) \neq 0$ and so $M = xA + (xA)a = xA + xA' + (xA')a = FA + xA_0 + xA'_0 + (xA'_0)a$. Hence $\dim_F M \leq 1 + (p^n - 1) + 2(p^m - 1) = p^n + 2p^m - 2$, because $\dim_F A'_0 = p^n - 1$ and $\dim_F A''_0 = p^m - 1$.

Thus, we have $p^n < \dim_F M = p^r \leq p^n + 2p^m - 2$. But $p^n < p^r$ implies that $n < r$ and therefore $p^r \geq p^{r+1} = pp^n \geq 3p^n \geq p^n + 2p^m > p^n + 2p^m - 2$. The contradiction comes from the assumption $W = (0)$. We have proved that $W \neq (0)$.

Lemma 2.2.1. Let us assume that $\omega = R(a) + R(b) + \sum_i R(a_i)R(b_i) \in W$, where $a, a_i \in A'_0$, $b, b_i \in A''_0$. Let ω^* be the operator $\omega^* = R(a) + R(b) - \sum_i R(a_i)R(b_i)$. Then, for arbitrary elements $y, z \in M$, we have $t(y, z \omega) = t(y \omega^*, z)$.

Proof. Arguing as in the proof of Lemma 2.1.1, we get $t(y, zU(a_i, b_i)) = -t(yU(a_i, b_i), z)$ for arbitrary elements $a_i \in A'_0$, $b_i \in A''_0$.

To prove that $t(y, z(a + b)) = t(y(a + b), z)$, we need to show that $t((a + b)D(y, z)) = 0$. Suppose the contrary, that is, $(a + b)D(y, z) = \alpha 1 + \beta(e - f) + c$, with $\alpha \neq 0$, $c \in A'_0 + A''_0$. Then $[\omega, D(y, z)] = R(a + b)D(y, z) + \sum_i R(a_i)R(b_i), D(y, z)]$ is an invertible operator, which contradicts nilpotency of W. Lemma is proved.

Now let $W_0 = [R(a) + R(b) + \sum_i R(a_i)R(b_i) \in W \mid a, a_i \in A'_0$, $b, b_i \in A''_0]$. It is clear that $W = W_0 + D(A, A)R$ and $D(A, A)$ lies in the center of R.

Lemma 2.2.2. $t([MW, M]) = 0$.

Proof. We will use inverse induction on $i + j$ to prove that $t([MW, A]W^i_0, M)] = (0)$, where $W^*_0 = \{ \omega^* \mid \omega \in W_0 \}$.

Let us assume that $W^q = (0)$. Then by Lemma 2.2.1, $t([MW^q_0, M]) = t([M, MW^q_0]) = (0)$.
Now let us assume that \(t([MWD(A, A)W^*, M]) = (0) \) if \(i' + j' > k \), and let \(i + j = k \). Suppose that there exist \(y_1, y_2 \in M \), \(\omega \in W \), \(d_1, \ldots, d_i \in D(A, A), \omega_1, \ldots, \omega_j \in W_0 \) such that \(t([y_1 \omega d_1 \cdots d_i \omega_j, y_2]) \neq 0 \).

Then, \(y_1 \omega d_1 \cdots d_i \omega_j, y_2 = \alpha_1 + \beta(e - f) + c \), where \(\alpha \neq 0 \), \(c \in A_0' + A_0'' \). Hence, \(y_1 \omega d_1 \cdots d_i \omega_j \), and therefore, \(y_2 = y_1 \omega d_1 \cdots d_i \omega_j, y_3 = \alpha_1 \beta(e - f) + c \), and \(\omega \in W \subseteq R \). Hence \(y_2 = y_3 \omega_{j+1} + y_4 d \), where \(\omega_{j+1} \in W_0', d \in D(A, A); y_3, y_4 \in A \).

The element
\[
[y_1 \omega d_1 \cdots d_i \omega_j, y_3] = [y_1 \omega d_1 \cdots d_i \omega_j, y_3, y_4 d]
\]
has zero trace since
\[
t([y_1 \omega d_1 \cdots d_i \omega_j, y_3]) = -t([y_1 \omega d_1 \cdots d_i \omega_j, y_3]) = 0 \quad \text{and}
\]
\[
t([y_1 \omega d_1 \cdots d_i \omega_j, y_3, y_4 d])
\]
\[
= -t([y_1 \omega d_1 \cdots d_i \omega_j, y_4])
\]
\[
+ t([y_1 \omega d_1 \cdots d_i \omega_j, y_3, y_4 d]) = 0
\]

by the induction assumption. Lemma is proved.

Corollary 2.2.1. \(R_M([MW, M]) \subseteq W \).

Proof. Indeed, by Lemma 2.2.2, \(R_M([MW, M]) \subseteq R_1 \). Since the subspace \([MW, M]\) is \(\mathcal{D} \)-invariant, it follows that \(R_M([MW, M]) \subseteq W \).

Lemma 2.2.3. \(AD(\tilde{M}, M) = (0) \), where \(\tilde{M} = MW \).

Proof. \(AD(\tilde{M}, M) \subseteq [\tilde{M}, M] \), so \(t(AD(\tilde{M}, M)) = (0) \). Since there are no nonzero \(\mathcal{D} \)-invariant nilpotent ideals of \(A' \) (resp. \(A'' \)) and \(AD(\tilde{M}, M) \) (resp. \(A'D(\tilde{M}, M) \)) has zero trace and is \(\mathcal{D} \)-invariant, it follows that \(AD(\tilde{M}, M) = (0) \) (resp. \(A'D(\tilde{M}, M) = (0) \)).

Lemma 2.2.4. (a) \(MWW = \tilde{M}W = (0) \). In particular, \(\tilde{M}D(A, A) = (0) \) and \(MD(A, A)D(A, A) = (0) \).

(b) \([MW, MW] = (0)\).

Proof. To prove assertion (a), it is sufficient to prove that \([\tilde{M}W, \tilde{M}W] \subseteq A_0' + A_0'' \). Indeed, the subspace \([\tilde{M}W, \tilde{M}W]\) is \(\mathcal{D}(M, M) \)-invariant, hence \([MW, MW] = (0) \). Hence \(\tilde{M}W \) is an ideal of \(J \). By simplicity of \(J \), we get \(MW = (0) \).
Let us prove the inclusion. Choose arbitrary elements \(\tilde{y}_1 \in \tilde{M} \), \(y_2 \in M \), \(c \in A \). By the Jordan identity and Lemma 2.2.3, we have

\[
\tilde{y}_1 R(c) R(y_2) R(e) = \tilde{y}_1 (-R(e) R(y_2) R(e) - R((ce)y_2) + R(e) R(cy_2)) + R(c) R(cy_2) + R(y_2) R(ec))
\]

\[
= -1/2[\tilde{y}_1, y_2]c - [\tilde{y}_1, (ce)y_2] + 1/2[\tilde{y}_1, cy_2] + 1/2[\tilde{y}_1 c, y_2] + [\tilde{y}_1, y_2](ec)
\]

\[
= -1/2[\tilde{y}_1, y_2]c - [\tilde{y}_1, (ce)y_2] + [\tilde{y}_1, cy_2] + [\tilde{y}_1, y_2](ec).
\]

(2.1)

If \(c \in A'_0 \), the right-hand side of (2.1) is \(\frac{1}{2} [\tilde{y}_1, y_2]c + [\tilde{y}_1, y_2]c = \frac{1}{2} [\tilde{y}_1, y_2]c \in A'_0 + A'_0 \).

If \(c \in A'_0 \), the right-hand side of (2.1) is \(\frac{1}{2} [\tilde{y}_1, y_2]c + [\tilde{y}_1, cy_2] \) and the left-hand side is \(\cdots e \in A \). So \([\tilde{y}_1, cy_2] = ([\tilde{y}_1, cy_2] - \frac{1}{2}[\tilde{y}_1, y_2]c) + \frac{1}{2}[\tilde{y}_1, y_2]c = a + b \), where \(a \in A' \) and \(b \in A'_0 \).

By Lemma 2.2.2, \(t([\tilde{y}_1 c, y_1]) = 0 \), so \(a \in A'_0 \) and \([\tilde{y}_1 c, y_2] \in A'_0 + A'_0 \).

(b) Since \([MW, MW]\) is \(\mathcal{D}\)-invariant and there are no nontrivial \(\mathcal{D}\)-invariant ideals in \(A'_0 + A'_0 \), it is sufficient to prove that \([MW, MW] \subseteq A'_0 + A'_0 \).

In fact, it is easy to see that we need to verify the inclusion \([MW, MR(a)] \subseteq A'_0 + A'_0 \) for an arbitrary element \(a \in A'_0 + A'_0 \), which was done above. Lemma is proved.

Lemma 2.2.5. For every element \(a \in A' \), there is a unique element \(\varphi(a) \in A'' \) such that \(M(a - \varphi(a)) \subseteq \tilde{M} \).

Proof. Since \(\tilde{M} \neq (0) \), it follows that \([\tilde{M}, M] \neq (0) \) (otherwise \(\tilde{M} \subseteq J \)). Since \(M = xR^M(A) \), Lemma 2.2.3 implies that \([\tilde{M}, M] = [\tilde{M}, x]\).

The subspace \([\tilde{M}, M]\) is \(\mathcal{D}(M,M)\)-invariant, hence \([\tilde{M}, M] \subseteq A'_0 + A'_0 \). All elements of \([\tilde{M}, M]\) have zero trace. Therefore, there exists an element \(y \in \tilde{M} \) such that \([y, x] = (e + a_0) - (f + b_0) \), where \(a_0 \in A'_0, b_0 \in A'_0 \).

Let us consider an arbitrary element \(a \in A' \) and let \(a' = 2(e + a_0)^{-1}a \). Applying the expression (2.1) with \(y, a', \) and \(x \) instead of \(\tilde{y}_1, c, \) and \(y_2, \) we get \([ya', x]e = \frac{1}{2}[y, x]a' = [ya', x]a' - b, \) for some \(b \in A' \).

Now \(xR(a - b) = (a - b)R(x) = [ya', x]R(x) = (ya')R(x)^2 \in M \), since \(y \in \tilde{M} \) and \(\tilde{M} \) is \(\mathcal{D}\)-invariant. An arbitrary element in \(M \) is a linear combination of elements of the type \(x' = xR(c_1) \cdots R(c_r) \), with \(c_1, \ldots, c_r \in A \). We will use induction on \(r \) to prove that \(x'R(a - b) \in \tilde{M} \). If \(r = 1 \),
then \(xR(c_1)R(a - b) = xR(a - b)R(c_1) + xD(c_1, a - b) \in \tilde{M}\). In general,
\(x'R(a - b) = xR(c_1) \cdots R(c_n)R(a - b) = xR(c_1) \cdots R(a - b)R(c_1) + xR(c_1) \cdots D(c_1, a - b) \in M\), since \(D(A, A) \subseteq W\).

Let us prove now uniqueness. If we assume that there is another \(b' \neq b\) such that \(M(a - b') \subseteq \tilde{M}\), then \(\{a' \in A' | Ma' \subseteq \tilde{M}\} \neq \{0\}\) and it is a \(\mathcal{D}\)-invariant subspace. So it contains an element \(f + a_0'\), with \(a_0' \in A_0\). But \(M = M(f + a_0') \subseteq \tilde{M}\) implies \(\tilde{M} = M = MW\), which contradicts \(MW^q = \{0\}\). Lemma is proved.

Lemma 2.2.6. The mapping \(\varphi : A' \rightarrow A', a \rightarrow \varphi(a)\) is an isomorphism of algebras. In particular, \(n = m\); that is, \(A\) is a direct sum of two algebras of truncated polynomials in the same number of variables.

Proof. Clearly, \(\varphi\) is linear. Doing as in Lemma 2.2.5, we can prove that, for every \(b \in A'\), there is a unique \(\psi(b) \in A'\) such that \(M(b - \psi(b)) \subseteq \tilde{M}\).

It is easy to see that \(\varphi\) and \(\psi\) are inverses.

Finally, let us show that, for arbitrary elements \(a, a' \in A'\), we have \(\varphi(aa') = \varphi(a)\varphi(a')\).

Indeed,
\(R_M(aa') = R_M(a)R_M(a') + R_M(a')R_M(a) = 2R_M(a)R_M(a') + D_M(a, a')\) since \(U_M(a, a') = 0\).

Similarly,
\(R_M(\varphi(a)\varphi(a')) = 2R_M(\varphi(a))R_M(\varphi(a')) + D_M(\varphi(a'), \varphi(a')).\) This implies
\[
M(R(aa') - R(\varphi(a)\varphi(a'))) \\
\leq 2M(R(a)R(a') - R(\varphi(a))R(\varphi(a'))) \\
+ (MD(a', a) - MD(\varphi(a'), \varphi(a))) \\
\leq (2MR(a)R(a' - \varphi(a'))) + (2MR(a - \varphi(a))R(\varphi(a'))) \\
+ (MD(a', a) - MD(\varphi(a'), \varphi(a))) \subseteq \tilde{M},
\]

since each summand lies in \(\tilde{M}\). Lemma is proved.

Remark. \(\varphi\) commutes with \(\mathcal{D}(M, M)\).

Indeed, for an arbitrary element \(a \in A'\) and an arbitrary derivation \(d \in \mathcal{D}(M, M)\), we have
\(M(a - \varphi(a))d \subseteq (Mdal(a - \varphi(a)) + M(d(a) - d(\varphi(a))).\) Therefore,
\(M(d(a) - d(\varphi(a))) \subseteq M(a - \varphi(a))d + (Md(a - \varphi(a)) \subseteq \tilde{M}\) and so \(d(\varphi(a)) = \varphi(d(a))\).

Notation. Let \(S = \{a + \varphi(a) | a \in A'\}\). Then \(S\) is closed under the product \((a + \varphi(a))(a' + \varphi(a')) = aa' + \varphi(a)\varphi(a') = aa' + \varphi(aa') \in S\).

Lemma 2.2.7. For arbitrary elements \(s, s' \in S\), we have
\(R_M(s)R_M(s') = R_M(ss')\).
Proof. It suffices to prove that the subspace $[\Sigma_{s, s' \in S} M(R(s)R(s') - R(ss')), M]$ lies in $A_0 + A_o'$, since it is $D(M, M)$-invariant.

Claim 1. $M(R(s)R(s') - R(ss')) \subseteq \tilde{M}$.

Let $s = a + \phi(a), s' = a' + \phi(a')$. We know that $M(a - \phi(a)) \subseteq \tilde{M}, M(a' - \phi(a')) \subseteq \tilde{M}, M(a + a')(a' - \phi(a')) \subseteq M$, and $4R(a)R(a') - 2R(a + a') = 2U(a, a') + D(a', a) = 2D(a, a')$. Hence $M(R(s)R(s') - R(ss')) \subseteq M$.

Claim 2. $MD(s, s') = (0)$.

First we will see that $[M(a - \phi(a))(a' - \phi(a'))(a - \phi(a'))] = (0)$. Indeed, by Lemma 2.2.3, we have that $[M(a - \phi(a))(a' - \phi(a'))] = [M(a - \phi(a)), M(a' - \phi(a'))] \subseteq \tilde{M}$, by Lemma 2.2.4(b).

Let us show that $M(a - \phi(a))(a' - \phi(a'))$ is an A-submodule of M. Let $u = a - \phi(a), u' = a' - \phi(a')$, and let c be an arbitrary element from A. We have

$$MR(a - \phi(a)) R(a' - \phi(a')) R(c) = MR(u) R(u') R(c) \subseteq MR(u) R(c) R(u') + MR(u) D(u', c) = MR(u) R(c) R(u') \subseteq MD(u, c) R(u') + MR(c) R(u) R(u'),$$

since $MR(u) D(u', c), MR(u') D(u, c) \subseteq \tilde{M} W = (0)$. Now $(M(a - \phi(a))(a' - \phi(a'))) = (0)$.

In particular, $MD(a - \phi(a), a' - \phi(a')) = (0)$. Since $D(A', A') = (0)$, it follows that $[R_M(a + \phi(a)), R_M(a' + \phi(a'))] = [R_M(a - \phi(a)), R_M(a' - \phi(a'))] = (0)$, which proves Claim 2.

Now we will prove that $y_1 R(s) R(s') - R(ss'), y_2 \in A_0 + A_o'$. If $y_2 \in M(A_0 + A_o')$, then the proof of Lemma 2.2.4 implies the result (notice that $y_1 R(s) R(s') - R(ss') \subseteq M$, by Claim 1).

So we can assume that $y_2 = x$. If $y_1 = y_1' c$ with $c \in \tilde{M}$, then $c = \frac{1}{2}((c - \phi(c)) + (c + \phi(c)))$, and by Claim 1, $[y_1'(c - \phi(c))(R(s)R(s') - R(ss')), x] \subseteq [MR(A_0 + A_o'), M] \subseteq A_0 + A_o'$, as was shown in the proof of Lemma 2.2.4(a).

Similarly, by Claim 2,

$$[y_1'(c + \phi(c))(R(s)R(s') - R(ss')), x] = [y_1'(R(s)R(s') - R(ss')) R(c + \phi(c)), x] \subseteq A_0 + A_o',$$

as before.

The case $c \in A_o'$ is similar.

Finally, we have to examine the element $[y(R(s)R(s') - R(ss')), x]$. This is a linear expression in s, s'. The result is clearly true if one of the elements is 1. Let us assume that $s = a + \phi(a), s' = a' + \phi(a'), a, a' \in A_0'$.
Then

\[
[x(ss'), x] = (ss')R(x)^2 = (sR(x)^2)s' + (s'R(x)^2)s \in \mathcal{A}_0' + \mathcal{A}_0' \quad \text{and}
\]

\[
xR(s) R(s'), x = [x(R(a)R(a')) + R(\varphi(a))R(\varphi(a')), x]
\]

+ \[x(R(a)R(\varphi(a')) + R(\varphi(a))R(a')), x\].

Now \[xR(a)R(a') = \frac{1}{2}x(D(a, a') + R(aa'))\] implies that \([xR(a)R(a'), x] = \frac{1}{2}[xD(a, a'), x] + \frac{1}{2}[xR(aa'), x]\]. Since \((aa')R(x)^2 = a'(a'R(x)^2) + (aR(x)^2)a' \in \mathcal{A}_0' + \mathcal{A}_0'\), we have \([xR(a)R(a'), x] = \frac{1}{2}[xD(a, a'), x] \mod \mathcal{A}_0' + \mathcal{A}_0'\), and similarly, \([xR(\varphi(a))R(\varphi(a')), x] = \frac{1}{2}[xD(\varphi(a), \varphi(a')), x] \mod \mathcal{A}_0' + \mathcal{A}_0'\).

Then \([xR(a)R(a') + R(\varphi(a))R(\varphi(a'))], x] = \frac{1}{2}[x(D(a, a') + D(\varphi(a), \varphi(a')), x)] = 0\).

Finally, \(xR(a - \varphi(a))R(a' - \varphi(a')) = 0\) implies that \(0 = xR(a)R(a') + R(\varphi(a))R(\varphi(a')) - xR(a)R(\varphi(a')) + R(\varphi(a))R(a')\). Consequently, \([xR(a)R(\varphi(a')) + R(\varphi(a))R(a')], x] \in \mathcal{A}_0' + \mathcal{A}_0'\), Lemma is proved.

Our aim now is to prove that \(J\) is as a Kantor Double algebra.

Consider \(\Gamma = S + \hat{M}\), which is a commutative associative algebra.

Lemma 2.2.8. \(J = \Gamma + \Gamma x\).

Proof. We have to show that \(A = S + [\hat{M}, x]\) and \(M = \hat{M} + Sx\).

Denote \(K = \{a - \varphi(a) \mid a \in \mathcal{A}\}\). Then \(A = S + K\) and \(MK \subseteq \hat{M}\). This implies that \(M = xR^M(A) \subseteq xR^M(S) + \hat{M} = xS + \hat{M}\) by Lemma 2.2.7.

It was shown in the proof of Lemma 2.2.5 that there exists an element \(y \in \hat{M}\) such that \([y, x] = (e + a_0) - (f + b_0), a_0 \in \mathcal{A}_0, b_0 \in \mathcal{A}_0'\), and for an arbitrary element \(a \in \mathcal{A}\), we have \(2[y((e + a_0)^{-1}a), x] = a - \varphi(a)\).

This implies that \(K \subseteq [\hat{M}, x]\) and therefore \(A = S + [\hat{M}, x]\). We proved that \(J = \Gamma + \Gamma x\). Lemma is proved.

Remark. Since \([\hat{M}, x]x \subseteq \hat{M},\) Lemma 2.2.5 implies that \([\hat{M}, x] \subseteq K\), so \([\hat{M}, x] = K\).

Lemma 2.2.9. There exists an operator \(\hat{\omega} \in W\) such that \([x\hat{\omega}, x] = e - f\).

Proof. Since \([MW, M]\) is a \(\mathcal{D}\)-invariant subspace of \(A\), it follows that \([MW, M]\) is not contained in \(\mathcal{A}_0' + \mathcal{A}_0'\). Hence there exists an operator \(\omega \in W\) such that \([x \omega, x] = e - f + o(1)\), where \(o(1) \in \mathcal{A}_0' + \mathcal{A}_0'\). Consider the linear map \(\pi: S \rightarrow K\), \(\pi: s \rightarrow [(x \omega)s, x]\). We will show that this mapping is injective.

Let \([(x \omega)s, x] = 0\) for some element \(s \in S\).
Then

\[0 = (x \omega) R(s) R(x) R(e - f)\]
\[= (x \omega)(-R(e - f) R(x) R(s) - R((s(e - f)) x)\]
\[+ R(s) R(x(e - f)) + R(e - f) R(s x) + R(x) R(s(e - f))).\]

If \(s = c + \varphi(c), c \in A',\) then \(s(e - f) = c - \varphi(c).\) Remark that \(M(e - f) = (0)\) and \((x \omega) R((s(e - f)) x) = [(x \omega), x(c - \varphi(c))]\in [MW, MW'] = (0).\)

Hence, \([x \omega, x(c - \varphi(c))] = 0.\) Since the element \([x \omega, x] = e - f + o(1)\) is invertible in \(A,\) it follows that \(c - \varphi(c) = 0,\) \(c = 0.\)

We have \(\dim F S = \dim F K.\) This implies that \(\pi\) is a bijection. In particular, there exists an element \(s \in S\) such that \([xw, x] = e - f.\) Let \(\tilde{\omega} = \omega R(s).\) Lemma is proved.

Lemma 2.2.10. \(\tilde{M} = \xi S,\) where \(\xi = x \tilde{\omega}.\)

Proof. We have \(x \tilde{\omega} D(x, e - f) = [x \tilde{\omega}, x(e - f)] - [(x \tilde{\omega})(e - f), x] = (e - f)^2 = 1.\)

Choose an arbitrary element \(y \in \tilde{M}.\) Clearly, \([x \tilde{\omega}, y] \in [\tilde{M}, \tilde{M}] = (0).\)

Furthermore,

\[0 = [x \tilde{\omega}, y] D(x, e - f)\]
\[= - (x \tilde{\omega} D(x, e - f)) y + (x \tilde{\omega})(y D(x, e - f)) = - y + (x \tilde{\omega}) c,\]

where \(c = y D(x, e - f) \in S.\) Hence, \(y = (x \tilde{\omega}) c = \xi c \in \xi S.\) Lemma is proved.

Lemma 2.2.11. \((\Gamma x)(\Gamma x) \subseteq \Gamma.\)

Proof. Since we have already proved that \(\tilde{M} = \xi S,\) we know that \(\Gamma = S + \xi S.\) So we have to prove:

1. \([Sx, Sx] \subseteq S,\)
2. \([\xi S, x][Sx] \subseteq \tilde{M} = \xi S,\)
3. \([\xi S, x][\xi S, x] \subseteq S.\)

To check (1), let us take \(s_1 = a + \varphi(a), s_2 = b + \varphi(b), a, b \in A'.\) Then

\([x s_1, x s_2] = s_1 D(x, x s_2) - [(x s_2), x] = s_1 D(x, s_2 x) - [x(s_2 s_1), x]\) by Lemma 2.2.7.

But \(d(\varphi(a)) = \varphi(d(a))\) for every \(d \in D(M, M).\)

So \(s_1 D(x, s_2 x), (s_2 s_1) R(x)^2 \in S.\)

To prove (2), let us notice that we have proved in Lemma 2.2.9 that \(\xi R(s) R(x) R(e - f) = \xi R(x) R(s(e - f)).\)
Lemma is proved.

\[\text{Lemma is proved.} \]

Lemma 2.2.12. For arbitrary elements \(a, b \in \Gamma \), we have \(a(bx) = (ab)x \).

Proof. If \(a, b \in S \), then the assertion follows from Lemma 2.2.7. If \(a, b \in \tilde{M} \), then \(a(bx) = (ab)x = 0 \), by Corollary 2.2.1 and Lemma 2.2.4.

If \(a \in \tilde{M} \), \(b \in S \), then \(a(bx) - (ab)x = bD(x, a) = 0 \) by Lemma 2.2.3.

Finally, let \(a \in S; \ b \in \tilde{M} \). We need to prove that \(bR(a)x = bR(x)R(a) \). As in the proof of Lemma 2.2.9, we have \(bR(a)x = bR(x)R(a(e - f)) \), and similarly, \(bR(x)R(a(e - f)) = bR(x)R(a(x - f)) \). Since \(e - f \) is invertible in \(A \), it follows that \(a(bx) = (bx)a = (ab)x \).

Lemma is proved.

Lemma 2.2.13. (a) The operator \(R(x) \) is injective on \(\Gamma \).

(b) \(J = \Gamma + \Gamma x \) is a direct sum.

Proof. We have \(\dim A' = \dim A'' = \dim S = p^n \). Since \(\tilde{M} = \xi S \), it follows that \(\dim \tilde{M} \leq p^n \). On the other hand, \(A = S + [M, x] \) implies that \(\dim[\tilde{M}, x] \geq \dim A - \dim S = p^n \). Hence the mapping \(\tilde{M} \to [M, x], y \to [y, x] \), is injective and \(A = S + [\tilde{M}, x] \) is a direct sum.

Let us show that \(s \in S, xs \in \tilde{M} \) implies \(s = 0 \). Indeed, if \(xs \in \tilde{M} \), then \(Ms \subseteq \tilde{M} \). The subspace \(\{ s \in S | Ms \subseteq M \} \) is \(\mathcal{D} \)-invariant. If nonzero, this subspace contains an element from \(e + f + A_0 + A_\o \), which implies \(M = \tilde{M} \), the contradiction.

Hence the mapping \(S \to xs, s \to xs \), is injective and \(M = xS + \tilde{M} \) is a direct sum. Lemma is proved.

We proved that \(J = \Gamma + \Gamma x \) is a Kantor Double with respect to the Jordan bracket \(\{, \} \) on \(\Gamma \) which is defined via

\[[ax, bx] = (-1)^{|b|}(a, b); \quad a, b \in \Gamma. \]

The algebra \(\Gamma \) can be identified with the algebra of polynomials in \(n \) even truncated variables \(s_i = a_i + \varphi(a_i), 1 \leq i \leq n \), and one odd variable \(\xi \). Moreover, \(\{ \xi, \xi \} = (-1)(\xi, x)^2 = -1 \). For an arbitrary element \(s \in S \), we have \(\{ s, \xi \} = \{ sx \} \xi, x \} = \{ sx \} (e - f) = 0 \); that is, \(\{ S, \xi \} = \{ 0 \} \).

Example. Let us consider the case \(n = 1 = m \), that is,

\[A = F[a | a^p = 0] \oplus F[b | b^p = 0]. \]

In this case we can assume that \(\varphi(b) = a \) and so \(K = \sum_{i=0}^{p-1} F(a^i - b^i) \), \(S = \sum_{i=0}^{p-1} F(a^i + b^i) = F[s] \), where \(s = a + b \). Also \(\Gamma = S + \xi S, \xi = x \omega, \)

\[= \sum_{i=0}^{p-1} F(a^i - b^i) \oplus F[s] = F[a, b], \]

\[= \sum_{i=0}^{p-1} F(a^i + b^i) = F[s] \]
with \([x, x] = e - f, \{x, x\} = -1, (s, x) = 0\). The derivation \(d = \{ , 1\}\) satisfies \(d(x) = -[x, x] = sR(x)^2\).

Since in this case \(D(A', A') = D(A', A^r) = 0\), it follows that \(MD(A, A) = 0\). We can choose the element \(x\) satisfying \(aR(x)^2 = e, bR(x)^2 = f\), and so \(sR(x)^2 = 1\), that is, \(d = \frac{sR(x)^2}{sR(x)^2}\).

Thus if \(n = 1 = m\), then there is only one (up to isomorphism) structure of a simple Jordan superalgebra on \(A + Ax\).

2.3. \(A = (F1 + V) \otimes F[a_1, \ldots, a_m]\)

In this section we will address the case when \(A = (F1 + V) \otimes F[a_1, \ldots, a_m]\) is a tensor product of a finite-dimensional simple Jordan algebra of a bilinear form with the algebra of truncated polynomials in \(m\) variables.

Let \(v_1, \ldots, v_n\) be an orthonormal basis in \(V\), \(v_i \cdot v_j = \delta_{ij}\).

Then we have a decomposition \(M = \oplus M(e_1, \ldots, e_n), \ e_i = \pm 1\), and \(M(e_1, \ldots, e_n) = \{x \in M \mid xU(v_i) = e_i x\}\). With every involution \(v_i\) we can associate two orthogonal idempotent elements, \(e^{(i)} = \frac{1}{2} (1 + v_i), e^{(i)} = \frac{1}{2} (1 - v_i)\).

Let us show that \(y \in M(e_1, \ldots, e_n), \ e_i = -1\), implies \(y \cdot v_i = 0\). Indeed, from \(yU(v_i) = -y\), it follows that \(yR(v_i)^2 = 0\). By the Jordan identity, \(2yR(v_i)^3 + yR(v_i) = 3yR(v_i),\) which implies \(yR(v_i) = 0\).

Let \(y \in M(e_1, \ldots, e_n), \ e_i = 1\). From \(yU(v_i) = y\), it follows that \((yw_i)v_i = y\). Hence \(D(y, v_i) = D((yw_i)v_i, v_i) = \frac{1}{2}D(yw_i, v_i^2) = 0\).

Let us note that \(MU(e^{(i)}_1 + MU(e^{(i)}_2) = \Sigma(M(e_1, \ldots, e_n) \mid e_i = 1)\) and \(MU(e^{(i)}_1, e^{(i)}_2) = \Sigma(M(e_1, \ldots, e_n) \mid e_i = -1)\).

Indeed, if \(y \in M\) is a root element, \(y \in M(e_1, \ldots, e_n), \ e_i = -1\), then \(yw_i = 0\). So \(ye^{(i)}_1 = ye^{(i)}_2 = \frac{1}{2}y\). If \(e_i = 1\), then \(D(y, v_i) = 0\) implies that \(D(y, e^{(i)}_1) = D(y, e^{(i)}_2) = 0\) and \(yU(e^{(i)}_1) + yU(e^{(i)}_2) = y(e^{(i)}_1 + e^{(i)}_2) = y\).

Now let us consider \(Z = F1 \otimes F[a_1, \ldots, a_m]\) and an arbitrary element \(a \in Z\). We will prove that if \((e_1, \ldots, e_n), (\mu_1, \ldots, \mu_n)\) are not both equal to \((-1, -1, \ldots, -1)\), then \(ad(M(e_1, \ldots, e_n), M(\mu_1, \ldots, \mu_n)) = 0\). Indeed, \(Z\) is the (associative) center of \(A\), so it is invariant under all derivations. If we assume, for instance, \(e_i = 1\), then \(M(e_1, \ldots, e_n) \subseteq MU(e^{(i)}_1) + MU(e^{(i)}_2)\).

Let \(x \in M(e_1, \ldots, e_n), x' \in M(\mu_1, \ldots, \mu_n)\). We have \(ad(xU(e^{(i)}_1), x') \in ad(MU(e^{(i)}_1), M) \cap Z\). Let us show that for an arbitrary idempotent \(e \in A\), we have \(ZD(MU(e), M) \cap Z = 0\). Clearly, \(ZD(MU(e), MU(e)) \cap Z \subseteq \{e, e, e\} \cap Z = 0\). On the other hand, if \(f = 1 - e\), then \(D(MU(e), M \cdot f) \subseteq D(A, f)\). Therefore, \(ZD(MU(e), M \cdot f) = 0\). In particular, \(AD(xU(e^{(i)}_1), x') = AD(xU(e^{(i)}_2), x') = 0\). From \(x = xU(e^{(i)}_1) + xU(e^{(i)}_2)\), it follows that \(AD(x, x') = 0\).
We have $Z = F1 + Z_0$. Since Z_0 is nilpotent, it generates a nilpotent ideal in A that cannot be δ-invariant (since $I = 0$). Hence there exists an element $a \in Z_0$ such that $\tau(aD(M(-1, \ldots, -1), M(-1, \ldots, -1))) \neq (0)$, which implies that $M = MR(aD(M(-1, \ldots, -1), M(-1, \ldots, -1))) \subseteq M(-1, \ldots, -1)A + (M(-1, \ldots, -1)A)a$.

On the other hand,

$$A = A(1, \ldots, 1) + \sum_k A(-1, \ldots, -1, \frac{1}{k}, -1, \ldots, -1).$$

Therefore, $M(\epsilon_1, \ldots, \epsilon_n) = (0)$, except if $(\epsilon_1, \ldots, \epsilon_n) = (-1, \ldots, -1)$ or $(1, \ldots, 1, -1, 1, \ldots, 1)$.

But

$$M(1, \ldots, 1, -1, 1, \ldots, 1)_{vj}$$

$$\leq M(-1, \ldots, -1, 1, \ldots, 1, -1, \ldots, -1, 1, \ldots, -1, -1, \ldots, -1) = (0)$$

if $n \neq 3$ and $i \neq j$.

For an arbitrary element

$$x \in M(1, \ldots, 1, -1, 1, \ldots, 1), \quad i \neq j,$$

we have $xU(v_i) = x$. On the other hand, if $n \neq 3$, we have

$$xU(v_j) = x\left(2R(v_j)^2 - Id\right) = -x.$$

Hence $x = 0$, and therefore, $M = M(-1, -1, \ldots, -1)$.

Since for an arbitrary element $a \in Z$,

$$M(-1, -1, \ldots, -1)(av_i) \subseteq M(1, \ldots, 1, -1, 1, \ldots, 1) = (0),$$

we deduce that

$$D(M(-1, -1, \ldots, -1), a)$$

$$= D(M(-1, -1, \ldots, -1), (av_i)v_j) \subseteq D(M(-1, \ldots, -1)(av_i), v_j)$$

$$+ D(M(-1, \ldots, -1)v_i, av_j) = (0).$$
That is, $D(M, a) = 0$. In particular, for arbitrary elements $x_1, x_2 \in M$, we have $[x_1, x_2] = [(x_1, a), x_2] = [x_1, ax_2]$.

Then $ZD(M, M) = (0)$, which contradicts our assumption that $I = (0)$.

Thus, we have proved that the only possible case is $\dim(V) = 3$. In this case,

$$A = A(1, 1, 1) + A(-1, 1, -1) + A(-1, 1, 1),$$

$$M = M(-1, 1, -1) + M(-1, 1, 1) + M(1, -1, 1) + M(1, 1, -1).$$

We have $A = Z + Zv_1 + Zv_2 + Zv_3$. There exists an element $a \in Z$ and an element $x \in M(-1, 1, -1)$ such that $aR(x^2)$ has nonzero trace. [Remember that $ZD(M(\alpha_1, \alpha_2, \alpha_3), M(\beta_1, \beta_2, \beta_3)) = (0)$ except if $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (1, -1, -1)$, $\beta_1 = \beta_2 = \beta_3$.]

Let us assume $aR(x^2) = f$, where f is an invertible element. Then $f = a + u$, u nilpotent.

So $M = MR(aR(x^2)) = xA + (xA)a$. Let us denote $M' = M(-1, 1, 1, -1)$.

Lemma 2.3.1. \([M'(v_1Z), M'(v_1Z)] = (0)\).

Proof. The subspace \([M'(v_1Z), M'(v_1Z)]\) is $D(M', M')$-invariant. There are no nonzero $D(M', M')$-invariant subspaces of Z with zero trace (since they would generate a \mathcal{D}-invariant nilpotent ideal of A). So it suffices to prove that the subspace \([M'(v_1Z), M'(v_1Z)]\) has zero trace.

We will use the Kaplansky argument.

Suppose that, for an even integer $r \geq 2$, we have \(\tau([M'R(v_1Z)^r, M']) \neq 0\). Choose elements $y, y_1 \in M'$ and an operator $\omega \in R(v_1Z)^r$ such that $[y_0, y_1, \alpha] = a + a$, $0 \neq \alpha \in F$, $a \in Z_0$. Applying $R(y_1)$, we get $y_1 = y_0 R(y_1)^2 (R(a_1 + a))^{-1}$.

Remark that $v_1 ZR(y_1)^2 \subset v_1 Z$ and $[R(v_1Z), R(a_1 + a)^{-1}] = 0$. Indeed, let $i \neq 1$. Then $D(v_1Z, Z) = D(v_1Z, (v_1Z)^2) \subset D((v_1Z) \cdot (v_1Z), v_1Z) = (0)$.

Hence $y_1 = y_1 \omega_1$, where $y_2 \in M'$ and $\omega_1 \in R(v_1Z)$. For an arbitrary operator $\omega_2 \in R(v_1Z)^{-2}$, we have $[y_0, y_2, \omega_2 R(v_1Z)^2] \subset [y_0 R(v_1Z)^2, y_2 \omega_1]$ since $(v_1Z)D(M'(v_1Z), M') = (0)$. We showed that \(\tau([M'R(v_1Z)^r, M']) \neq 0\) implies \(\tau([M'R(v_1Z)^r, M']') \neq 0\).

Let $z_1, \ldots, z_4 \in Z_0 \cup \{1\}$ and $M'R(v_1z_1) \cdots R(v_1z_4) \neq (0)$. If at least one $z_i = 1$, then $M'R(v_1z_1) \cdots R(v_1z_i) = (0)$ because $M'v_1 = (0)$. Hence all elements z_i lie in Z_0. There exists $s \geq 1$ such that $MR(N)^s = (0)$ (see [J]). Hence $M'R(v_1Z)^s = (0)$, the contradiction. Lemma is proved.

Lemma 2.3.2. $M'R(v_1Z)R(v_1Z) = (0)$.
Proof. Let us first prove that \([M'R(v_1Z)R(v_1Z), M] = (0)\). We know that \([M'R(v_1Z)R(v_1Z), M'] = [M'R(v_1Z), M'R(v_1Z)] = (0)\), by Lemma 2.3.1.

Let us show that \([M'R(v_1Z)R(v_1Z), (x(v_1Z))Z] = (0)\).

Since \(ZD(M', x(v_2Z)) = (0)\), it is sufficient to prove that
\[
\left[M'R(v_1Z)R(v_1Z), x(v_2Z) \right] = (0).
\]
(Remember that \(R(Z)\) commutes with \(R(v_1Z)\).)

But \([M'R(v_1Z)R(v_1Z), x(v_2Z)] \subseteq v_2Z\), and using the Jordan identity, we get
\[
R(x(v_2Z))R(v_2) \\
\subseteq R((v_2Z)v_2)R(x) + R(xv_2)R(v_2Z) + R(x)R(v_2Z)R(v_2) \\
+ R(v_2)R(v_2Z)R(x) + R((v_2x)(v_2Z)) \\
= R(Z)R(x) + R(x)R(v_2Z)R(v_2) + R(v_2)R(v_2Z)R(x).
\]

Considering the three summands separately, we get
\[
[M'R(v_1Z)R(v_1Z), x] \subseteq [M'R(v_1Z)R(v_1Z), M'] = (0), \\
[M'R(v_1Z)R(v_1Z), x] = (0), \\
M'R(v_1Z)R(v_1Z)R(v_2) = (0).
\]

So we have proved that
\[
(M'R(v_1Z)R(v_1Z))R(x(v_2Z))R(v_2) = (0),
\]
which implies \([M'R(v_1Z)R(v_1Z), x(v_2Z)] = (0)\).

Let us show that \([M'R(v_1Z)R(v_1Z), x(v_1Z)] = (0)\). Comparing weights, we see that \([M'R(v_1Z)R(v_1Z), x(v_1Z)] \subseteq v_1Z\). By the Jordan identity,
\[
M'R(v_1Z)R(v_1Z)R(x(v_1Z))R(v_1) \\
\subseteq M'R(v_1Z)R(v_1Z)(R(xv_1)R(v_1Z)) \\
+ R(z)xR(v_1Z) + R(xv_1)R(v_1Z)R(v_1) + R(v_1)R(v_1Z)R(x) \\
+ R((xv_1)(v_1Z)) = (0).
\]

Now, taking into account that \(M = (xZ)Z + (x(v_1Z))Z + (x(v_2Z))Z + (x(v_1Z))Z\), we conclude that \([M'R(v_1Z)R(v_1Z), M] = (0)\).

Let us prove that \(M'R(v_1Z)R(v_1Z)R(A)R(M) = (0)\).

If the element in \(A\) lies in \(Z\), the assertion is clear.
Hence we only have to consider \(M'R(v,v)R(v,v)R(v,v)M \). But
\[
R(v,v)R(M) \subseteq R(M)R(A) + R(v,v)R(M) + R(Z)R(M).
\]
Now \(M'R(v,v)R(v,v)R(Z)R(M) = (0) \) and \(M'R(v,v)R(v,v)R(v,v) \subseteq M'R(v,v) = (0) \). This implies that for an arbitrary \(k \geq 1 \),
\[
M'R(v,v)R(v,v)R(A)^kR(M) = (0).
\]
Indeed, let \(k \geq 2 \). By the Jordan identity,
\[
R(A)^kR(M) \subseteq R(A)^{k-1}R(M) + R(A)^{k-2}R(M)R(A)^2.
\]
Now the \(A \)-submodule \(M'R(v,v)R(v,v)R(A) \) is an ideal of \(J \). Hence \(M'R(v,v)R(v,v) = (0) \). Lemma is proved.

Lemma 2.3.3. For every two elements \(z', z'' \in Z \), \(R_M(z')R_M(z'') = R_M(z'z'') \) and \(MD(A, Z) = (0) \).

Proof. We know that \(M = (xZ) + \sum_{i=0}^3(x(v_i))Z \). For arbitrary elements \(z', z'' \in Z \), we have
\[
0 = xR(z'v_1)R(z''v_1)
= x(-R(z''))R((z'v_1)v_1) - R(v_1)R(z''(z'v_1))
+ 2R(v_1)R(z')R(z'v_1) + R((v_1v_1z'))z''
= x(-R(z'')R(z') + R(z'z')).
\]
That is, we have proved that \((xz'z') = x(z''z') \). In particular, \(D(Z, Z) = (0) \).

As we saw above, \(D(Z, v_1, Z) = (0) \), which implies \(MD(A, Z) = 0 \). Lemma is proved.

Lemma 2.3.4. Fix an element \(a \in Z \) such that \(aR(x)^2 \) is invertible. Then the mapping \(Z \to Zv_1, h \to [xh](av_1, x) \) is a bijection.

Proof. It is sufficient to prove that the kernel is equal to 0. We have
\[
x(aw_1)R(h)R(x)R(v_1)
= x(aw_1)(-R(v_1)R(h) - R(hv_1)x + R(x)R(hv_1))
+ R(v_1)R(hx) + R(h)R(v_1x))
= x(aw_1)R(x)R(hv_1) = [x(aw_1), x](hv_1) = a' h,
\]
where \(a' = aR(x)^2 \).
We have proved that \([(xh)(av_1)), x] = [(x(av_1))h, x] = a'hv_1.\]

By the hypothesis, the element \(a' = aR(x)^2\) is invertible. Hence \(a'hv_1 = 0\) implies that \(a'h = 0\) and \(h = 0\). Lemma is proved.

From the above lemma, it follows that there is an element \(h \in Z\) such that \([(xh)(av_1)), x] = v_1\) (it suffices to take \(h = a'^{-1}\)). Since \(h\) has nonzero constant term, \(h = g^2\) for some \(g \in Z\) and we have \(aR(xg)^2 = 1\). Let us substitute \(x\) by \(xg\).

From now on, without loss of generality, we will assume that \(a' = aR(x)^2 = 1\) and \([(x(av_1))h, x] = hv_1.\)

Lemma 2.3.5.

(1) \([(x(av_1))Z)R(v_1)Z) = (0).\]

(2) \(D((x(av_1))Z, Z) = (0).\]

Proof. Since \(MD(A, Z) = (0)\), we have

\[
((x(av_1))Z)(v_1)Z) = xR(av_1)R(v_1)ZR(Z) = (0)
\]

by Lemma 2.3.2. We have proved (1).

To prove (2), let us notice that \(D((x(av_1))Z, Z) = D((x(av_1))Z, (Zv_1)^2) = (0)\) by (1). Lemma is proved.

Our assumption \([(x(av_1))h, x] = hv_1\) and Lemma 2.3.5(2) imply that, for every \(g \in Z\), \([(x(av_1))h, xg] = [(x(av_1))h, x]g = (hv_1)g = hgv_1.\)

Similarly,

\[
x(hv_1) = ((x(av_1))h)R(x)^2
\]

\[
= (xR(x)^2)R(av_1)R(h) + x((av_1)R(x)^2)h
\]

\[
+ (x(av_1))(hR(x)^2).
\]

So, if we denote \(h' = hR(x)^2\), we have got \(x(hv_1) = (x(av_1))h'\).

The previous result together with the fact that \(M = xZ + \sum_i x(v_i)Z + \sum_i (x(v_i)Z)a\) implies that \(M = xZ + \sum_i (x(v_i)a)Z\).

We already know the product of any two elements of \(A\). Now we will derive the multiplication table for \(A \times M \to M. (xf)R(v_i g) = (x(v_i g))f = ((x(v_i a))g')f = (x(v_i g))f', (x(v_i a)Z)R(v_i g) = (0),\) by Lemma 2.3.2

Now we will determine \((x(v_i a))R(v_j g)\) for an arbitrary element \(g \in Z\) and \(i \neq j.\)

Again, from \(D(x(v_i a), g) = 0\), it follows that

\[
(x(v_i a))(v_j g) = ((x(v_i a))v_j)g.
\]
Let us show that x.

Clearly, $(x(v_1a)v_2 = (x(v_3a))f$ for some $f \in Z$. Applying $R(v_2)$ to both sides, we get $x(v_1a) = ((x(v_3a)v_2)f$. Now applying $D(v_3, v_1)$ to both sides, we have $-x(x(v_1a)) = ((x(v_1a)v_2)f = (x(v_3a)f)^2$. Hence $f^2 = -1$. Let us show that $f \in F$. If $f = \alpha + f_0$, where $\alpha \in F$, $f_0 \in \mathbb{Z}$, then $f^2 = \alpha^2 + 2\alpha f_0 + f_0^2 = -1$, which implies $2\alpha f_0 + f_0^2 = 0$. Therefore, $f_0 = 0$. The equation $x^2 + 1 = 0$ has two roots in F. Taking $-v_1$ instead of v_1, if necessary, we can choose either root. Thus, $(x(v_1a)v_2 = \sqrt{-1}x(v_3a)$.

Define the skew-symmetric cross product $\nu \times \nu \rightarrow F$ via $v_1 \times v_2 = v_3$, $v_1 \times v_3 = -v_2, v_2 \times v_3 = v_1$.

We have got the following multiplication table (T_1):

<table>
<thead>
<tr>
<th>xf</th>
<th>g</th>
<th>$v_i g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x(v_1a)f$</td>
<td>$(x(v_2a)f$</td>
<td>$(x(v_1a)(fg)$</td>
</tr>
</tbody>
</table>

It remains to determine the bracket $[\ ,] : M \times M \rightarrow A$.

We already know that $[(x(v_1a))h, xg] = hgv_i$.

Let us show that $[(x(av_1))f, (x(av_1))g] = 0$. Indeed, by Lemma 2.3.5(2), $[(x(av_1))f, (x(av_1))g] = [x(av_1), x(av_1)]fg$.

It is clear that $[x(av_1), x(av_1)] = 0$. Assume $i \neq j$. In this case,

$$[x(av_i), x(av_j)] = (av_i)D(x, x(av_j)) - [(x(ax_1))((av_1))x].$$

But $(av_i)D(x, x(av_j)) = (aD(x, x(ax_j))v_i + a(v_iD(x, x(ax_j)))$, $aD(x, x(ax_i)) = 0$, and $v_iD(x, x(ax_i)) = [(x(ax_i))v_i, x] = \sqrt{-1}[x((v_j \times v_i)a, x] = \sqrt{-1}(v_j \times v_i).$ So $[x(ax_i), x(ax_j)] = \sqrt{-1}(v_j \times v_i)a - \sqrt{-1}[x((v_j \times v_i)a, x] = 0.$

Finally,

$$[xf, xg] = xf((gv_1)v_1)x$$

$$= xf(-R(gv_1)R(x)R(v_1) - R(v_1)R(x)R(gv_1)$$

$$+ R(gv_1)R(xv_1) + R(v_1)R(x gv_1) + R(x)R((gv_1)v_1))$$

$$= -[(xf)(gv_1), x]v_1 + [xf, x]g = -af + f'g.$$
Remark. Substituting $w_1 = v_1, w_2 = v_2, w_3 = \sqrt{-1}v_3$, we can rid our tables of $\sqrt{-1}$. We still have $A = Z + \sum_i Zw_i, M = xZ + \sum_i (x(w_i)a)Z$.

Let $w_1 \times w_2 = w_3, w_1 \times w_3 = w_2, w_2 \times w_3 = -w_1$.

The new multiplication tables are:

$$(T_1)$$

<table>
<thead>
<tr>
<th>$x_1 f$</th>
<th>$x_2 f$</th>
<th>$x_3 f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x(w_1)a)f$</td>
<td>$(x(w_2)a)f$</td>
<td>$(x(w_3)a)f$</td>
</tr>
</tbody>
</table>

$$(T_2)$$

<table>
<thead>
<tr>
<th>xg</th>
<th>$(x(w_1)a)g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1(fg)$</td>
<td>$w_2(fg)$</td>
</tr>
</tbody>
</table>

Now for an arbitrary unital associative commutative algebra Z with a derivation $d: Z \to Z$, we will construct a Cheng–Kac Jordan superalgebra $CK(Z, d)$.

Let $A = Z + \sum_i Zw_i, M = xZ + \sum_i x_i Z$ be two free Z-modules of rank 4. The multiplication on A is Z-linear, $w_i w_j = 0$ for $i \neq j, w_1^2 = w_2^2 = 1, w_3^2 = -1$.

Denote $x_{i\times i} = 0, x_{1\times 2} = -x_{2\times 1} = x_3, x_{1\times 3} = -x_{3\times 1} = x_2, -x_{2\times 3} = x_{3\times 2} = x_1$.

The bimodule structure $A \times M \to M$ is defined via

$$(T'_1)$$

<table>
<thead>
<tr>
<th>$x_1 f$</th>
<th>$x_2 f$</th>
<th>$x_3 f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(fg)$</td>
<td>$x(fg^d)$</td>
<td>$x_1 f x_2 f$</td>
</tr>
</tbody>
</table>

The bracket on M is defined via

$$(T'_2)$$

<table>
<thead>
<tr>
<th>xg</th>
<th>$x_1 g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^d g - f g^d$</td>
<td>$-w_1(fg)$</td>
</tr>
</tbody>
</table>

Now our aim is to prove that this multiplication defines a Jordan superalgebra.

Proposition 2.3.1. $CK(Z, d)$ is a Jordan superalgebra.
Proof. Consider the basis of $\text{CK}(Z, d)$ over Z: $e_1 = 1$, $e_2 = w_1$, $e_3 = w_2$, $e_4 = w_3$, $e_5 = x$, $e_6 = x_1$, $e_7 = x_2$, $e_8 = x_3$.

According to the multiplication tables (T_1^2) and (T_2^2), for arbitrary indices $1 \leq i, j \leq 8$, there exist integers a_{ij}, b_{ij}, c_{ij} (in fact, equal to ± 1 or 0) and an index $1 \leq k \leq 8$ such that $(fe_{ij}) (ge_{ij}) = (a_{ij}fg + b_{ij}f^d g + c_{ij}fg^d)e_k$ for arbitrary $f, g \in Z$.

If we apply the Jordan identity to four elements $f_1e_{i_1}, f_2e_{i_2}, f_3e_{i_3}, f_4e_{i_4}$, $f_1, f_2, f_3, f_4 \in Z$, we get $J(f_1e_{i_1}, f_2e_{i_2}, f_3e_{i_3}, f_4e_{i_4}) = \sum S^i_{k(i_1, i_2, i_3, i_4)}e_k$, where $S^i_{k(i_1, i_2, i_3)}(f_1, f_2, f_3, f_4) = \sum \alpha_i f^i_1 f^i_2 f^i_3 f^i_4; \alpha_i$ are integers and $f^i_k \in \{f_k, f_k^d, f_k^{idd}\}$.

It was proved in [KMZ] that for $Z = \mathbb{C}[t]$, where \mathbb{C} is the field of complex numbers, $d = \frac{1}{\pi t}$, the $\text{CK}(Z, d)$ is a Jordan superalgebra. This implies that each expression $S^i_{k(i_1, i_2, i_3)}(f_1, f_2, f_3, f_4)$ is identically zero. The proposition is proved.

Lemma 2.3.6. $\text{CK}(Z, d)$ is simple if and only if Z does not contain proper d-invariant ideals.

Proof. If I is a d-invariant ideal of Z, then $I + \sum_{i=1}^3 w_i I + x I + \sum_{i=1}^3 x_i I + x I$ is an ideal of $\text{CK}(Z, d)$.

Conversely, let us assume that B is an ideal of $\text{CK}(Z, d)$. If $B \cap Z \neq (0)$, then $B \cap Z$ is a d-invariant ideal of Z. Hence $Z \subseteq B$, and since $1 \in Z$, it follows that $B = \text{CK}(Z, d)$.

Suppose that $B \cap Z = (0)$. Since every nonzero ideal of A has a nonzero intersection with Z, it follows that $B \cap A = (0)$.

This implies that $[B, M] = (0)$.

Consider an element $b = xz_0 + \sum_{i=1}^3 x_i z_i$ from B. We have $[b, x_1] = -w_1 z_0 \in B \cap A$. Hence $z_0 = 0$. Now $[b, x] = \sum_{i=1}^3 w_i z_i \in B \cap A$, which implies that $z_i = 0$, $1 \leq i \leq 3$. Lemma is proved.

Remark. If Z is an algebra of truncated polynomials in one variable, then there exists only one, up to isomorphism, simple Jordan superalgebra of the type $\text{CK}(Z, d)$.

3. THE CASE $I \neq (0)$

In this section we will consider the case when $I \neq (0)$.

As we have seen in Section 1, we have two possibilities:

(a) $A/I \simeq \overline{B}$ a simple Jordan algebra of a symmetric bilinear form, or

(b) $A/I \simeq \overline{B} \otimes B(m)$, with \overline{B} as in (a) and $B(m)$ the algebra of truncated polynomials in m variables.
The proof follows the general lines of the main chapter in [KMZ].

We will divide this section into two subsections. In the first subsection we will prove the existence of some element that generates M as an A-bimodule and some general results needed in what follows. In the second subsection we will determine the structure of M.

3.1. Structure of M

By the theorem of E. Taft (see [Ta], [J]), in both Cases (a) and (b) there exists a subalgebra B of A with $1 \in B$, such that $B \cap I = (0)$ and $B = \overline{B}$. Let $B = F^1 + V$, $V \cdot V \subseteq F^1$, and choose a basis $v_1, \ldots, v_n \in V$ such that $v_iv_j = \delta_{ij}$, $n \geq 2$.

Since $v_i^2 = 1$, it follows that $U(v_i)$ is an involutive automorphism of the superalgebra J. Let G be the group generated by $U(v_1), \ldots, U(v_n)$. Both A and M decompose into a direct sum of eigenspaces with respect to G, $J = \bigoplus J(\epsilon_1, \ldots, \epsilon_n)$, $\epsilon_i = \pm 1$, and $J(\epsilon_1, \ldots, \epsilon_n) = A(\epsilon_1, \ldots, \epsilon_n) + M(\epsilon_1, \ldots, \epsilon_n)$.

As we have mentioned in Section 2, an element $a \in J$ belongs to the eigenvalue -1 with respect to $U(v_i)$ if and only if $av_i = 0$, and the element a belongs to the eigenvalue 1 if and only if $D(a, v_i) = R(a)R(v_i) - R(v_i)R(a) = 0$.

Denote $\tilde{Z} = A(1, 1, 1, \ldots, 1)$. Then $\tilde{Z} + I$ is the preimage of the center of A/I under the canonical epimorphism $A \to A/I$.

In the following lemma, we will prove the existence of an element $x \in M(-1, -1, \ldots, -1)$ that generates M as an A-bimodule in Case (b). Proving a similar result in Case (a) will take a bit more effort.

Lemma 3.1.1. If $A/I = \overline{B} \otimes B(m)$, then there is an element x which generates M as an A-bimodule and $x \in M(-1, 1, \ldots, -1)$.

Proof. Let $B(m)_0$ be the maximal (nilpotent) ideal of $B(m)$ and let N be the nilpotent radical of A. Since $N/I = \overline{B} \otimes B(m)_0$ does not contain $D(M, M)$-invariant ideals and $B(m)D(M, M) \subseteq B(m)$, it follows that there exists an element $\overline{a} \in B(m)_0$ and an element $x \in M$ such that $\overline{a}R(x)^2$ is a polynomial with nonzero constant term. Let a be a preimage of \overline{a} under $A \to A/I$. The element $aR(x)^2$ can be represented as $a1 + b$ with the element b nilpotent and $0 \neq a \in F$. Hence, $M = MR(aR(x)^2) \subseteq MR(x^2)R(a) + (Ma)R(x)^2 \subseteq (xA)a + xA$.

Let $x = \sum x(\epsilon_1, \ldots, \epsilon_n)$, where $x(\epsilon_1, \ldots, \epsilon_n) \in M(\epsilon_1, \ldots, \epsilon_n)$.

Arguing as in Section 2, we see that $B(m)D(M, m, \ldots, m)(\beta_1, \ldots, \beta_n) = (0)$ unless $\alpha_i = \beta_i = -1$, $1 \leq i \leq n$. Hence, $aR(x)^2 = aR(x(-1, -1, \ldots, -1))^2 \equiv (xA)a + xA$ mod I, and we can assume without loss of generality that $x \in M(-1, -1, \ldots, -1)$. Lemma is proved.
We will denote as V the preimage of $\bar{V} \otimes B(m)$ (resp. \bar{V}) under $A \rightarrow A/I$ in Case (b) (resp. Case (a)). As we have done in previous sections, we will denote $M_I = (MI)A$. Clearly, M_I is an A-sub-bimodule of M.

Let \bar{Z} denote the center of \bar{A}; that is, $\bar{Z} = F$ in Case (a) and $\bar{Z} = B(m)$ in Case (b).

Let $t_Z: A \rightarrow \bar{Z}$ be the projection of A onto \bar{Z} and let $t: A \rightarrow F$ be the composition of t_Z with the projection $\bar{Z} \rightarrow F$.

Notice that it follows from the proof of the previous lemma that, for the element x, we have $t(\bar{Z}R(x^2)) \neq (0)$.

It was proved in Section 1 that:

1. $[MI, M] \subseteq I$.
2. $t([MI, M]) = (0)$.
3. $[M_I, M_I] \subseteq I$.

It is not necessarily true that $[M_I, M] \subseteq I$.

Lemma 3.1.2. $[(MI)\bar{Z}, M] \subseteq I$.

Proof. Since $[(MI)\bar{Z}, M] + I$ is D-invariant, it suffices to prove that $[(MI)\bar{Z}, M] \subseteq N$. Let us assume that there exist elements $x, y \in M; u \in I; c \in \bar{Z}$, such that $[(xu)c, y] = \lambda 1 + v \mod N$, $\lambda 1 + v \neq 0$, $\lambda \in F$, $v \in V$.

Since $t([(xu)c, y]) = 0$, it follows that $\lambda = 0$. Let v' be a vector from V such that $v \cdot v' = 1$. Then $t([(xu)c, y]v') \neq 0$. Without loss of generality, we can assume that $c \in N$. By the Jordan identity,

$$[(xu)c, y]v' = (xu)R(c)R(y)R(v') = (xu)(-R(v')R(y)R(c) - R((cv')y) + R(cy)R(v') + R(v'y)R(c) + R(v'c)R(y)),$$

and each summand on the right-hand side has zero trace, which gives a contradiction. Lemma is proved.

Now, let us strengthen the assertion (2).

Lemma 3.1.3. $[M_I, M] \subseteq I^\Delta$.

Proof. Notice that the result follows immediately from (2) above in Case (a). So we will consider Case (b). Suppose that the assertion of the lemma is wrong and there exists $a \in [M_I, M]$ with $\bar{a} = \bar{z} + \bar{v}$; $0 \neq \bar{z} \in \bar{Z}$, $\bar{v} \in \bar{V} \otimes \bar{Z}$. Then $t(\bar{z}) = 0$. Since \bar{Z} is differentially simple with respect to $D = D(M, M)$, there exist derivations $d_1, \ldots, d_\iota \in D$ such that $t(\bar{z}d_1 \cdots d_\iota) \neq 0$. The subspaces \bar{Z} and $\bar{V} \otimes \bar{Z} = \bar{A}D(\bar{A}, \bar{A})$ are D-invariant. Applying $d_1 \cdots d_\iota$ to both sides of $\bar{a} = \bar{z} + \bar{v}$, we get a contradiction.
Lemma 3.1.4. Let \(y' \in MI; b \in A; y'' \in M; z \in \tilde{Z}. \) Then

(a) \(y'R(b)R(y''z) = y'R(b)R(y'')R(z) \mod I. \)

(b) \(y'R(v; z)R(y'') = y'R(v; z)R(y'')R(z) \mod I. \)

Proof. It follows immediately from the Jordan identity, the inclusion \([MI, M] \subseteq I,\) and Lemma 3.1.2.

Lemma 3.1.5. \(V^\delta = [M_I, M] + I. \)

Proof. We already know that \([M_I, M] + I \subseteq V^\delta.\) Let us prove the other inclusion. Since \(I \neq (0), \) it follows that \([M_I, M] \not\subseteq I;\) otherwise, \(I + M_I \) would be an ideal of \(J, \) contradicting simplicity of \(J. \) By Lemma 3.1.4, \([M_I, M] + I/I \) is a nonzero \(\tilde{Z}\)-submodule of \(V^\delta/I, \) which is irreducible \(D(A, A) + D(M, M). \) But \(V^\delta/I \) is an irreducible \(D(A, A) + D(M, M)\)-module. Hence \(V^\delta = [M_I, M] + I. \) Lemma is proved.

Lemma 3.1.6. \([(MV^\delta)I]A, M] \subseteq I. \)

Proof. According to Lemmas 3.1.2 and 3.1.5, it is sufficient to prove that \([(M[M_I, M])I]A, M] \subseteq I,\) or equivalently, that

\[
\left[\left(\left(M[M_I V^\delta, M]\right)I\right)V^\delta, M\right] \subseteq I.
\]

Choose arbitrary elements \(x, y, x', y' \in M; u, u' \in I; a, b \in V^\delta.\) We have to check that \(uR(x)R(a)R(y')R(x')R(u')R(b)R(y') \in I.\)

Applying the Jordan identity to the underlined part, we have

\[
R(y) R(x') R(u') = R(u') R(x') R(y) - R([yu', x']) + R(y) R(x'u') - R(x') R(yu') + R(u') R([y, x']).
\]

Let us analyze each summand on the right-hand side separately.

(i) \(uR(x)R(a)R(u')R(y')R(b) = uR(x)R(a)R(u')R(b)R(y')R(x') - R([x'b, y]) + R([x', y])R(b) + R(x'b)R(y') - R(yb)R(x') \in [(M_I)I, M]R(M)R(M) + [(M_I)I]R(A, M] \subseteq I.\)

(ii) \(uR(x)R(a)R([yu', x])R(b)R(y') \in [(M_I, I)A, M] \subseteq I.\)

We can do similarly with other summands. Lemma is proved.

Remark. Notice that the inclusion of the lemma is equivalent to \([M_I, MV^\delta] \subseteq I.\)

Now, our aim is to prove the existence of an element \(x \in M(-1, \ldots, -1)\) that generates \(M \) as an \(A\)-bimodule in Case (a). So, in the rest of this
subsection we will assume that A/I is a simple Jordan algebra of a bilinear form.

Lemma 3.1.7. If $x, y \in M; \ u \in I; \ v \in V^\sharp$ are elements such that $[(xu)v, y] \notin I$, then M is generated as an A-bimodule by the elements x, y.

Proof. If $D \in D(V^A, V^\sharp)$, then by Lemma 3.1.5,

\[
[(xu)v, y]\ D = [((xD)u)v, y] + [(x(uD))v, y] + [(xu)(vD), y] + [(xu)v, yD] = [(x(uD))v, y] + [(xu)(vD), y] \mod I.
\]

Hence, $[(xI)v^A, y] + I/I$ is a $\text{Der}(A/I)$-invariant submodule of V^A/I.

Hence $V^A = [(xI)v^A, y] + I = V^\sharp D(xI, y) + I$.

Since $MD(xI, y) \subseteq [M, xI]y + [M, y](xI) \subseteq xR(A) + yR(A)$, it follows that $M(V^A D(xI, y)) \subseteq (MV^A)D(xI, y) + (MD(xI, y)V^\sharp \subseteq xR(A) + yR(A)$.

For an arbitrary $v \in V^\sharp$, there exists $u(v) \in I$ such that $v - u(v) \in V^A D(xI, y)$, and consequently, $M(v - u(v)) \subseteq xR(A) + yR(A)$.

There is v' such that $vv' = 1$. Hence, for an arbitrary element $m \in M$,

\[
m = 1m = v'R(v)R(m) \in v'R\left([(xI)v^A, y]\right)R(m) + v'R(I)R(m)
\]

\[
\subseteq v'R(m)R(A) + v'D\left([(xI)v^A, y], m\right) + mI.
\]

But

\[
D\left([(xI)v^A, y], m\right) \subseteq D\left([(xI)v^A, [y, m]\right) + D\left(y, [(xI)v^A, m]\right) \subseteq D(xR(A), A) + D(y, A).
\]

So, $AD([xI)v^A, y], m) \subseteq xR(A)^+ + yR(A)$.

We have proved that $m = (mu')R(a) + mu' \mod xR(A) + yR(A)$ for some elements $a \in A, u' \in I$. But $mu' = mu(v') \mod xR(A) + yR(A)$ and the operator $R(u(v'))R(a) + R(u')$ is nilpotent. So

\[
m(1d - R(u(v'))R(a) + R(u')) \in xR(A)^+ + yR(A).
\]

We have proved that $M = xR(A) + yR(A)$.

Lemma 3.1.8. If $x, y \in M$ and $[(xI)v^A, y] \notin I$, then $[(xI)v^A, x] \notin I$.

Proof. As we have seen in the proof of Lemma 3.1.7, $V^A = [(xI)v^A, y] + I$. Hence, there are elements $w \in V$ and $v_i \in V$ such that $w^2 = 1$ and $\sum_i[(xu_i)v_i, y] = w \mod I$.
Hence, \(\sum_i [(xu_i) v_i, y] R(w) = 1 \mod I \). By the Jordan identity,

\[
[(xu_i) v_i, y] R(w) = (xu_i) R(v_i) R(y) R(w) \\
= (xu_i) (-R(w) R(y) R(v_i) - R(y(v_i w)) \\
+ R(v_i) R(yw) + R(w) R(yv_i) + R(y) R(wv_i)) \\
= -[(xu_i) w, y] v_i \mod I.
\]

Hence, there exists \(i_0 \) such that \([(xu_{i_0}) w, y] \not\in I \).

Now,

\[
[(xu_{i_0}) w, y] = \sum_i u_i R(x) R(v_i) R(y) R(xu_{i_0}) R(y) \\
= \sum_i u_i R(x) R(v_i) (R(x) R(yu_{i_0}) - R(u_{i_0}) R([y, x])) \\
+ R(y) R(u_{i_0}) R(x) - R(x) R(u_{i_0}) R(y) \\
+ R(u_{i_0}) [x, y]) R(y) \\
= \sum_i u_i R(x) R(v_i) R(x) R(yu_{i_0}) R(y) \mod I.
\]

This implies that \([(xl)V^4, x] \not\in I \). Lemma is proved.

Lemma 3.1.9. There is an element \(x \in M(-1, -1, \ldots, -1) \) such that \(M = x R(A) \).

Proof. If \(x \in M(\alpha_1, \ldots, \alpha_n) \) and \(\alpha_i = 1 \), then \(x = (xv_i) v_i \in M V^4 \).

Hence, for elements \(x \in M(\alpha_1, \ldots, \alpha_n) \), \(y \in M(\beta_1, \ldots, \beta_n) \), we have \([(xl)V^4, y] \subset I \) unless \(\alpha_i = \beta_i = -1, 1 \leq i \leq n \).

We proved that there exist elements \(x, y \in M \) such that \([(xl)V^4, y] \not\in I \).

If \(x = \sum x(\alpha_1, \ldots, \alpha_n), y = \sum y(\alpha_1, \ldots, \alpha_n) \) are root decompositions of elements \(x, y \), then \([(x(-1, \ldots, -1)V^4, y(-1, \ldots, -1)] \not\in I \), and therefore, \([(x(-1, \ldots, -1)V^4, x(-1, \ldots, -1)] \not\in I \) by Lemma 3.1.8. This implies that \(M = x(-1, \ldots, -1) R(A) \) by Lemma 3.1.7. Lemma is proved.

3.2. Structure of \(J \)

Consider the Clifford algebra \(Cl \) on \(V \), that is, the \(F \)-algebra generated by \(v_1, \ldots, v_n \) with relations \(v_i v_j + v_j v_i = 2 \delta_{ij} \).

We say that a root element \(a \in I \) has weight \(v_{i_1} \cdots v_{i_r} \in Cl \), \(1 \leq i_1 < \cdots < i_r \leq n \) if, for any \(1 \leq j \leq n \), the equality \(a(U(v_{i_1}, v_{i_1}^{-1}) - \epsilon)^k = 0 \), \(\epsilon = \pm 1 \), holds for some \(k \) if and only if \((v_{i_1} \cdots v_{i_r}) (U(v_{i_1}, v_{i_1}^{-1}) - \epsilon) = 0 \).
If \(a \in I \) is a root element and \(t_\pi(aR(x)R(v_{i_1})R(x) \cdots R(x)R(v_{i_{2r+1}})) \neq 0 \) [resp. \(t_\pi(aR(v_{i_1})R(x)R(v_{i_2})R(x) \cdots R(x)R(v_{i_{2r+1}})) \neq 0 \)], then \(a \) has weight \(v_{i_1} \cdots v_{i_{2r+1}} \) (resp. \(v_{i_1} \cdots v_{i_{2r+1}} \)).

Let \(\mathcal{W} \) be the set of all products of \(R(v_i) \)'s and \(R(x) \) which do not contain subproducts \(R(v_i)R(v_j) \) or \(R(x)^2 \).

Lemma 3.2.1. For an arbitrary nonzero element \(a \) from \(I \cup M_1 \), there exists an operator \(w \in \mathcal{W} \) such that \(aw \in A \setminus I \).

Proof. Let \(0 \neq a \in I \cup M_1 \). Let \(r \) be the minimal integer such that there exist elements \(y_{j_1}, \ldots, y_{j_{r}} \in A \cup M \) such that \(aR(y_{j_1}) \cdots R(y_{j_r}) \in A \setminus I \). (The existence of such \(r \) follows from simplicity of \(J \).

It is easy to see that \(y_{j_r} \in M \) and there are no two consecutive multiplications of the same parity. Moreover, the expression \(aR(y_{j_1}) \cdots R(y_{j_r}) + I/I \in A/I \) is skew-symmetric in even \(y_{j_i}'s \) and symmetric in odd \(y_{j_i}'s \).

We have \(M = xR(\tilde{Z}) + M_1 + MV^A \). In view of Lemma 3.1.5 and the fact that \([M_1, M_1] \subseteq I \), we can assume, without loss of generality, that \(y_i = xR(z_{k_i}) \cdots R(z_{k_n}) \), \(z_{k_i} \in \tilde{Z} \). By Lemma 3.1.6(a), we have \(aR(y_{j_1}) \cdots R(y_{j_{r-1}})R(x) \in A \setminus I \). Hence, we can assume that \(y_{j_r} = x \) and that all odd \(y_{j_i}'s \) are equal to \(x \).

Similarly, by Lemma 3.1.6(b), all even \(y_{j_i}'s \) can be assumed to lie in \(\{v_{i_1}, \ldots, v_{i_r}\} \). Lemma is proved.

Corollary 3.2.1. If \(n \) is even, then \(I(1, 1, \ldots, 1) = (0) \).

Proof. Suppose that \(0 \neq a \in I(1, 1, \ldots, 1) \) and choose a shortest operator \(w \in \mathcal{W} \) such that \(aw \in A \setminus I \). It is easy to see that

\[
 w = R(v_{i_1})R(v_{i_2}) \cdots R(v_{i_{k_r}})R(x).
\]

Indeed, if \(w = R(x)R(v_{i_1}) \cdots \), then \(aR(x)R(v_{i_1}) = aR(xv_{i_1}) = 0 \). The integer \(t \) is even. Since \(aw \) has weight \(v_{i_1} \cdots v_{i_t} \) and \(n \) is even, we have got a contradiction.

Denote \(D_i = D(x, v_{i}) \).

Lemma 3.2.2. Let \(a \in I \cup M_1 \) be a nonzero root element. Then there are indices \(1 \leq i_1 < \cdots < i_s \leq n \) such that \(aD_{i_1} \cdots D_{i_s} \in A \setminus I \).

Proof. By the previous lemma, there exists an operator \(w \in \mathcal{W} \) such that \(aw \in A \setminus I \). Let us consider all possible cases.

Case 1. \(a \in I, w = R(x)R(v_{i_1})R(x) \cdots R(v_{i_{2r+1}})R(x) \). Then \(aw \in [M_1, M] \subseteq V^A \). Since \(aw \) is a root element, there exist an index \(1 \leq i \leq n \) and an element \(z \in \tilde{Z} \) such that \(aw = zv_j \mod I, \tilde{z} \neq 0 \). Now \(awR(v_j) \in A \setminus I \) and \(awR(v_j) = aD_{i_1} \cdots D_{i_2r+1}D_j \).
Case 2. If \(a \in I, w = R(v_{i_1})R(x) \cdots R(v_{i_r})R(x) \). Then \(aw = aD_{i_1} \cdots D_{i_r} \).

Case 3. If \(a \in M_I, w = R(x)R(v_{i_1}) \cdots R(v_{i_r})R(x) \). Again there exists an index \(1 \leq j \leq n \) and an element \(z \in \hat{Z} \) such that \(aw = zw \mod I \). Then \(awR(v_{i_j}) = aD_{i_1} \cdots D_{i_r}D_j \in A \setminus I \).

Case 4. If \(a \in M_I, w = R(v_{i_1})R(x) \cdots R(v_{i_{r+1}})R(x) \). Then

\[
aw = -aD_{i_1} \cdots D_{i_{r+1}}.
\]

Lemma is proved.

Lemma 3.2.3. Let \(y' \in M_I, y \in M, z \in \hat{Z} \). Then

(a) \(y'R(y)R(v_{i_1}) = y'R(y)R(v_{i_1})R(z) \mod [M_I, M] + I \).

(b) \(y'R(y)R(v_{i_1}) = y'R(y)R(v_{i_1})R(z) \mod [M_I, M] + I \).

Proof.

(a) \(y'R(y)R(v_{i_1}) = y'(-R(v_{i_1})R(yz) - R(z)R(yv_{i_1}) + R(y)R(v_{i_1})R(z) + R(z)R(v_{i_1})R(y) + R((yz)v_{i_1})). \)

(b) \(y'R(yz)R(v_{i_1}) = y'(-R(yv_{i_1})R(z) - R(zv_{i_1})R(y) + R(y)R(v_{i_1})R(z) + R(z)R(v_{i_1})R(y) + R((yz)v_{i_1})). \)

Now we only need to use the fact that \(y'R(yv_{i_1}) \in [M_I, M\hat{N}] \subseteq I \).

Lemma 3.2.4. For arbitrary indices \(1 \leq i \neq j \leq n \), there exists an element \(a_{ij} \in I \) such that \(t(a_{ij}D_jD_i) = 1 \).

Proof. We have seen in Section 1 that \(I \neq (0) \) implies

\[
t(R(M)R(A)R(M)R(A)) = (0).
\]

Hence there exists elements \(b \in I; y_1, y_2 \in M; a_1, a_2 \in A \), such that \(t(bR(y_1)R(a_1)R(y_2)R(a_2)) \neq 0 \).

It is easy to see that the expression \(t(\cdots) \) is skew-symmetric in \(a_1, a_2 \) and symmetric in \(y_1, y_2 \).

By Lemma 3.2.3(a), we can assume that \(a_1, a_2 \in \{v_{i_1}, \ldots, v_n\} \); and by Lemma 3.2.3(b) we can assume that \(y_1 = y_2 = x \).

The element \(b \) can be assumed to be a root element. If \(a_1 = v_k, a_2 = v_i, \) then \(bR(x)R(v_k)R(x)R(v_i) = bD_kD_i \).

If \(\{i, j\} \cap \{k, l\} = \emptyset \), then \(t(bD(v_k, v_i)D(v_j, v_l)D_kD_j) \neq 0 \). If, say \(i = k \), then \(t(bD(v_k, v_i)D_jD_l) \neq 0 \). Lemma is proved.

Remark. Let \(A(1) \) denote the subalgebra of all elements of weight 1. Then the restriction of the trace to \(A(1) \) is a homomorphism.

Lemma 3.2.5. Let \(n \geq 6 \). Let \(1 \leq i_1, \ldots, i_{2k} \leq n \) be distinct integers. Let

\[
b = a_{i_{12}}R(a_{i_{34}}) \cdots R(a_{i_{2k-1, 2k}}).
\]

Then \(t(bD_{i_{12}}D_{i_{34}} \cdots D_{i_{2k-1, 2k}}) = 1 \).
Proof. Without loss of generality, we can assume \(k \geq 2 \). Denote \(b' = a_{i_1i_2}R(a_{i_3i_4}) \cdots R(a_{i_{2k-1}i_{2k-2}}) \). We have
\[
bD_{i_1} \cdots D_{i_{2k}} = \sum_{\mu + \nu = 2k} \pm (b'D_{j_1} \cdots D_{j_\nu})(a_{i_{2k-\nu}i_{2k}}D_{i_1} \cdots D_{i_\mu}).
\]

Suppose that \(\nu \) is even. The element \(a_{i_{2k-\nu}i_{2k}}D_{i_1} \cdots D_{i_\mu} \) has the weight \(v_{i_{2k-\nu}}v_{i_{2k}} \cdots v_{i_\nu} \). If \(n \) is even, then \(a_{i_{2k-\nu}i_{2k}}D_{i_1} \cdots D_{i_\mu} \in I \) unless \(\nu = 2 \), \(\{t_1, t_2\} = \{i_{2k-1}, i_{2k}\} \). Now we apply the induction assumption and the Remark above.

If \(n \) is odd, then \(n \geq 7 \). In this case, either again \(\nu = 2 \), \(\{t_1, t_2\} = \{i_{2k-1}, i_{2k}\} \), or \(\nu = n - 3 \) and \(\{i_{2k-1}, i_{2k}\} \cap \{t_1, \ldots, t_\nu\} = \emptyset \). In the latter case, \(\mu = 2 \) or \(\mu = 0 \).

If \(\mu = 0 \), then the summand clearly lies in \(I \).

Let \(\mu = 2 \). Then \(2k = \mu + \nu = n - 1 \geq 6 \); hence, \(k \geq 3 \). In this case, \(b'D_{j_1}D_{j_2} \in I \).

Now suppose that \(\nu \) is odd. Then \(a_{i_{2k-\nu}i_{2k}}D_{i_1} \cdots D_{i_\mu} \in M_I \) unless \(\{t_1, \ldots, t_\nu\} = \{1, \ldots, n\} \setminus \{i_{2k-1}, i_{2k}\} \). In this case, \(\mu = 1 \) and \(b'D_{j_1} \in M_I \). In any case, the summand has zero trace. Lemma is proved.

Lemma 3.2.6. Let \(z \in \tilde{Z} \), and \(b \) is a root element from \(I \cup M_I \). Then
\[
t_\mathcal{Z}((bz)D_{i_1} \cdots D_{i_k}) = t_\mathcal{Z}(bD_{i_1} \cdots D_{i_k}) z.
\]

Proof. We have \((bz)D_{i_1} \cdots D_{i_k} = \sum (bD_{i_1} \cdots D_{i_k})(zD_{i_1} \cdots D_{i_k}) \).

If \(\nu \neq 0 \), then the element \(zD_{i_1} \cdots D_{i_k} \) lies in \(I \cup M_I \) unless \(\nu \geq n - 1 \), in which case \(\mu = 0 \) or \(\mu = 1 \). In both cases, \(b \) and \(bD_{i_1} \) lie in \(I \cup M_I \). Lemma is proved.

Lemma 3.2.7. Let \(n \neq 5 \). Then for arbitrary indices \(1 \leq i \neq j \leq n \), there is a root element \(a_{i_j} \in I \) such that \(t(a_{i_i}D_{i_j}) = 1 \), and for any subset \(\{i_1 < \cdots < i_{2\nu}\} \neq \{i, j\} \), we have \(a_{i_{i_1}}D_{i_{i_2}} \cdots D_{i_{i_{2\nu}}} \in I \).

Proof. If \(n \) is even, then the old \(a'_{i_j}s \) of Lemma 3.2.4 will do because of weight considerations.

Let \(n \) be odd. For \(n = 3 \), let us show that \(a_{i_1}D_{i_1}D_{i_3} \in I \). It is easy to see that \(a_{i_1}D_{i_1}D_{i_3} = -a_{i_1}R(x)R(v_1)R(v_3)R(x) \). By the Jordan identity, \(R(x)R(v_1)R(v_3) = -R(v_3)R(v_1)R(x) \).

Hence
\[
a_{i_1}D_{i_1}D_{i_3} = a_{i_1}R(v_3)R(v_1)R(x)^2 \in IR(x^2) \subseteq I.
\]

Similarly, \(a_{i_2}D_{i_2}D_{i_3} \in I \).
Now let $n \geq 7$. Without loss of generality, we can assume that $\{i, j\} = \{1, 2\}$.

If $a_{i_1}D_{i_1} \cdots D_{i_r} \in A \setminus I$ and $\{i_1, \ldots, i_2\} \neq \{1, 2\}$, then $\{i_1, \ldots, i_2\} \cap \{1, 2\} = \emptyset$ and $2r = n - 3$, $r \geq 2$.

Suppose that $a_{i_1}D_{i_1} \cdots D_{i_r} = zu_k$ mod I, $k = \{1, \ldots, n\} \setminus \{1, 2, i_1, \ldots, i_2\}$, $z \in \mathbb{Z}$.

Let $b = a_{i_1} \cdots R(a_{i_{2r-1}, i_{2r}})$. By Lemma 3.2.5, $bD_{i_1} \cdots D_{i_{2r}} = z_0$ mod I, $t(z_0) = 1$, hence z_0 is invertible.

Let $a_{i_2} := a_{i_2} - (z_0^{-1}z)(bv_k)$.

From $r \geq 2$, it follows that $((z_0^{-1}z)(bv_k))D_1D_2 \in I$.

By Lemma 3.2.6, $a_{i_2}D_{i_1} \cdots D_{i_{2r}} \in I$ as well. This finishes the case $n \geq 7$.

Lemma is proved.

Now let us consider the case $n = 5$.

We will establish at first the existence of such an element $0 \neq b_{i_2} \in I$ of weight $v_i v_2$ that $b_{i_2}D_3D_4 \in I$.

For an element $v_{i_1} \cdots v_{i_r}$, $1 \leq i_1 < \cdots < i_r \leq n$, of the Clifford algebra, let $I(v_{i_1} \cdots v_{i_r})$ denote the subspace of I consisting of elements of weight $v_{i_1} \cdots v_{i_r}$.

Lemma 3.2.8. Let $n = 5$. There exists a nonzero element $b_{i_2} \in I(v_i v_2)$ such that $b_{i_2}R(v_j)R(x)R(v_k)R(v_r)R(v_3) \in I$.

Proof. First we remark that if $1 \leq j \leq 5$, $\{k, l, q\} = \{1, 2, \ldots, 5\} \setminus \{i, j\}$, and $b_{i_2} \in I(v_i v_j)$, then the following four inclusions are equivalent:

$$b_{i_j}R(v_k)R(x)R(v_1)R(x)R(v_q) \in I; \quad b_{i_j}D_kD_l \in I;$$

$$b_{i_j}D_kD_q \in I; \quad b_{i_j}D_lD_q \in I.$$

Suppose that, contrary to the assertion of the lemma, $0 \neq b_{i_2} \in I(v_i v_2)$ implies that $b_{i_2}D_3D_4 \notin I$.

We will finish the proof in several steps.

Step 1. For arbitrary $1 \leq i \neq j \leq 5$, $0 \neq b_{i_j} \in I(v_i v_j)$ implies that $b_{i_j}R(v_k)R(x)R(v_1)R(x)R(v_q) \notin I$ as long as i, j, k, l, q are distinct integers. Indeed, if $\{1, 2\} \cap \{i, j\} = \emptyset$, then $0 \neq b_{i_j}D_{i_j}D_{i_l}D_{i_q} \in I(v_i v_j)$, and therefore, $b_{i_j}D_{i_j}D_{i_l}D_{i_q}D_{i_k}D_{i_r} = \pm b_{i_j}R(v_k)R(x)R(v_l)R(x)R(v_q)R(x)R(v_r) \notin I$. If $i = 1$, $j \neq 2$, then $b_{i_j}D_{i_j}D_{i_q} \in I(v_i v_j)$ and we argue as above.

Step 2. $0 \neq b_{i_j} \in I(v_i v_j)$ implies $b_{i_j}D_i D_j \notin I$.

Indeed, if \(b_{ij}D_iD_j \in I \) and \(k \not\in \{i, j\} \), then

\[
b_{ij}D_iD_jR(v_k) = b_{ij}R(v_k)D_iD_j \in I.
\]

But \(b_{ij}v_k \) is a nonzero element from \(I(v_i,v_j,v_k) = I(v_i,v_q) \), where \(\{l, q\} = \{1, 2, \ldots, 5\}\setminus\{i, j, k\} \).

This contradicts the assertion of Step 1.

Step 3. For arbitrary nonzero elements \(a, b \in I(v_i,v_j) \), there exist \(f, g \in \hat{Z} \) such that \(fg \not\in I \) and \(af = bg \).

Indeed, let \(\{k, l, q\} = \{1, 2, 3, 4, 5\}\setminus\{i, j\} \). Then \(aD_kD_l = gv_q \neq 0 \mod I \) and \(bD_kD_l = fv_q \neq 0 \mod I \) for some elements \(f, g \in \hat{Z} \).

By Lemma 3.2.6, \((af)D_kD_l = (fg)v_q \mod I \) and \((bg)D_kD_l = (fg)v_q \mod I \). Hence, \((af - bg)D_kD_l \in I \). By our assumption, \(af = bg \).

Step 4. For arbitrary distinct integers \(1 \leq i, j, k \leq 5 \), we have

\[
I(v_i,v_j)I(v_j,v_k) = I(v_i)I(v_j,v_k) = (0).
\]

Indeed, let \(a \in I(v_i,v_j), b \in I(v_j,v_k) \). Then \(c = ab \in I(v_i,v_k) \). From Lemma 3.2.4, it follows that there exists an element \(a_{ik} \in I(v_i,v_k) \) such that \(t(a_{ik}D_iD_k) = 1 \).

By Step 3, there exist \(f, g \in \hat{Z} \) such that \(fg \not\in I \) and \(a_{ik}f = cg \).

If two elements of weight 1 have equal traces \(t \), then they are equal modulo \(I \). Hence by Lemma 3.2.6, \((cg)D_iD_k = ((ab)D_iD_k)g \mod I \). Furthermore, \((ab)D_iD_k \subseteq [M_i, M_j] + I \) by Lemma 1.1.13.

Hence, \(t_\tau(a_{ik}D_iD_k) = t_\tau(a_{ik}D_iD_k) \not\equiv 0, \) which is impossible, because \(\hat{f} \neq 0 \) and \(t_\tau(a_{ik}D_iD_k) \) is invertible.

The equality \(I(v_i)R(v_j,v_k) = (0) \) is proved similarly.

Step 5. \(xI(v_i,v_j)R(v_j,v_k) = (0) \).

As above, choose arbitrary elements \(a \in I(v_i,v_j), b \in I(v_j,v_k) \).

We will first show that \(c = xR(a)R(b)R(x) = 0 \). The element \(c \) lies in \(I(v_i,v_k) \). That is why, to show that \(c = 0 \), it is sufficient to show that \(cD_iD_k = 0 \). Since \(cv_i = 0 \), it follows that \(cD_iD_k = cR(x)R(v_j)D_k = xR(a)R(b)R(v_j)D_k R(x)^2 = xR(a)R(b)D_k R(v_j)R(x)^2 \). We have

\[
xR(a)R(b)R(x)R(v_k) = 0.
\]

Therefore,

\[
xR(a)R(b)D_k = -xR(a)R(b)R(v_k)R(x) \in I,
\]

because \([(MI)A, M] \subseteq I \).
We have proved that \([x_{ij}]_{jk}, x] = (0)\). It is easy to see that for an arbitrary \(1 \leq l \leq 5\), we have \(\langle x_{ij} \rangle_{jk} D_l \subseteq I\).

By Lemma 3.2.2, there exist distinct integers \(1 \leq l_1, \ldots, l_r \leq 5\), \(r\) is odd, such that \(\langle x_{ij} \rangle_{jk} D_{l_1} \cdots D_{l_r} \subseteq A \setminus I\). If at least one integer \(l_q\) is not equal to \(i\) or \(k\), then we can assume that \(l_1 \notin \{i, k\}\).

Then \(\langle x_{ij} \rangle_{jk} R(v_{l_1}) = 0\), and therefore, \(\langle x_{ij} \rangle_{jk} D_{l_1} = 0\). Hence \(l_1, \ldots, l_r \in \{i, k\}, r \leq 2\). This contradicts \(r\) being odd and greater than \(1\). We proved that \(\langle x_{ij} \rangle_{jk} = 0\).

Step 6. Let us show that for arbitrary elements \(a \in I(v_{i_2} v_{j_2}), b \in I(v_{i_3} v_{j_3})\), we have \(aR(x)R(v_{i_2})R(b) = 0\). Indeed, by the Jordan identity,

\[R(v_1)R(x)R(b) = -R(b)R(x)R(v_1) + R(xb)R(v_1). \]

In Step 5 it was proved that \(aR(x)R(b) = 0\). Now, \(aR(x)R(xb)R(v_1) = aR(x)R(xb)R(v_1) + R(v_1)R(b)(R(xb)) = (I(v_{i_2}v_{j_2})R(x_{i_2}v_{j_2}))v_1 = 0\) by Step 4.

The element \(xR(a)R(v_1)R(b)\) belongs to the eigenvalue \(1\) with respect to \(U(v_2)\). Hence \(xR(a)R(v_1)R(b) \neq 0\) implies \(xR(a)R(v_1)R(b)R(v_4) \neq 0\).

Again by the Jordan identity, \(R(v_1)R(b)R(v_4) = R(v_1)R(b)R(v_4) + R(bv_4)R(v_1)\). We have \(xR(a)R(v_4) = xR(v_4)R(a) = 0\). As for the second summand, the element \(bv_4\) lies in \(I(v_{i_2}v_{j_2}) = I(v_2v_3)\). Hence, \(xR(a)R(bv_4) = 0\) by Step 5. This finishes the proof of Step 6.

Now we are ready to finish the proof of the lemma.

By Lemma 3.2.4, there exists an element \(a_{12} \in I(v_{i_2}v_{j_2})\) such that \(t(a_{12})D_1 D_2 = 1\). This implies that \(a_{12} R(x)R(v_1)R(x) = f v_2 \mod I(v_2)\), where \(f \in Z, t(f) = 1\).

From Steps 4 and 6, it follows that \((fv_2)I(v_{i_2}v_{j_2}) = (0)\).

Now \((fv_2)I(v_{i_2}v_{j_2}) = (fI(v_{i_2}v_{j_2}))v_2\) and \((fI(v_{i_2}v_{j_2}))v_2 = fI(v_{i_2}v_{j_2}) = (0)\).

Since \(t(f) = 1\), it follows that \(1 - f\) is a nilpotent element. Hence the multiplication \(R(f): J \to J\) is an invertible operator. Hence \(I(v_{i_2}v_{j_2}) = (0)\), the contradiction. Lemma is proved.

Lemma 3.2.9. For arbitrary integers \(1 \leq i \neq j \leq n\), there exists an element \(a_{ij} \in I(v_{i_2}v_{j_2})\) such that \(t(a_{ij})D_1 .. D_5 = 1\), and for any subset \(\{i_1 < \cdots < i_2\} \subseteq \{1, 2, \ldots, n\}\), which does not coincide with \(\{i, j\}\), we have \(a_{ij}D_1 \cdots D_{2r} \subseteq I\).

Proof. The lemma has been proved for all \(n\) except 5.

Let \(n = 5\). By Lemma 3.2.8, there exists a nonzero element \(b_{12} \in I(v_{i_2}v_{j_2})\) such that \(b_{12} D_1 D_2 \in I\), \(b_{12} D_3 D_5 \in I\), \(b_{12} D_4 D_5 \in I\). Then, by Lemma 3.2.1, \(b_{12} D_1 D_2 \in A \setminus I\).

Clearly, \(b_{12} D_1 D_2 = f \in Z, f \neq 0\). Since \(Z\) does not contain nilpotent ideals which are invariant with respect to \(D(M(-1, \ldots, -1), M(-1, \ldots, -1))\), there exist derivations \(d_1, \ldots, d_r) \in D(M(-1, \ldots, -1), M(-1, \ldots, -1)) \subseteq I\) such that \(t(fd_1 \cdots d_r) \neq 0\).
We have
\[b_{12} D_1 D_2 d_1 \cdots d_j \]
\[= \sum (b_{12} d_{i_1} \cdots d_{i_k}) D(x d_{j_1} \cdots d_{j_{\mu}}, v_1) D(x d_{\mu_1} \cdots d_{\mu_{\mu}}, v_2). \]

Hence, for some summand
\[t\left((b_{12} d_{i_1} \cdots d_{i_k}) D(x d_{j_1} \cdots d_{j_{\mu}}, v_1) D(x d_{\mu_1} \cdots d_{\mu_{\mu}}, v_2) \right) \]
\[= t\left((b_{12} d_{i_1} \cdots d_{i_k}) R(x d_{j_1} \cdots d_{j_{\mu}}) R(v_1) D(x d_{\mu_1} \cdots d_{\mu_{\mu}}, v_2) \right) \neq 0. \]

Denote \(b'_{12} = b_{12} d_{i_1} \cdots d_{i_k} \).

We have already mentioned that \(M = x R \langle \tilde{Z} \rangle + M_I + MV^A \).

From \(t(b'_{12} R(M) R(v_1) R(M) R(v_2)) \neq (0) \), it follows that
\[t\left(b'_{12} R(x R \langle \tilde{Z} \rangle) R(v_1) R(x R \langle \tilde{Z} \rangle) R(v_2) \right) \neq (0). \]

By Lemma 3.2.3(a), \(t(b'_{12} R(x) R(v_1) R(x) R(v_2)) \neq 0 \), and therefore, we can assume that \(t(b'_{12} D_1 D_2) = 1 \).

Let us show that \(b'_{12} R(v_3) R(v_4) R(x) R(v_5) \in I \). We have
\[b'_{12} R(v_3) R(x) R(v_4) R(x) R(v_5) \]
\[= \sum (b_{12} R(v_3) R(x w_1) R(v_4) R(x w_2) R(v_5) w_3), \]

where \(w_1, w_2, w_3 \) are products (may be empty) of derivations from \(D(M(-1, \ldots, -1), M(-1, \ldots, -1)) \).

To show that each summand lies in \(I \), it is sufficient to show that \(b_{12} R(v_3) R(x R \langle \tilde{Z} \rangle) R(v_4) R(x R \langle \tilde{Z} \rangle) R(v_5) \subseteq I \), which boils down (see Lemma 3.2.3(a)) to \(b_{12} R(v_3) R(x) R(v_4) R(x) R(v_5) \in I \). Lemma is proved.

Remark 1. Without loss of generality, we can assume in Lemma 3.2.9 that \(a_{ij} D_1 D_2 = 1 \bmod I \). Indeed, by Lemma 3.2.9, \(a_{ij} D_1 D_2 = f_0 \bmod I \), where \(f_0 \in \tilde{Z} \) is an invertible element. Then, by Lemma 3.2.6,
\[\left(a_{ij} f_0^{-1} \right) D_1 D_2 = 1 \bmod I. \]

Remark 2. The element \(a_{ij} \) with this property is unique in \(I(v_i, v_j) \). If \(a'_{ij} \) is another element with the same property, then \(a'_{ij} - a_{ij} \) fails Lemma 3.2.1. From this, it follows that \(a_{ij} D(v_i, v_k) = a_{ik} \).

Lemma 3.2.10. \(MV^A \subseteq M_I \).
Proof. We have $V^d = I + \sum_{k=1}^n \tilde{Z}v_k$. Choose $f \in \tilde{Z}$ and $y \in M$ and let us show that $y(fv_j) \in M_I$. We have $a_{ij}R(x)R(v_j)R(x) = v_j \mod I$.
We have $(a_{ij}f)R(x)R(v_j)R(x) = (a_{ij}f)D_iD_jR(v_j)R(f) = a_{ij}R(x)R(v_j)R(x)R(f)$ by Lemma 3.2.6 (we used here the fact that the elements $(a_{ij}f)D_iD_j$ have weight 1).

Hence $(a_{ij}f)R(x)R(v_j)R(x) = fv_j \mod I$.

By the Jordan identity,
\[
R(v_j)R(x)R(y) = R(y)R(x)R(v_j) - R([x, yv_j]) - R(v_jy)R(x) + R([x, y])R(v_j).
\]

We have
\[
(a_{ij}f)R(x)R(y)R(x), (a_{ij}f)R(x)R(v_jy)R(x) \in IR(M)R(M)R(M) \subseteq IM,
\]
while $(a_{ij}f)R(x)R([x, yv_j])$ and $(a_{ij}f)R(x)R([x, y]R(v_j))$ lie in M_I. Lemma is proved.

Corollary 3.2.2. $M = xR(\tilde{Z}) + M_I$.

Lemma 3.2.11. Let $1 \leq q \leq n$ be an odd integer and let $1 \leq i_1 < \cdots < i_q \leq n$. Then $a_{i_1}D_{i_1} \cdots D_{i_q-1} \in \tilde{Z} + I$. Clearly, $ID_{i_q} \subseteq M_I$.

Furthermore, $\tilde{Z}D(x, v_{i_q}) = (Zv_{i_q})x \in M_I$ by Lemma 3.2.10.

For an ordered subset $\pi = \{i_1, \ldots, i_{2r}\}$ of $\{1, \ldots, n\}$, let
\[
a_\pi = a_{i_1i_2}R(a_{i_3i_4}) \cdots R(a_{i_{2r-1}i_{2r}}).
\]

Lemma 3.2.12. For an arbitrary element $f \in \tilde{Z}$, we have $((a_\pi f)D_{i_1} \cdots D_{i_{2r}}) = f \mod I$.

For any subset $\{j_1, \ldots, j_k\}$ of $\{1, \ldots, n\}$ other than $\{i_1, \ldots, i_{2r}\}$, we have
\[
(a_\pi f)D_{i_1} \cdots D_{i_{2r}} \in I \cup M_I.
\]

Proof. By Lemma 3.2.6, $t_{\pi}(a_\pi f)D_{i_1} \cdots D_{i_{2r}} = t_{\pi}(aD_{i_1} \cdots D_{i_{2r}})\tilde{f}$; hence, to prove the first part of the assertion it is sufficient to prove that $a_\pi D_{i_1} \cdots D_{i_{2r}} = 1 \mod I$.

If $r = 1$, then see Remark 1. Let $r > 1$ and let $\pi' = \{i_1, \ldots, i_{2r-2}\}$. Then $a_\pi = a_\pi a_{i_{2r-1}i_{2r}}$ and
\[
a_\pi D_{i_1} \cdots D_{i_{2r}} = \sum_{s+q=2r} (a_{\pi'}D_{a_1} \cdots D_{a_s})(a_{i_{2r-1}i_{2r}}D_{p_1} \cdots D_{p_q}),
\]
where π' is an ordered subset of $\{1, \ldots, n\}$ other than $\{i_1, \ldots, i_{2r-2}\}$.
Consider the element \(a_{i_{2r-1},i_{2r}} D_{\beta_1} \cdots D_{\beta_j} \). If \(q \) is odd, then this element lies in \(M_I \). Hence \(t_\Sigma(a_{\pi} D_{\alpha_1} \cdots D_{\alpha_r} a_{i_{2r-1},i_{2r}} D_{\beta_1} \cdots D_{\beta_j}) = 0 \).

Now let \(q \) be even. Unless \(q = 2 \), \(\beta_1 = i_{2r-1} \), \(\beta_2 = i_{2r} \), the element \(a_{i_{2r-1},i_{2r}} D_{\beta_1} \cdots D_{\beta_j} \in I \). Hence \(t_\Sigma(a_{\pi} D_{i_1} \cdots D_{i_{2r}}) = t_\Sigma(a_{\pi} D_{i_1} \cdots D_{i_{2r-2}}) \) and we can use the induction assumption.

Now let \(\{j_1, \ldots, j_k\} \neq \{i_1, \ldots, i_{2r}\} \). We have to show that \((a_{\pi} f) D_{j_1} \cdots D_{j_k} \in I \cup M_I \). Assume the contrary. Let \(k \) be even. By weight considerations, \(n \) is odd and \(\{i_1, \ldots, i_{2r}\} \cap \{j_1, \ldots, j_k\} = \emptyset \), \(k = n - 2r - 1 \). Distributing \(D_i \)'s to the factors of \(a_{\pi} \) and to \(f \), we see that \((a_{\pi} f) D_{j_1} \cdots D_{j_k} \) lies in the subsuperalgebra of \(J \) generated by \(\tilde{Z} + I + M_I \), that is, \(\tilde{Z} + I + M_I \). Comparing weights, we see that \((a_{\pi} f) D_{j_1} \cdots D_{j_k} \in I \).

Now let \(k \) be odd. If \((a_{\pi} f) D_{j_1} \cdots D_{j_{k-1}} \in I \), then \((a_{\pi} f) D_{j_1} \cdots D_{j_k} \in M_I \).

If \((a_{\pi} f) D_{j_1} \cdots D_{j_{k-1}} \in \tilde{Z} \), then \((a_{\pi} f) D_{j_1} \cdots D_{j_k} \in \tilde{Z} D_{j_k} \subseteq M_I \) by Lemma 3.2.10. Lemma is proved.

Let \(\pi = \{i_1, \ldots, i_{2r+1}\} \) be an ordered subset of \(\{1, \ldots, n\} \). Denote \(a_\pi = a_{i_1 \cdots i_2 \cdots i_{2r+1}} \).

Lemma 3.2.13. Let \(1 \leq i_1, \ldots, i_k \leq n \) be distinct integers, \(\pi = \{i_1, \ldots, i_k\} \) is an ordered subset, \(\sigma \in S_k \), and the ordered subset \(\pi' \) is obtained from \(\pi \) by the permutation \(\sigma \). Then \(a_{\pi'} = (-1)^{\sigma} a_\pi \).

Proof. If \(k \) is even, then the element \(a_{\pi'} = (-1)^{\sigma} a_\pi \), if nonzero, fails Lemma 3.2.1. Let \(k \) be odd. It is sufficient to prove that \(a_{i_1 \cdots i_k} = -a_{i_1 \cdots i_k} \) for any distinct \(1 \leq i, j, k \leq n \). It is easy to see that \(a_{i_1 \cdots i_k} = a_{i_1 \cdots i_k} D(v_j, v_k) \). Hence, \(a_{i_1 \cdots i_k} R(v_j) = a_{i_1 \cdots i_k} (R(v_j) R(v_k) - R(v_k) R(v_j)) R(v_j) \).

From the Jordan identity, it follows that \(R(v_j) R(v_k) R(v_j) = 0 \). Hence, \(a_{i_1 \cdots i_k} R(v_j) = a_{i_1 \cdots i_k} R(v_k) R(v_j) = -a_{i_1 \cdots i_k} R(v_k) \). Lemma is proved.

Lemma 3.2.14. Let \(\pi = \{i_1, \ldots, i_{2r+1}\} \) be an ordered subset of \(\{1, \ldots, n\} \), \(f \in \tilde{Z} \). For arbitrary distinct integers \(1 \leq j_1, \ldots, j_k \leq n \), we have \((a_{\pi} f) D_{i_1} \cdots D_{i_k} \in I \cup M_I \) unless

(a) \(k = 2r \) and \(j_1, \ldots, j_k \in \pi \). In this case, \((a_{\pi} f) D_{i_1} \cdots D_{i_k} = \pm f \) mod \(I \), where \(\{l\} = \pi \setminus \{j_1, \ldots, j_k\} \); or

(b) \(k = 2r + 2 \) and \(\pi \subseteq \{j_1, \ldots, j_k\} \). In this case, \((a_{\pi} f) D_{i_1} \cdots D_{i_k} = \pm (R(f x)) \) mod \(I \), where \(\{l\} = \{j_1, \ldots, j_k\} \setminus \pi \); or

(c) \(k = 2r + 1, j_1, \ldots, j_k \) is a permutation of \(i_1, \ldots, i_{2r+1} \). In this case, \((a_{\pi} f) D_{i_1} \cdots D_{i_k} = \pm f \) mod \(M_I \).

Proof. Suppose that \((a_{\pi} f) D_{i_1} \cdots D_{i_k} \in I \cup M_I \). Let \(k \) be even. Comparing weights, we see that either \(k = 2r \) and \(j_1, \ldots, j_k \in \pi \) or \(k = 2r + 2 \) and \(\pi \subseteq \{j_1, \ldots, j_k\} \) or \(n \) is odd and \(\{j_1, \ldots, j_k\} = \{1, \ldots, n\} \setminus \pi \). Let us
exclude the last possibility. Indeed, since \(i_{2r+1} \notin \{j_1, \ldots, j_k\}\), it follows that
\[(a_\pi f)D_{j_1} \cdots D_{j_k} = (a_{i_1 \ldots i_{2r}} f)D_{j_1} \cdots D_{j_k} R(v_{i_{2r+1}}),\]
and it is sufficient to refer to Lemma 3.2.12.

Let \(k = 2r\); \(j_1, \ldots, j_k \in \pi\), \(l = \pi \setminus \{j_1, \ldots, j_k\}\). By Lemma 3.2.13, without loss of generality, we can assume that \(i_{2r+1} = \bar{l}\). Then again \((a_\pi f)D_{j_1} \cdots D_{j_k} = (a_{i_1 \ldots i_{2r}} f)D_{j_1} \cdots D_{j_k} R(v_{\bar{l}})\), and the assertion follows from Lemma 3.2.12.

Let \(k = 2r + 2\). Without loss of generality, we will assume that \(i_{2r+1} = j_{2r+2}, l = j_{2r+1}\).

Then
\[
(a_\pi f)D_{j_1} \cdots D_{j_k} = (a_{i_1 \ldots i_{2r}} f)D_{j_1} \cdots D_{j_k} R(v_{j_{2r+1}})D_{j_{2r+1}} = - (a_{i_1 \ldots i_{2r}} f)D_{j_1} \cdots D_{j_k} R(x),
\]
because \(R(v_{j_{2r+1}})R(x)R(v_{j_{2r+1}}) = 0\). Since \(j_1, \ldots, j_{2r}\) is a permutation of \(i_1, \ldots, i_{2r}\), it follows from Lemma 3.2.12 that \((a_{i_1 \ldots i_{2r}} f)D_{j_1} \cdots D_{j_{2r}} = \pm f + a, a \in I(1, 1, \ldots, 1)\).

Now \((\pm f + a)D_{j_1} R(x) = - (\pm f + a)R(v_{\bar{l}}) R(x)^2 = \pm (R(x)^2)v_{\bar{l}} \mod I\).

Now let \(k\) be odd. Since \((a_\pi f)D_{j_1} \cdots D_{j_{k-1}} \notin I\), it follows that every \((k - 1)\)-element subset of \(\{j_1, \ldots, j_k\}\) satisfies (a) or (b). This is possible only if \(j_1, \ldots, j_k\) is a permutation of \(\pi\). We can assume that \(i_{2r+1} = j_{2r+1}\). Then \((a_\pi f)D_{j_1} \cdots D_{j_k} = (a_{i_1 \ldots i_{2r}} f)D_{j_1} \cdots D_{j_{2r}} R(v_{\bar{l}}) = \pm f x \mod M_{\bar{l}}\) by Lemma 3.2.12. Lemma is proved.

If \(n\) is even, then by Corollary 5.2.1, we have \(\bar{Z} = \bar{Z}\).

Let \(n\) be odd. Denote \(w_0 = R(v_{\bar{l}}) \cdots R(x) R(v_{\bar{n}})\).

Lemma 3.2.15. For an arbitrary element \(\tilde{f} \in \bar{Z}\), there exists an element \(f \in \bar{Z}\) such that \(\tilde{f} - f \in I\) and \(fw_0 \in I\).

Proof. Let \(\tilde{f} w_0 = g \in \bar{Z}\). Let \(\pi = \{1, 2, \ldots, n\}\), \(\pi' = \{1, \ldots, n - 1\}\). By Lemma 3.2.6,
\[
(a_\pi g)w_0 = a_\pi R(v_{\bar{n}}) R(g)w_0 = (a_\pi g) D_1 \cdots D_{n-1} R(v_{\bar{n}}) R(v_{\bar{n}}) = (a_\pi g) D_1 \cdots D_{n-1} = g \mod I.
\]

Hence \((\tilde{f} - a_\pi g)w_0 \in I\) and it is sufficient to let \(f = \tilde{f} - a_\pi g\). Lemma is proved.

Lemma 3.2.16. Let \(a, b \in \bar{Z}\), \(aw_0 \in I\), \(bw_0 \in I\). Then \((ab)w_0 \in I\).

Proof. It is sufficient to prove that \((ab)D_{j_1} \cdots D_{n-1} \in I\). We have \((ab)D_{j_1} \cdots D_{n-1} = \sum \pm (aD_{j_1} \cdots D_{k}) (bD_{j_1} \cdots D_{l})\).
If both k and q are nonzero, then comparing weights, we see that $aD_{i_1} \cdots D_{i_k}$ and $bD_{i_1} \cdots D_{i_q} \in I$.

If $q = 0$, then $aD_{i_1} \cdots D_{i_k} = aD_1 \cdots D_{n-1} \in I$. If $k = 0$, then $bD_{i_1} \cdots D_{i_q} \in I$. Lemma is proved.

Recall that in Case (b), $\bar{Z} = F[\bar{a}_1, \bar{a}_m]$ the algebra of truncated polynomials in m variables $\bar{a}_1, \ldots, \bar{a}_m$. By Lemma 3.2.15, for each \bar{a}, there exists a preimage a_1 in \bar{Z} such that $a_1w_0 \in I$. Let Z be the subalgebra of A generated by a_1, \ldots, a_m. By Lemma 3.2.16, $aw_0 \subseteq I$. This implies that $Z \cap I = \{0\}$ and $Z = \bar{Z}, \bar{Z} = Z + I(1, 1, \ldots, 1)$.

The same result in Case (a) is obvious.

Lemma 3.2.17. For an arbitrary element $f \in Z$, an arbitrary nonempty subset $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, we have $fD_{i_1} \cdots D_{i_k} \in I \cup M_I$.

Proof. Let k be even. If $fD_{i_1} \cdots D_{i_k} \notin I$, then n is odd and $k = n - 1$, which contradicts the definition of Z. If $k = 1$, then the assertion follows from Lemma 3.2.10. If k is odd and $k > 1$, then $fD_{i_1} \cdots D_{i_{k-1}} \in I$, which implies the assertion. Lemma is proved.

Lemma 3.2.18. $ZR(x)^2 \subseteq Z$.

Proof. Clearly, $ZR(x)^2 \subseteq \bar{Z}$. If n is even, then $\bar{Z} = Z$. If n is odd, then $\bar{Z} = Z + Za_1, \ldots, a_m$.

If $f \in Z$ and $fR(x)^2 = g + ha_1 \cdots a_m$, where $g, h \in Z$, $h \neq 0$, then $fR(x)^2w_0 = h \mod I$. But $fR(x)^2w_0 = fw_0R(x)^2 \in I$, the contradiction. Lemma is proved.

Lemma 3.2.19. Let $f \in Z$ and let $\{i_1, \ldots, i_k\}$ be a nonempty subset of $\{1, \ldots, n\}$. Then

$$\langle xf \rangle D_{i_1} \cdots D_{i_k} \in I \cup M_I,$$

unless $k = 1$, $(xf)D_i = (fR(x)^2)v_i$.

Proof. Since $(xf)R(v_i) = 0$, it follows that $(xf)D_i = (xf)R(x)R(v_i) = (fR(x)^2)v_i$.

Let k be odd and $k > 1$. Then $(xf)D_{i_1} \cdots D_{i_k} = fR(x)^2R(v_{i_1})R(x)R(v_{i_2}) \cdots R(x)R(v_{i_k}) = (fR(x)^2)D_{i_1} \cdots D_{i_{k-1}}R(v_{i_k}) \in I$ by Lemma 3.2.17.

Let k be even. If $k = 2$, then $(xf)D_{i_1}D_{i_2} = (fR(x)^2)v_{i_1}R(x)R(v_{i_2}) \in M_I$ by Lemma 3.2.10.

If $k > 2$, then $(xf)D_{i_1} \cdots D_{i_{k-1}} \in I$, which implies the assertion. Lemma is proved.

Lemma 3.2.20. Let $\pi = \{i_1, \ldots, i_k\}$ be a nonempty subset of $\{1, \ldots, n\}$, and let $f \in Z$. For any distinct integers $1 \leq j_1, \ldots, j_k \leq n$, the element
If \((x_\alpha) f D_{j_1} \cdots D_{j_k} \neq 0 \) lies in \(I \cup M_f \) unless

(a) \(k = 2r - 1, \{j_1, \ldots, j_k\} \subseteq \{i_1, \ldots, i_{2r}\} \). Then \((x_\alpha) f D_{j_1} \cdots D_{j_k} \in Zv_l \mod I, \) where \(l = \pi \setminus \{j_1, \ldots, j_k\} \), or

(b) \(k = 2r, \{j_1, \ldots, j_k\} = \pi \), in which case \((x_\alpha) f D_{j_1} \cdots D_{j_k} \in Zx \mod M_f \), or

(c) \(k = 2r + 1, \pi \subseteq \{j_1, \ldots, j_k\} \), in which case \((x_\alpha) f D_{j_1} \cdots D_{j_k} \in Zv_l \mod I, l = (j_1, \ldots, j_k) \setminus \pi \).

Proof. Let us at first prove the assertion when \(f = 1 \). Suppose that

\((x_\alpha) D_{j_1} \cdots D_{j_k} \neq I \cup M_f \). Let \(k \) be odd. If \(j_1 \notin \pi \), then \((x_\alpha) D_{j_1} = a_\alpha R(x)^2 R(v_j) \). In this case, \((x_\alpha) D_{j_1} \cdots D_{j_k} = a_\alpha D_{j_1} \cdots D_{j_k} R(x)^2 R(v_{j_1}) \). By Lemma 3.2.12, \(\{j_2, \ldots, j_k\} = \pi \) and \(a_\alpha D_{j_1} \cdots D_{j_{k-1}} = \pm 1 \mod I \), so \(a_\alpha D_{j_1} \cdots D_{j_{k-1}} R(x)^2 \in I \). Hence \(j_1, \ldots, j_k \in \pi \).

The element \((x_\alpha) D_{j_1} \cdots D_{j_k} \) has weight \(v_{i_1} \cdots v_{i_{2r}} \cdots v_{j_k} \). It can lie outside of \(I \) only if \(k = 2r - 1 \). Comparing weights, we see that \((x_\alpha) D_{j_1} \cdots D_{j_k} \in Zv_{j_{2r-1}} \), where \(l = \pi \setminus \{j_1, \ldots, j_{2r-1}\} \).

Now let \(k \) be even. Then \((x_\alpha) D_{j_1} \cdots D_{j_{k-1}} \neq I \); hence, every \((k - 1) \)-element subset of \(\{j_2, \ldots, j_k\} \) lies in \(\pi \); hence, \(k = 2r \) and \(\{j_1, \ldots, j_k\} = \pi \). We have \((x_\alpha) D_{j_1} \cdots D_{j_k} \in Zv_{j_{2r}} \), hence, \((x_\alpha) D_{j_1} \cdots D_{j_k} \in Zv_{j_{2r}} \in Zx \).

Now we will drop the assumption that \(f = 1 \).

We have \(((x_\alpha) f) D_{j_1} \cdots D_{j_k} = \sum \pm (x_\alpha) D_{a_1} \cdots D_{a_s} (f D_{\beta_1} \cdots D_{\beta_s}) \). Suppose that \((x_\alpha) D_{a_1} \cdots D_{a_s} (f D_{\beta_1} \cdots D_{\beta_s}) \neq I \cup M_f \). The case of \(q = 0 \) has already been considered above. If \(q > 0 \), then \(f D_{\beta_1} \cdots D_{\beta_s} \in I \cup M_f \). Then \((x_\alpha) D_{a_1} \cdots D_{a_s} \notin I \cup M_f \), \(q \) is odd, and \(s \) is even. From what we proved above, it follows that \(\{a_1, \ldots, a_s\} = \pi \).

The element \((x_\alpha) D_{a_1} \cdots D_{a_s} (f D_{\beta_1} \cdots D_{\beta_s}) \) has weight \(v_{i_1} \cdots v_{i_s} \) and lies in \(A \). This implies that \(q = 1 \) (notice that \(s \geq 2 \)). Now \(k = 2r + 1, \{j_1, \ldots, j_k\} \supset \pi \). Comparing weights, we see that \((x_\alpha) f D_{j_1} \cdots D_{j_k} \in Zv_{j_1} \mod I, l = (j_1, \ldots, j_k) \setminus \pi \). Lemma is proved.

Lemma 3.2.21. Let \(\pi = \{i_1, \ldots, i_{2r}\} \) be a subset of \(\{1, \ldots, n\} \), let \(i \in \pi \), and let \(f \in Z \). For any distinct integers \(1 \leq j_1, \ldots, j_k \leq n \), the element \((a_\alpha D_i) f D_{j_1} \cdots D_{j_k} \) lies in \(I \cup M_f \), unless \(k = 2r - 1, \{j_1, \ldots, j_k\} = \pi \setminus \{i\} \), in which case \((a_\alpha D_i) f D_{j_1} \cdots D_{j_k} \in Z \mod I \).

Proof. As in the previous lemma, let us at first assume that \(f = 1 \).

If \(i \notin \{j_1, \ldots, j_k\} \), then the assertion follows from Lemma 3.2.14. Suppose that \(i = j_1 \). Then \(a_\alpha D_i D_{j_1} = -a_\alpha R(x)^2 \) and therefore \(a_\alpha D_i D_{j_1} \cdots D_{j_k} = -a_\alpha D_{j_2} \cdots D_{j_k} R(x)^2 \in I \) by Lemma 3.2.14.
Now let us drop the assumption that $f = 1$. We have $((a_i D_i) f) D_i \cdots D_i = \sum (a_i D_i D_{a_i} \cdots D_{a_i}(f D_{\beta_i} \cdots D_{\beta_i}))$. Let $(a_i D_i D_{a_i} \cdots D_{a_i}(f D_{\beta_i} \cdots D_{\beta_i})) \notin I \cup M_i$. The case $q = 0$ has been considered above. If $q \geq 1$, then

$$ f D_{\beta_i} \cdots D_{\beta_i} \in I \cup M_i. $$

If $a_i D_i D_{a_i} \cdots D_{a_i} \notin I \cup M_i$, then from what we proved above, it follows that $s = 2r - 1$, and therefore, $a_i D_i D_{a_i} \cdots D_{a_i} \in A$. Now

$$ (a_i D_i D_{a_i} \cdots D_{a_i})(f D_{\beta_i} \cdots D_{\beta_i}) \in A(I \cup M_i) \subseteq I \cup M_i. $$

Lemma is proved.

Lemma 3.2.22. For arbitrary elements $f, g \in Z$, $x(R(f) R(g) - R(fg)) \in M_i$.

Proof. We have

$$ xR(f) R(g) = xR(f) R((g v_1) v_1) $$

$$ = x(-R(g v_1) R(f v_1) - R(v_1) R(f g v_1)) $$

$$ + R(g v_1) R(f) R(v_1) + R(v_1) R(f) R(g v_1) + R(fg)) $$

$$ = xR(fg) \mod M_i $$

by Lemma 3.2.10. Lemma is proved.

Lemma 3.2.23. $A = Z + \Sigma v_i + \Sigma a_i Z + \Sigma_{i \in \pi}(a_i v_i) Z; M = xZ + \Sigma(a_i D_i) Z$, where π runs over all nonempty subsets of the set \{1, \ldots, n\} containing even number of elements.

Proof. Clearly, $A = Z + \Sigma v_i + I$. From the previous lemma and Lemma 3.2.10, it follows that $M = xZ + M_i$.

Recall that by \mathcal{W} we denoted the set of (nonempty) products of $R(v_i)$'s and $R(x)$'s which do not contain subproducts $R(v_i)R(v_j)$ and $(x)^2$. Consider the subset

$$ \mathcal{W}_0 = \{ R(x) R(v_{i_1}) R(x) \cdots R(x) R(v_{i_k}) R(v_{i_1}) R(x) R(v_{i_2}) \cdots R(x) R(v_{i_k}), 1 \leq i_1 < \cdots < i_k \leq n \}. $$

If n is odd, then we exclude from \mathcal{W}_0 the operator $R(x) R(v_{i_1}) R(x) \cdots R(v_{i_k})$. From Lemma 3.2.1, it follows that for an arbitrary nonzero element $a \in I \cup M_i$, there exists an operator $w \in \mathcal{W}_0$ such that $t^2 aw \neq 0$. In-
every operator will find an element R an element af. This implies that if aDg then from what we proved above, it follows that af has zero kernel. This will imply the existence of af.

Let $w = R(x)R(v_{i_1}) \cdots R(x)R(v_{i_k})$, k is even. Let $a_w(f) = a_{i_1, \ldots, i_k}$. From Lemma 3.2.12, it follows that $a_w(f)w = f \mod I$. Comparing weights, we see that the only other candidate $\varphi \in W_0$ for $a_w(f)\varphi \neq 0$ is $\varphi = R(v_{i_{k+1}})R(x) \cdots R(x)R(v_{i_1})$, where i_1, \ldots, i_n is a permutation of $1, 2, \ldots, n$. However, $a_w(f)\varphi = a_w(f)D_{i_{k+1}} \cdots D_{i_1}R(v_{i_1}) \in I$ by Lemma 3.2.12.

Let $w = R(x)R(v_{i_1}) \cdots R(x)R(v_{i_k})$, k is odd. Choose an integer $i \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$ and let $\sigma = (i_1, \ldots, i_k, i)$.

For an arbitrary element $g \in Z$ we have $(a_x D_i)gw = (a_x D_i)gD_i \cdots D_{i_k} \in Z \mod I$ by Lemma 3.2.14. Let $\varphi \in W_0$, $\varphi \neq w$, and $t_\varphi((a_x D_i)g\varphi) \neq 0$. Comparing weights, we see that n should be odd and $\varphi = R(v_{i_{k+1}})R(x) \cdots R(x)R(v_{i_1})$, where i_1, \ldots, i_n is a permutation of $1, 2, \ldots, n$.

Then $(a_x D_i)g\varphi = -(a_x D_i)gD_{i_{k+1}} \cdots D_{i_1}R(v_{i_1}) \in I$ by Lemma 3.2.14. This implies that if $(a_x D_i)gw \neq 0$, then, by Lemma 3.2.1, $t_\varphi(a_x D_i)gw \neq 0$.

Let us show that the linear mapping $\theta: Z \to Z$, $\theta(g) = (a_x D_i)gw + I/1$ has zero kernel. This will imply the existence of $a_w(f)$. If $(a_x D_i)gw \in I$, then from what we proved above, it follows that $(a_x D_i)g = 0$. Hence $(a_x g) = (a_x g)R(v_{i_1}) = 0$. Consider the element $0 = (a_x g)D_{i_{k+1}} \cdots D_{i_1} \in Z \mod I$. By Lemma 3.2.17, $(a_x g)D_{i_{k+1}} \cdots D_{i_1} \in I \cup M_f$.

Hence $(a_x g)D_{i_{k+1}} \cdots D_{i_1} \in I$. We have $(a_x D_{i_{k+1}} \cdots D_{i_1} = -a_x D_{i_{k+1}} \cdots D_{i_1}R(x)$. Moreover, $(a_x D_{i_{k+1}} \cdots D_{i_1}R(v_{i_1}) = -a_x D_{i_{k+1}} \cdots D_{i_1}D_{i_1} = -1 \mod I$ by Lemma 3.2.12. Hence $(a_x D_{i_{k+1}} \cdots D_{i_1}g)R(v_{i_1}) = -g \mod I$, hence $g = 0$.

We proved that the linear mapping $\theta: Z \to Z$ is bijective and therefore an element $a_w(f)$ exists.

Let

$$w = R(v_{i_1})R(x) \cdots R(x)R(v_{i_k})$$

and let

$$w' = R(x)R(v_{i_1}) \cdots R(x)R(v_{i_k}).$$
Let us show that the element $a_n(f) = a_w(f) v_i$, satisfies our requirements. Clearly, $a_w(f) R(v_i) w = f \mod I$. Let $\varphi \in W_0$, $\varphi \neq w$, and $t_\varphi (a_w(f) R(v_i) \varphi) \neq 0$. Comparing weights, we see that n is odd and

$$\varphi = R(x) R(v_{i_1}) \cdots R(x) R(v_{i_q}) \quad \text{or} \quad \varphi = R(v_{i_1}) R(x) R(v_{i_2}) \cdots R(x) R(v_{i_q}),$$

where $\{j_1, \ldots, j_q\} = \{1, 2, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$. In the first case, $R(v_{i_1}) \varphi \in W_0 \cup (-W_0)$, which contradicts the choice of $a_w(f)$. In the second case, applying the Jordan identity $q - 1$ times, we get $R(v_{i_1}) \varphi = (\cdots R(v_{i_1}) R(v_{i_2})$, and it remains to notice that $t_\varphi (AR(v_{i_1}) R(v_{i_2})) = (0)$. Thus, the existence of $a_n(f)$ is proved for all operators $w \in W_0$ and elements $f \in Z$. For an element $\tilde{f} \in Z$, we find a preimage $f \in Z$ and denote $a_n(f) = a_n(\tilde{f})$.

Now, for an arbitrary element $a \in I \cup M_1$, for an arbitrary operator $w \in W_0$, we have $t_\varphi ((a - \sum_{i=1}^n a_i (t_\varphi (aw) w) = 0$ for every $w \in W_0$. Hence $a = \sum_{i=1}^n a_i (t_\varphi (aw))$. It remains to notice that all elements $a_n(f)$ were chosen from the subspace $\sum_{i=1}^n a_i Z + \sum_{i=1}^n (a_{-n} v_i) Z + \sum_{i=1}^n (x a_{-n}) Z \in \sum_{i \in \pi} (a_{-n} D_i) Z$. Lemma is proved.

Denote

$$\Gamma = Z + \sum_{\pi} a_{-n} Z + \sum_{i \in \pi} (a_{-n} D_i) Z,$$

$$\Gamma' = \sum_{i=1}^n Z v_i + x Z + \sum_{i \notin \pi} (a_{-n} v_i) Z + \sum_{\pi} (x a_{-n}) Z,$$

where π runs over all nonempty subsets of $\{1, 2, \ldots, n\}$ containing even number of elements.

For an arbitrary element $a \in \Gamma$, arbitrary (may be empty) subset $1 \leq i_1 < \cdots < i_k \leq n$, we have $a D_{i_1} \cdots D_{i_k} \in Z + I + M_1$ (see Lemmas 3.2.12, 3.2.17, 3.2.21).

For an arbitrary element $a \in \Gamma'$, arbitrary (may be empty) subset $1 \leq i_1 < \cdots < i_k \leq n$, we have $a D_{i_1} \cdots D_{i_k} \in \sum_{i=1}^n Z + I + M_1$ (see Lemmas 3.2.14, 3.2.19, 3.2.20).

Hence $J = \Gamma + \Gamma'$ is a direct sum of subspaces.

LEMMA 3.2.24. (a) $\Gamma \Gamma' \subseteq \Gamma$.

(b) $\Gamma' \Gamma' \subseteq \Gamma'$.

(c) $\Gamma' \Gamma \subseteq \Gamma$.

Proof. (a) Let $a, b \in \Gamma$ be root elements. If $ab \notin \Gamma$, then there exists a subset $1 \leq i_1 < \cdots < i_k \leq n$ such that the projection of $(ab) D_{i_1} \cdots D_{i_k}$
on $\sum_{i=1}^n v_i Z$ is not zero. However,
\[(ab) D_{i_1} \cdots D_{i_k} = \sum (aD_{i_1} \cdots D_{i_n})(bD_{i_1} \cdots D_{i_n}) \leq (Z + I + M_I)(Z + I + M_I) \subseteq Z + I + M_I,
\]
the contradiction.

(b) Let $a \in \Gamma$, $b \in \Gamma'$. If $ab \notin \Gamma'$, then there exists a subset $1 \leq i_1 < \cdots < i_k \leq n$ such that the projection of $(ab) D_{i_1} \cdots D_{i_k}$ on Z is not zero. However, $(ab) D_{i_1} \cdots D_{i_k} = \sum (aD_{i_1} \cdots D_{i_n})(bD_{i_1} \cdots D_{i_n}) \leq (Z + I + M_I)(\sum v_i Z + I + M_I) \subseteq Z + I + M_I$, the contradiction.

(c) First we will show that, for an arbitrary $1 \leq i \leq n$, we have $\Gamma' D_i \subseteq \Gamma'$. Clearly, $t_{\mathcal{Q}}(\Gamma' D_i) = (0)$. If $\Gamma' D_i \subseteq \Gamma'$, then there exists a subset $1 \leq i_1 < \cdots < i_k \leq n$ such that $t_{\mathcal{Q}}(\Gamma' D_i D_{i_1} \cdots D_{i_k}) \neq (0)$. If $i \notin \{i_1, \ldots, i_k\}$, then this contradicts what we already know about Γ'. If $i \in \{i_1, \ldots, i_k\}$, then $\Gamma' D_i D_{i_1} \cdots D_{i_k} = \Gamma' D_{i_1} \cdots D_{i_{k-1}} D_{i_k}$, where $\{j_1, \ldots, j_{k-1}\} = \{i_1, \ldots, i_k\} \setminus \{i\}$. It is easy to see that $\Gamma' D_{j_1} \cdots D_{j_{k-1}} D_{j_k} \subseteq \Gamma' D_i \cdots D_{i_{k-1}} D_{i_k}$. Hence $t_{\mathcal{Q}}(\Gamma' D_{j_1} \cdots D_{j_{k-1}} D_{j_k}) = (0)$ follows from $t_{\mathcal{Q}}(\Gamma' D_{j_1} \cdots D_{j_{k-1}} D_{j_k}) = (0)$.

We have $(\sum_{i=1}^n v_i Z + \sum_{i=1}^n (xa_i Z) J \subseteq I + M_I$. Hence
\[\Gamma' \Gamma' = \left(\sum_{i=1}^n Z v_i + xZ\right) \left(\sum_{i=1}^n Z v_i + xZ\right) \text{ mod } I + M_I.\]

Hence $\Gamma' \Gamma'$ has zero projection on $\sum_{i=1}^n Z v_i$. If $\Gamma' \Gamma' \not\subseteq \Gamma$, then there exists a subset $1 \leq i_1 < \cdots < i_k \leq n$ such that $\Gamma' \Gamma' D_{i_1} \cdots D_{i_k}$ has a nonzero projection on $\sum_{i=1}^n Z v_i$. But $\Gamma' \Gamma' D_{i_1} \cdots D_{i_k} \subseteq \Gamma' \Gamma' D_{i_1} \cdots D_{i_k} \subseteq \Gamma' \Gamma'$, the contradiction. Lemma is proved.

Lemma 3.2.25. For arbitrary elements $a, b \in \Gamma$, we have $R(ab) = R(a)R(b)$.

Proof. Let us first check that for arbitrary elements $a, b \in Z + I + M_I$, we have $JR(a)R(b) \subseteq I + M_I$. We can assume that $a, b \in Z \cup I \cup M_I$.

If $a \in I$ or $b \in I$, then both $JR(a)R(b)$ and $JR(ab)$ lie in $(IJ)J \subseteq I + M_I$.

Assume therefore that $a, b \in Z \cup M_I$. If $a, b \in Z$, then the assertion follows from Lemma 3.2.12. If $a, b \in M_I$, then $ab \in I$, $AR(M_I)R(M_I) \subseteq [M_I, M_I] \subseteq I$, and $MR(M_I)R(M_I) \subseteq AM_I \subseteq M_I$. Let $a \in M_I$, $b \in Z$. Clearly, $AR(a)R(b)$ and $AR(ab)$ lie in M_I. We have to check that $M(R(a)R(b) - R(ab)) \in I$. Since $M_I = (MI)A$, we can assume that $a = ac$, where $a' \in MI$, $c \in A$. Then $R(a'c)R(b) - R((a'c)b) = -R(ab)R(c)$.
\(- R(bc)R(a') + R(a')R(b)R(c) + R(c)R(b)R(a')\). In Section 1 it was
proved that \([M,(MI)Z] \subseteq I\); hence, \(MR(a'b) \subseteq I\). Other summands lie in
\(I\) for similar reasons.

If \(a \in Z, b \in M_f\), the argument is similar. Let \(b = b'c\), where \(b' \in
MI, c \in A\). Then \(R(a)R(b'c) - R(a(b'c)) = -R(b')R(ac) - R(c)R(b'a)
+ R(b')R(a)R(c) + R(c)R(a)R(b')\), which implies the result.

In particular, since \(\Gamma \subseteq Z + I + M_f\), it follows that for arbitrary ele-
ments, \(u \in A \cup M, a, b \in \Gamma\), we have \(u(R(a)R(b) - R(ab)) \subseteq I + M_f\). If
\(u(R(a)R(b) - R(ab)) \neq 0\), then there exists a subset \(1 \leq i_1 < \cdots < i_k \leq n\)
such that \(u(R(a)R(b) - R(ab))D_{i_1} \cdots D_{i_k} \in A \setminus I\). But

\[
u(R(a)R(b) - R(ab))D_{i_1} \cdots D_{i_k} = \sum \nu' \left(R(aD_{n_1} \cdots D_{n_s})R(bD_{\beta_1} \cdots D_{\beta_t}) \right)
- R\left((aD_{n_1} \cdots D_{n_s})(bD_{\beta_1} \cdots D_{\beta_t}) \right) \]

From \(a, b \in \Gamma\), it follows that \(aD_{n_1} \cdots D_{n_s}, bD_{\beta_1} \cdots D_{\beta_t} \in Z + I + M_f\).

Hence, every summand of the sum above lies in \(I + M_f\), the contradiction.

Lemma is proved.

Lemma 3.2.26. \(\Gamma' = \Gamma x\).

Proof. We have \(\Gamma' R(x)^2 = (\Gamma x)x \subseteq \Gamma x\). Suppose that \(N \neq I\). Then
there exists an element \(a \in Z\) such that the right multiplication \(R(aR(x)^2)\)
is invertible. Hence \(\Gamma' = \Gamma'(aR(x)^2) \subseteq (\Gamma'a)R(x)^2 + (\Gamma'R(x)^2)a \subseteq \Gamma x\).

Now let \(A/I\) be a simple Jordan algebra of a bilinear form. We have
\(a_i R(x)R(v_j)R(x) = v_j \bmod I(v_j)\). Hence \(v_j \in \Gamma x + I(v_j)\). If \(n\) is even, by
Corollary 3.2.1, \(I(v_i) = \langle 0 \rangle\). If \(n\) is odd, then \(I(v_j)\) is a product of \(a_i\)'s and
\(Z\), and therefore, \(I(v_j) \subseteq \Gamma\). Hence \(v_j \in \Gamma x + \Gamma\). From Lemma 3.2.23, it
follows that \(Z, a_i, v_j, \ldots, v_n, x\) generate \(J\). Since \(\Gamma + \Gamma x\) is a subsuperal-
gebra of \(J\), we conclude that \(J = \Gamma + \Gamma x, \Gamma' = \Gamma x\). Lemma is proved.

To finish the proof of the theorem, we need only to check that \(0 \neq a \in \Gamma\)
implies that \(ax \neq 0\). If \(K = \{a \in \Gamma | ax = 0\}\), then \(K\) is an ideal of \(J\).
Hence \(K = \langle 0 \rangle\).

ACKNOWLEDGMENT

The authors are grateful to Ivan Shestakov, who carefully read the paper and made many
valuable suggestions.
REFERENCES

