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1. INTRODUCTION

The well-known Krull-Schmidt-Azumaya theorem [2] says that if
M=®_,M=&_,N are two indecomposable decompositions of a
module M, where M, has local endomorphism ring for each i € I, then
there is a bijection o: I — J such that M; = N, ;, for every i € I. In this
theorem the local endomorphism ring hypothesis is crucial to ensure the
uniqueness of the decomposition of M into indecomposable summands,
and it is always tempting to ask whether under some weaker hypotheses
the indecomposable decomposition of a module is unique. This was done,
for example, by Anderson and Fuller [1, Theorem 12.4], who showed that
the conclusion of the Krull-Schmidt-Azumaya theorem still remains valid
for modules with an indecomposable decomposition that complements
maximal direct summands. In general, however, there exist various exam-
ples in the literature which show that Krull-Schmidt may fail even under
“rather good” hypotheses on the rings or on the indecomposable sum-
mands (see, e.g., [5], [7], and [8]).

In 1975 Warfield proved that every finitely presented module over a
serial ring is a finite direct sum of uniserial modules, and asked whether
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the direct decomposition of a finitely presented module into uniserial
summands is unigue up to isomorphism [11]. Recently the second author
has answered Warfield’s question completely, showing that although there
exist serial rings for which the Krull-Schmidt theorem does not hold for
finitely presented modules, it is possible to prove a weak Krull-Schmidt
theorem for finite direct sums of uniserial modules [4]. In order to recall
this main result of [4] we need the concepts of monogeny class and epigeny
class of a module. Two modules 4 and B are said to belong to the same
monogeny class, written [ A],, = [ B],,, if there are a monomorphism 4 — B
and a monomorphism B — A. Similarly, the modules 4 and B are said to
belong to the same epigeny class, written [A], = [B],, if there are an
epimorphism A4 — B and an epimorphism B — A. The weak Krull-
Schmidt theorem for finite direct sums of uniserial modules proved in [4]
says that if U,,...,U,V;,...,V, are nonzero uniserial modules over an
arbitrary ring R, then U, ® -0 U, =V, ®-- @V, ifand only if n =¢
and there are two permutations o, 7 of {1,2,...,n} such that [U], =
Vil and [U], = [V,], forevery i =1,2,...,n.

The purpose of this paper is to determine necessary and sufficient
conditions for two arbitrary families of uniserial modules {U; |i € I} and
{V;1j €J} in order to have the property that &,_, U = &, V. Our
main results are Theorems 3.1, 3.3, 4.7, 4.8, and 5.4, which show that most
of the results proved in [4] for finite families can be extended to arbitrary
(infinite) families as well, and during this extension new concepts, like the
concept of quasismall uniserial modules, appear in a natural way (see Sect.
3 for the definition of quasismall modules).

The weak Krull-Schmidt theorem for finite direct sums of uniserial
modules consists of mwo logical implications (the necessary condition and
the sufficient condition). In Theorems 3.1 and 3.3 we prove that “one and
a half” of these two logical implications still hold for infinite direct sums of
uniserial modules. This generalizes the results in [4] considerably. In
Theorem 4.8 we show that if {U; | i € I} and {V; | j € J} are two families of
quasismall uniserial modules over an arbitrary ring R, then &,_,U =
@,V if and only if there are two bijections o, 7: I —J such that
(U], =V, and [U], = [V;], for every i € I. The class of quasismall
uniserial modules is large enough to contain all finitely generated and all
uncountably generated uniserial modules, and also uniserial modules with
local endomorphism rings. Moreover, we show that, in some sense, this is
the largest possible class of uniserial modules for which the above weak
Krull-Schmidt theorem holds (Theorem 4.9). Finally, we establish a weak
Krull-Schmidt theorem for locally semi-T-nilpotent families of uniserial
modules (Theorem 5.4). This also is a generalization of the finite direct
sum case studied in [4], but in a different direction.
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2. PRELIMINARY LEMMAS

Throughout this paper we consider unitary right modules over an
associative ring R with identity. If f: A — B is a mapping and C is a
subset of A, we will write f|c for the restriction of f to C.

Recall that a module is uniserial if its lattice of submodules is linearly
ordered under inclusion, and is serial if it is a direct sum of uniserial
modules. Two modules 4 and B are said to belong to the same monogeny
class, written [ A4],, = [B],,, if there are a monomorphism f: 4 — B and a
monomorphism g: B — A. Similarly, A and B are in the same epigeny
class, written [ 4], = [B],, if there are an epimorphism 4#: 4 — B and an
epimorphism |: B — A. Obviously, these are two equivalence relations.
Roughly speaking, the modules which belong to the same monogeny or
epigeny classes share many common properties, but they need not be
isomorphic. The significance of these concepts for uniserial modules is
highlighted by the fact that any uniserial module is uniquely determined by
its monogeny and epigeny classes.

LEMMA 2.1. Let U and V be uniserial modules such that [U], = [V],
and [U], = [V],. Then U = V.

Proof. See [4, Proposition 1.6]. |

In the rest of this section, for the reader’s convenience, we collect some
results that will be used repeatedly in the sequel. The proof of Lemma 2.2
follows from [4, Proposition 1.7 and Lemma 1.8], Lemmas 2.3 and 2.4 are
[4, Proposition 1.6 and Lemma 1.1], and Lemma 2.5 is a special case of [4,
Lemma 1.4].

LEMMA 2.2. Let V, V' be uniserial modules. Suppose that there exists a
uniserial module U such that [U],, = [V'],, and [U], = [V'],. Then there are
uniserial submodules X and Y of V ® V' such that Ve V' =X &Y and
X = U. Moreover, [Y],, =[V'],, and [Y], = [V]..

LEMMA 2.3 (cancellation property). Let A, B be right modules over an
arbitrary ring R, and let U be a uniserial right R-module such that A ® U = B
® U. Then A = B.

LEMMA 2.4. Let A, C be nonzero right modules over an arbitrary ring R,
let B be a uniserial right R-module, and let a: A - B, B: B — C be
homomorphisms. Then

(@) Ba is a monomorphism if and only if B and « are both monomor-
phisms;

(b) Ba is an epimorphism if and only if B and « are both epimor-
phisms.
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LEMMA 2.5. Let U be a uniserial module over an arbitrary ring R.

(@) Iffand g are two endomorphisms of U, f is injective and nonsurjec-
tive, and g is surjective and noninjective, then f + g is an automorphism.

(b) Conversely, suppose that f,,...,f, are n endomorphisms of U,
none of which is an automorphism. If f, + -+ +f, is an automorphism, then
there exist two distinct indices i,j = 1,2,...,n such that f; is injective and
nonsurjective, and f; is surjective and noninjective.

The proof of the next result is essentially based on Lemmas 2.4 and
2.5(b); see [4, Proposition 1.5 and 1.7] for details.

LEMMA 2.6. Suppose U is a uniserial module such that U ® B = C,
® - ® C, for arbitrary modules B,C,,...,C, and n > 2. Then there are
two distinct indices i and j and a direct decomposition C; & C; = U" & C’
suchthatU' = Uand B = C’ & (EBk#i'jCk). In particular, if C, ...,C, are
uniserial modules, there are two indices i, j, possibly equal, such that [U],, =
[C.], and [U], = [Cj]e.

Finally, we record the following elementary lemma which is very useful
in the study of direct sum decompositions of modules.

LEMMA 2.7. Let M be a module and A, B, C submodules of M. Suppose
M=A®B. Let mzg: M =A® B — B denote the canonical projection.
Then M = A & C if and only if wgzlc: C — B is an isomorphism.

Proof. See [1, Proposition 5.5]. |

3. ARBITRARY FAMILIES OF UNISERIAL MODULES

In this section we consider two arbitrary families of uniserial modules
{Uli € IYand{V} | j € J}. Our first result says that if the families {U} | i € I}
and {V; | j € J} have the same monogeny and epigeny classes, then &,_, U
= GBJ,EJ V.. This fact was proved in [4] for finite families by induction on
the number of uniserial summands. In the case in which the index sets [
and J are infinite, such induction argument does not seem to be applica-
ble, and a new method of proof is required. The idea of our proof below is
reminiscent of the proof of the classical Cantor—Schroeder—Bernstein

theorem in set theory.

THEOREM 3.1. Let{U; |i € I} and {V/- | j € J} be two families of uniserial
modules over an arbitrary ring R. Suppose that there are two bijections o, T:
I = J such that [U], =1V, ], and [U], = [V,,], for every i € I. Then
®_ U=®&_,V.

el ™i jelJ "]
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Proof. Suppose that there are two bijections o,7: I — J such that
(U], =V, and [U], = [V};], for every i € I. We have to show that
eaie 1 U @/ elJ V L. . i

The symmetric group S, consisting of all bijection I — I acts on the set
I in a natural way. Let C be the cyclic subgroup of S, generated by

0 € S,. Then C acts on the set 1. For every element i € I let

[i]={(+"%) (i) z € Z)

denote the C-orbit of i. Let o([i]) = {o(x)| x € [i]} be the image of the
orbit [{] via the bijection o.

Fix an element i € I. We claim that @ke[l]Uk =,V

For simplicity of notation set i, = (" 0)%(i), j, = o 5 , and

V, =V, forevery z € Z. Hence |f the orbit [i] is infinite, then 0'([ Dis

infinite, and U, = U,, if and only if n = m. If the orbit [¢] is finite of order
g, then 0'([1]) is finite of order ¢, and U, = U, if and only if n =m

(mod ¢). Note that 7(i,) = (=" 'o)*()) = o (r o) (D) =0(i,_) =], ;.
In this notation the equality [U/],, = [V, ], for every i € I implies that

[U.1, = [V.].. (1)
for all z € Z, and similarly the equality [U], = [V}, ], implies that
[Uz]e = [I/zfl]e (2)

forall z € Z
For every integer n > 0 define two direct sum decompositions X, ©
y=V,eV  ,ofV eV ,adX &Y =0, U, ,0f U,
® U_,_, by induction on »n with the following properties:
@ I[x,,=10],and[X,], =[U_,], forevery n > 0;
(b)) X,., =X, forevery n > 0;
() Y, =Y/ forevery n>0.

Since [U,],, = [V,],, and [U,], = [V_,],, there are submodules X, and
Yyof V@ V_,suchthatV, @ V_, =X, @Y, X, = U, Y], =[V_.]l,,
and [Y,], = [V,], (Lemma 2.2). Hence [U,], = [Y,].. Similarly, we get that
[U_,1, =0v_,1, = [Y,l,,- Hence, again by Lemma 2.2, there are submod-
ules X and Yy of Uy ® U_, suchthat Uy @ U_, = X ® Yy and Yy = Y.
Thus X,,Y,, X|, Yy have the required properties.

Suppose now n > 1 and that X,,Y,, X;,Y; satisfying the required prop-
erties have already been defined for every t = 0,1,...,n — 1. Then X, _,
oY,_,=V,_,®V_,. Since [X,_,1, =1U,_,1, =1[V,_;], by (@ and
(1), it follows from Lemma 2.2 that [Y,_,],, = [V_,1,, = [U_,1,,. Similarly,
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[Xn—l]e = [U—n+1]e = [V—n]e by (a) and (2)! so that [Yn—l]e = [I/n—l]e =
[U,].. By (o) it follows that [Y,_,],, =[U_,]l,, and [Y,/_,]1, = [U,],. These
last two equalities and X,,_, ® Y, , = U, & U_, imply that

[X,_.1, =101, and [X,_,],=[U_,],. (3)

From (1) and (2) we get that [ X, _,], = [V,],, and [ X, _;], =[V_,_],- By
Lemma 2.2 there exist X,,Y, such that X, ®Y, =V, e V_,_, and
X, = X,,_,. Then property (a) holds for X, and Y, by (3). And property
(b) holds as well.

From (3) it follows that [X ], = [X,_,],, = [U,], =[V,], and [X,], =
(X, _,1,=[U0_,=1[V_,_,].. These equalities and X, &Y, =V, &
V_,_, imply that [Y,], =[V_,_,]l, and [Y,], =[V,],. Hence [Y,], =
[U_,_,1,and[Y,], =[U,, ], by (1) and (2). Lemma 2.2 yields a decompo-
sition X, ® Y, =U,,,®U_,_,of U,,, ® U_,_,, where X, and Y, are
suitable uniserial submodules of U,,, ® U_,_, and Y, = Y,. This com-
pletes the induction. Note that (a) implies that X, = U,.

Suppose that the orbit [i] is an infinite set. Then

D U = 6914=U0®(69(X;®Y,{))

keli] nez n>0

EXOEB(®O(Xn+1®Yn)): @Wev,,)= D n.

n=0 leo(iD

This proves the claim for the case of an infinite orbit [].

Now suppose that the orbit [] is a finite set with g elements. Consider
the case that ¢ = 2n + 1 for some n > 0. Then V, = V_,_,, and by the
equality X, ® Y, =V, @ VV_,_,, it follows by Lemma 2.2 that [X,], =
[V,1, and [X,], = [V, ],, hence by Lemma 2.1 we get X, = V). Therefore

DUu=-Ue|DUe Uk)) =y | D (X, 0V )
kelil k=1 k=1
n n—1
=X, ® @(XkGBYk—l)) = @ (x,ov)0X,
k=1 k=0
n—1

In

@ eV pev,= & v,
k=0 leo (i)

which proves our claim for the case of a finite orbit [i] with an odd number
q of elements. Similarly, for the case g = 2n with n > 1, we have U, =
U_,, hence the equality X, _, ®Y, _,=U, & U_, implies that Y, _,

1

—n?
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Y,_, = U,. Then we have

n—1
ST D U eU )| eU,
kelil] k=1
n—1
=U,® k@l (Xlé—l ® Yk,—l)
n—1
=X, ® kEB (Xy@Y )| @Y, ,
=1
n—1
=@ ev,)= @ n.
k=0 leo (i)

This concludes the proof of the claim.

When the index i runs over all the indices in I, we get that the orbits []
form a partition of I into disjoint countable subsets 7 = U ;. ,[i] and their
images o([i]D form a partition of J into disjoint countable subsets J =

< 1o (i]. By the claim &, _, U, = &, _ V) for every orbit [i], so
that &, U=0_,V.

iel jeJ

€[i]

In view of Theorem 3.1 it is natural to ask whether the existence of two
bijections between the monogeny and epigeny classes of {U. |i € I} and
{V; | j € J}is anecessary condition for the isomorphism &, _, U, = &, V.
Now we establish a partial converse of Theorem 3.1, namely that |f
& ., U= EJVJ, then the families {U; |i € I} and {Vj | j € J} have the
same monogeny classes.

First we prove an auxiliary lemma.

LEMMA 3.2, Let M = ®,_; A; be a direct sum of arbitrary modules A;.
Suppose that M = U ® B, where U and B are submodules of M, and U is
nonzero uniserial. Let wy: M =U®B - U and m: M = &, A; = A,
be the canonical projections. Then there exists an mdex ke J such that
wyla, o mlu is an injective endomorphism of U.

Proof. Take a nonzero element x € U. Then x€A; & - & A4; for
some jy,...,j, €J.Set C = éBﬁj ,,,,, jAj sothat M = A o - @A ®
C. N ey, my, 5, mp, 6,m (t= n) and eq, 7o are the |njectlons
and the projections assouated Wlth the two direct decompositions M =
UeB=A4; & - &A; &C,then

1, =mye, = 77'[](8]171']1 + ot EcTe) Ey
= TyE, T Ey + - +’7TU8j”7Tjn8U + TyEcTEY.
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By Lemma 2.5(b) at least one of these summands must be a monomor-
phism. Since 7 e m-e,;(x) = 0, the last summand cannot be a monomor-
phism. Therefore there is an index ¢ = 1,...,n such that 7, ¢ m; &, is a
monomorphism. Set k =j,. |

THeOREM 3.3. Let{U. |i € I} and {Vj | j € J} be two families of nonzero
uniserial modules over an arbitrary ring R and suppose that €B U =

i€l
® V. Then there is a bijection o: I - J such that [U],, = [V, ], for
every i € I.
Proof. We may suppose that M = EBIHU = EBJ.E]V]. with U, V;

nonzero uniserial modules for every i and j.

Fix an index k& € I and consider the two subsets (k) = {i € I |[U], =
{U],} of I and J(k) ={j €J V], =I[U,],} of J. It is obvious that the
I(k), k € I, form a partition of I. Note that the J(k), k € I, also form a
partition of J, because for every j € J there is a k € I with [V/],, = [U,],,
and for every k € I there is a j € J with [Vj]m = [U,],, (Lemmas 2.4(a)
and 3.2).

In order to establish the existence of the bijection between the monogeny
classes of {U;[i €I} and {V;|j €J}, it is sufficient to prove that the
cardinalities |7(k)| and |J(k)| are equal for every k € I.

Suppose first that either I(k) or J(k) is a finite set. Without loss of
generality we may assume |I(k)| < |J(k)|. Suppose that |I(k)| < [J(k)|. If
I(k) = {iy,...,i,), let {j;,...,j,..} be a subset of J(k) of cardinality
n + 1. Write

M=U o-0U eB=V ool &C,

] In J1 Jn+1

where

B= & U and c= & .
i#ig,..., i, J#jres Jn+1

We shall show by induction on #n that the serial module B has a uniserial
direct summand V" isomorphic to J; forsome ¢ = 1,...,n + 1, which gives
us a contradiction because by Lemmas 2.4(a) and 3.2 there exists i € I \
iy, ..., i,} with [U],, = V], =V, ],.

Apply Lemma 2.6 to U; and the finite direct sum M =V, & - &V, |
® C. One of the following two cases must hold.

(1) There are distinct indices, say j, and j,, and a direct decomposi-
tion V. eV, =W, e W, of V. @V, such that W, = U,. From Lemma
2.6 it follows that either [U, ], = [V} ], or [U, ], = [V] Since [U, ], =

ijde Jide
[V, 1, = [V}, 1,, it follows that either l} =V, or U, =V, (Lemma 2.1). If,

J
forlinstance U = V then

Ueo-—-oU @B=V, o0V, ©C

2 Iy J2 Jn+1
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because the cancellation property holds for uniserial modules (Lem-
ma 2.3).

(2) There is an index, say j;, and a direct decomposition V; & C =
W, @ D of V; @ C such that W, = U, . Then again by Lemma 2.3

U,@-oU eB=V & oV, oD.

i Iy J2 Jn+1

An easy induction shows that after n steps we get the required contra-
diction.

Now suppose that I(k) and J(k) are both infinite. By symmetry it is
sufficient to prove that [J(k)| <[I(k)l. Let 7. &._,U — U, and p,:
® ., V; = V) be the canonical projections. For every ¢ € I define a subset
A(t) of J as follows: A1) ={leJ|mly,:V,— U and ply: U — V, are
both monomorphisms}.

Note that A(¢) is a finite set because there is a finite subset F of J with
U N (& V) +0,sothat ply, is not a monomorphism for every leJ
N\ F.

We claim that

JEF

J(kyc U A(r).

tel(k)

In order to prove the claim take an index j € J(k). By Lemma 3.2 applied
to the direct summand V; of M = &, _, U, there exists an index ¢ € I such
that 7|y ° ply, is a monomorphlsm Hence both |, and ply, are
monomorphisms by Lemma 2.4(a), i.e,, j € A(?). Since [U], =[V}], =
[U.],,, it follows that ¢ € I(k). This proves the claim.

It follows that [J(k)l < Ro|I(k)| = [I(k)I. Hence |J(k)| = [I(k)| if I(k)
and J(k) are both infinite. |

Remark. A careful analysis of our arguments shows that the results of
this section hold for a class of modules more general than the class of
uniserial modules, namely, the class of modules of both Goldie dimension
1 and dual Goldie dimension 1 (i.e., modules A4 with the property that, for
any submodules B,C of A, BN C =0 implies B=0 or C =0 and
B+ C =A implies B=A or C = A). However, the condition that the
modules are uniserial will be essential in the next section.

4. QUASISMALL UNISERIAL MODULES
Suppose M = &,_, U = & _,V; V. with U, V; uniserial modules for every
ieland jeJ. In this section we discuss the existence of a bijection 7:
I — J preserving the epigeny classes. In [4] it was shown that such a
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bijection always exists if M has finite Goldie dimension. However, when
M has infinite Goldie dimension, the situation is more complicated. We
will show that there exists a bijection between the epigeny classes of only
certain subfamilies of {Uj |i € I} and {V} | j € J}, and these subfamilies are
in some sense the largest possible subfamilies for which our weak
Krull-Schmidt theorem holds.

DeriNnITION 4.1. Let U be a module over an arbitrary ring R. We say
that U is quasismall if whenever U is isomorphic to a direct summand of a
direct sum & _, M, of arbitrary modules M,, there is a finite subset
F ¢ A such that U is isomorphic to a direct summand of &, _, M,.

The reason for the terminology just introduced is the following. A
module U is small if for any direct sum M = &, _, M, with projection =,
and any monomorphism f: U — M we have m, o f = 0 for all but a finite
number of indices A (see [6] or [9]). Obviously every small module is
quasismall. In particular, every finitely generated module is quasismall.

The following result is due to Fuchs and Salce [6, Lemma 24]. Since
their lemma was considered in the setting of commutative valuation rings,
we include its proof for the reader’s convenience.

LEMMA 4.2.  Every uniserial module is either countably generated or small.

Proof. Let U be a uniserial module and suppose that U is not small.
Then U is a submodule of a direct sum @,_, A; of suitable modules A;
such that U ¢ &, _ . A4, for every finite subset F of I.

For every element x = (x,);c;, € ®,_, 4, setsupp(x) = {i € I | x; # 0}.
Define a sequence of elements u, € U by induction on the positive
integer n as follows. Let u; be an arbitrary nonzero element of U. Suppose
u, € U has been defined. Then U¢Z &, ) A S0 that there is an
element u,, , € U with supp(u,, ., ;) ¢ supp(u,). This defines the sequence
U,.
Since U is uniserial, u,,,R Du,R, so that supp(u,.,) D supp(u,).
Suppose that U ,.,u,RCU. If v € U is an element such that v &
U .- ou4, R, then supp(v) is a finite subset of I that contains all the sets of
the strictly ascending chain supp(u,;) < supp(u,) c supp(uz) < -+ . This
contradiction shows that U ,. ,u,R = U, so that U is countably gener-

ated. |

In particular, it follows from the lemma above that every uncountably
generated uniserial module is quasismall. We do not know an example of a
uniserial module that is not quasismall.

Another important class of quasismall modules is the class of modules
with local endomorphism rings. To show this, we recall a definition.

DeriNITION 4.3.  Following Crawley and Jonsson [3], a module M is said
to have the exchange property if whenever M is a direct summand of a
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direct sum A = &, _, 4;, there are submodules B; of A; such that
A=M® (&, _,B). If M satisfies this property for any finite index set 1,
we say that M has the finite exchange property.

A module M with End(M) local has the exchange property by Warfield’s
theorem [10]. Thus, if M is a direct summand of a directsum 4 = &,_, 4,,
for each i € I there are submodules B; and C; of A, such that 4, = B; ®
C,and A =M e (& _,B,). It follows that M = &,_, C;, and since M is
indecomposable, M = C; for some index j € I. Hence M is quasismall.

In the next lemma we give an internal characterization of quasismall
uniserial modules in terms of summable families of endomorphisms. Let A
and B be arbitrary modules. We say that a family {f; | i € I} of homomor-
phisms from A into B is a summable family if for every x € A we have
f:(x) = 0 for all but a finite set of indices i € I (e.g., see [12]). Note that if
{f; 1i € I} is a summable family of homomorphisms from A into B, it is

possible to define their sum X, _ ,f;: A — B in the obvious way.

LEMMA 4.4. The following conditions are equivalent for a uniserial mod-
ule U:

(@ U is quasismall.

(b) If {f; li €I} is a summable family of endomorphisms of U such
that X, f; = 1y, then at least one of the f; is an epimorphism.

1

Proof. (@) = (b) Suppose that (a) holds and {f; | i € I} is a summable
family of endomorphisms of U such that X,_,f, =1, and no f; is an
epimorphism. Then for every i € I there exists a cyclic module C; with
f(U) c C; c U. Consider the homomorphisms f: U — &,_, C; defined by
f(x) = (f(x);., for every x€ U and g: & _,C, > U defined by
g((x);c ) =X, x; for every (x,),c, € &, C,. The composite mapping
gf is equal to 1, so that U is isomorphic to a direct summand of &,_, C,.
Since U is quasismall, there is a finite subset F of I such that U is
isomorphic to a direct summand of &,_, C;. In particular, U is finitely
generated, hence cyclic. It follows that in the summable family {f; |i € I}
all but a finite number of f; are zero. Since U is uniserial, the equality
Y.< f:(U) = U implies that at least one of the f; is an onto mapping. This
is a contradiction.

(b) = (a) Suppose that (b) holds and that M = &,_, 4, = U & C. Let
g A, > M, w2 M — A, eg,-U— M, and 7;: M — U be the canonical
embeddings and projections relative to these decompositions. Then
{mye;mey i €I} is a summable family of endomorphisms of U whose
sum is 1;,. One of these endomorphisms, say 7 &;m; &, must be onto by
hypothesis (b). By Lemma 3.2 there is an index k such that = &, 7 & is
an injective endomorphism. If 7, ;7 &, is an automorphism, the compos-

]
ite mapping of s, U— A; and (wyemey) 'mye;: A; > U is the
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identity of U, hence U is isomorphic to a direct summand of A;, and we
are done. Similarly, if 7 & 7, £, is an automorphism, U must be isomor-
phic to a direct summand of A4,. Otherwise, m &;m e + 7 e, &y IS an
automorphism by Lemma 2.5(a). Now it follows easily that U is isomorphic
to a direct summand of A; ® A;, which shows that U is quasismall. I

We will need the following characterization of the uniserial modules
that are not quasismall. By Lemma 4.2, such a uniserial module must be
countably generated.

LEmMMA 4.5. Let U be a countably generated uniserial module. The
following conditions are equivalent:

(@) U is not quasismall.

(b) For any element x € U there is an endomorphism f of U such that
f(x) = x, but f is not an automorphism of U.

Furthermore, if U is not quasismall, then any nonzero factor module of U is
not quasismall either.

Proof. (a) = (b) Suppose (b) false, i.e., that there exists an element u
of U such that for every endomorphism f of U, f(u) = u implies that f is
an automorphism. Let {f;|i € I} be a summable family of endomorphisms
of U such that ¥, ,f; = 1,. Let J be a finite subset of I such that
f(w) =0 for every i € I\J. Then X,_,fi(u) =u, hence ¥,_,f; is an
automorphism. It follows from Lemma 2.5(b) that one of the mappings f;
is onto. Hence U is quasismall by Lemma 4.4.

(b) = (@) Suppose that (b) holds. Let x,, n > 0, be a countable set of
generators of U with 0 Ccx,R Ccx;R Cx,R --- . Since (b) holds, for every
n there is an endomorphism f, of U such that f,(x,) = x, but f, is notan
automorphism. Since U is uniserial and f,(x,) = x,, with x,, # 0, it follows
that f, is monic for every n. Therefore the mappings f, are not onto.
Define a family of endomorphisms as follows: g, = f,, and g, = f, — f,_1
for every n > 1. It is easily seen that {g, | » > 0} is a summable family of
endomorphisms of U, X, . ,g, = 1, and each g, is not onto. Hence U is
not quasismall by Lemma 4.4.

Now suppose that U is a uniserial module, U not quasismall, and U /A4 is
a nonzero factor of U. For every element x € U, there is an endomor-
phism f of U such that f(x) =x and f is not an epimorphism. Hence for
the nonzero element x + A of U/A, the endomorphism f of U is the
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identity on A, so that f induces an endomorphism f’ of U/A. Moreover
f'(x +A4)=x+ A and f’ is not an epimorphism. Therefore U/A is not
quasismall by the first part of the statement. |

COROLLARY 4.6.  Let U and V be uniserial modules such that (U], = [V]
Then U is quasismall if and only if V' is quasismall.

e

Proof. It follows immediately from Lemma 4.5, because there are
epimorphisms f: U - Vand g: V- U. |

THEOREM 4.7. Let (U, |i € I} and {Vj | j € J} be two families of nonzero
uniserial modules over an arbitrary ring R and suppose that ®._, U, =

@ _ V.Setl' ={i € I|U is quasismally andJ' = {j € J | Vis quasismall}.

jeJ ]
Then there is a bijection 7: I' — J' such that [U], = [V, ], foreveryi € I'.

Proof.  Without loss of generality we may suppose that M = &,_, U, =
S, V. Let g1 U= G, U and e: V) — &, V; be the embeddings,
and let w2 &,_, U, — Uy and p;: ©,,V; = V) be the canonical projec-
tions.

Observe the following fact, which will be crucial for the proof. Fix an
index i € I'. Then the family {me;p;e; | j €J} is a summable family of
endomorphisms of the quasismall module U; and its sum is the identity 1,
hence there exists an index j € J such that me;p;e; is an epimorphism
(Lemma 4.4). It follows from Lemma 2.4(b) that both me;: V; > U; and
pje;: U — V; are epimorphisms, hence [V;], = [U],. In particular, V; is
quasismall by Corollary 4.6. Therefore j € J'.

Similarly, for every j €J’ there exists an i € I’ such that both me;:
V.= U, and p;e;: U, — V; are epimorphisms.

Fix an index k& € I' and consider the two subsets I(k) = {i € I' |[U], =
[U)) of I'"and J(k) = {j € J'|[V}], = [U,],} of J'. The I(k), k € I', form
a partition of I’, and from the fact that we have just observed it follows
that the J(k), k € I, also form a partition of J'.

As in the proof of Theorem 3.3, in order to establish the existence of the
bijection it is sufficient to prove that the cardinalities |7(k)| and |J(k)|
are equal for every k € I'.

In the case in which either I(k) or J(k) is a finite set, we can use the
fact observed above and argue exactly as in the proof of Theorem 3.3.

If I(k) and J(k) are both infinite, it is sufficient to prove that |J(k)| <
[I(k)|. For every ¢ € I define a subset A(¢) of J' as follows: A(t) ={j €
J'|me: V, - U and p;e.: U — V; are both epimorphisms}.

By Lemma 4.2 there is a countable subset H(¢) of J such that U,
® c o,V hence clearly A(¢) € H(#) is a countable set.

Now the same argument of the proof of Theorem 3.3 allows us to
conclude that |J(k )| < [I(k)l. 1
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We are now in the position to establish a weak Krull-Schmidt theorem
for two families of quasismall uniserial modules. The proof follows from
Theorems 3.1, 3.3, and 4.7.

THEOREM 4.8. Let {U. |i € I} and {V | j € J} be two families of nonzero
quasismall uniserial modules over an arbztrafy ring R. Then &®,_,U =
® .,V if and only zf there are two bijections o, 7: I — J such that [Ul ]m

Voiln and (U], = [V, )], for every i € I.

The natural question that arises here is: What happens to decomposi-
tions of a serial module if a uniserial summand that is not quasismall
appears? Our next result shows that given any non-quasismall uniserial
module U, we can construct a serial module with two different decomposi-
tions into uniserial summands for which the above weak Krull-Schmidt
theorem does not hold.

THEOREM 4.9. Let U be a uniserial R-module that is not quasismall. Then
Ue (&, 4)= ®_, A, forany family A;, i € I, of proper submodules of
Uwith U, ,A = U. In particular, there exists a countable family C,, n > 0,
of cyclic submodules of U such that U & (@,_,C,) = & _,C,.

n>0 n>0

Proof. By Lemma 4.2 the module U is countably generated and not
finitely generated. Let x,, n > 0, be a countable family of generators of U
such that x,R Cx;R Cx,R C --- .

For every n > 0 we define an index i(n) € I and an endomorphism f,
of U with the following properties: (1) x, € 4,,,; (2) f,(x) =x for any
x €A, and n > 1; Q) f,U) c A4,,,. We proceed by induction on n.
Since U is not quasismall, there is an endomorphism f, of U such that
folxy) = x, and f, is not onto (Lemma 4.5). Let i(0) € I be an index such
that fo(U) C Ay,

Suppose that i(n) € I and f, with the required properties have been
defined. If y is any element of U \ 4,,,, by Lemma 4.5 there is an
endomorphism f,,, of U that is not onto and such that f,,,(y) =y. In
particular f,,,(x) =x for every x € 4;,,,. Let i(n + 1) € I be an index
such that A, C A4, 1) X,41 € Ajusny and f,.(U) S A4, Then
i(n + 1) and f, ., satisfy properties (1)—(3), which completes the construc-
tion by induction. Note that U = U .. A4,

Now set g, = f, and g, = f, — f,_, for every n > 1. Note that g,(x) =
0 for every x € A;,_,), so that for every element x € U one has that
g,(x) = 0 for almost all n. This shows that the family {g,|n > 0} is a
summable family of endomorphisms of U. Moreover g,(U) C 4, so that
we can define a homomorphism g: U — &, ; 4, via g(x) = (g,(x)),,- -

n>0

Consider the homomorphism A: @, A,,, = U, h(x,),. ) = L, X,
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If x € U, we have that x € 4,,,, for some #, so that g, (x) = 0 for every
m=>n + 2, and thus hg(x) = X7 lg.(x) = f,..(x) = x. This proves that
hg =1,, hence U@ kerh = &, A,

For every n > 0let K, be the submodule of 4,,, ® A, defined by
K, ={(x,—x)|x € A4, } (note that A,,, € A, 1) Clearly, {K,|n >0}

ln -

is an independent famlly of submodules of M=, ,A4,,,ad K, =
Ay, sOthat K=& K, = EB 20 l(n) If x = (xl,xz,.. x,,0,0,...)
€ ker h, then x1+x2+ =0,s = —Xx; — " —X,_;. Thus we

can write x as

x=(x;,—x,,0,0,...) +(0,x; +x,, —x; — x,,0,0,...) +

n—1 n—1
., 0, Zx,-,— in,0,0,...

It follows that K = ker &. Thus U & (&, |, 4,,,)) = (&, ; A,(,)), Which
implies that U @ (&,_, 4,) = (®,_, A,). This concludes the proof of the
first part of the statement.

The second part follows immediately from the first and the fact that the
uniserial module U is not quasismall, and thus it is the union of a
countable chain of cyclic submodules. ||

iel

Note that if two modules belong to the same epigeny class, they must
have the same number of generators. Therefore the above theorem shows
that, in Theorem 4.7, there may not exist a bijection between the epigeny
classes of {U; |[i € I} and {V; [ j € J}if I+ 1" or J #J', that is, if at least
one of the modules U; or V; is not quasismall.

Remark. For uniserial modules the property of being quasismall has a
topological interpretation as well. If E is the endomorphism ring of a
uniserial right R-module U # 0, then E is endowed with the finite topology
having as a basis of neighborhoods of zero the left ideals of the form

W(x) ={f€EIf(x) =0},

where x is an element of U. In this topology E is a Hausdorff and
complete left linearly topologized ring. If the uniserial module U is cyclic,
the topology on E is the discrete topology. As was observed in [4], E has
(at most) two maximal right ideals, namely, 1, the (two-sided) ideal of E
consisting of all the endomorphisms of U, that are not monic, and J, the
(two-sided) ideal of consisting of all the endomorphisms of Uy that are not
epic. Note that the ideal I is always an open ideal in E, because
I = U,. W(x). In particular 1 is always closed. It is possible to prove
that a countably generated uniserial module U is not quasismall if and
only if the element 1, € E belongs to the closure of J in the finite
topology.
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5. LOCALLY SEMI-T-NILPOTENT FAMILIES

In this section we do not impose any conditions on the uniserial
summands, but instead we require certain additional hypotheses on the
families of uniserials. As the main result of this section, we establish a
weak Krull-Schmidt theorem for two locally semi-T-nilpotent families of
uniserial modules, which may be regarded as a generalization of the finite
direct sum case considered in [4].

First we recall the following definition.

DerFiniTION 5.1. A family of modules {M; |i € I} is called locally semi-
T-nilpotent if, for any countably infinite set of nonisomorphisms {f,:
M, — M, }withall the i, distinct in 7, and for any x € M, , there exists

a positive’ mteger k (dependlng on x) such that f, -+ fi(x) = 0,

It is obvious from the definition that every finite family of modules is
locally semi-T-nilpotent. And it is well known that any family of indecom-
posable right modules over a right pure semisimple ring (i.e., a ring over
which every right module is pure-injective), in particular over a ring of
finite representation type, is locally semi-T-nilpotent.

We quote the following important result, due to Zimmermann-Huisgen
and Zimmermann [12], which provides the connection between the locally
semi-7T-nilpotency of a family of modules with local endomorphism rings
and the exchange property of their direct sum.

PROPOSITION 5.2. Let M;, i € I, be modules with End(M,) local for all
i €1.Then M = @, _, M; has the (finite) exchange property if and only if the

family {M, | i € I} is locally semi-T-nilpotent.
Proof. See [12, Corollary 6]. 1

The next proposition is crucial for establishing our weak Krull-Schmidt
theorem for two locally semi-T-nilpotent families of uniserial modules.

ProPosITION 5.3. Let M = &, _, U, be a direct sum of uniserial modules
U, and let V be a nonzero uniserial direct summand of M. Assume that the
family {U; | i € I} is locally semi-T-nilpotent. Then there exists j € I such that

V1, = 0],

Proof.  Suppose that for some i € I there is an infinite number of k € I
such that U, = U,. Then it follows from the condition of locally semi-7-
nilpotency that any monomorphism f: U, — U, must be an automorphism,
hence End(U)) is local. Now set A = &, _, U, where T={i € I |U, = U,
for an infinite number of k €I}). Then A has the (finite) exchange

property by Proposition 5.2.
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Set B=®_, ;U,sothat M =4 & B. Let D be a complement of I/
in M, hence M = IV & D. By the finite exchange property of A, there is a
submodule D’ of D such that either M =A ®D' ' or M=A®V & D'
The direct summand D’ of M is contained in D, hence D = D' @ D" for
some submodule D”. Thus M=V e D' ®D". If M=A4 & D', we can
factorize M modulo D' and get that I ® D" = A. Since V' is indecompos-
able and 4 = &, _, U is a direct sum of modules with local endomor-
phism rings, we can apply Azumaya’s theorem [1, Theorem 12.6] to deduce
that 17 is isomorphic to U, for some i € T, and we are done. If M = A4 &
Ve D', we get V& D' = B. Therefore, without loss of generality, from
now on we may assume that M = &,_, U, =V & D, where for each i € |
there exists only a finite number of k € I such that U, = U,.

By Lemma 4.2 we may assume I countable. If I is finite, the result
follows from Lemma 2.6. Hence we can assume I = N, the set of natural
numbers.

There is n € N such that N (®,_, U) # 0. Ifweset C=&,_, ., U,
then we have M = (&,_ , U) & C =V & D.

Letme: M=(®,_, U)o C—>C,p,:M=VeD->V,and p,: M =
VV ® D — D denote the canonical projections relative to these decomposi-
tions. Since VN (&,_,U)) # 0 and V' is uniserial, it follows that ' N C =
0. Hence pplc: C — D is a monomorphism. Set U/ = p,(U,) for all i > n.
Then {U/ |i > n} is an independent family of submodules of D. Consider
the submodule D' = &, U’ of D. If [V'], = [U,], for some k > n, we
are done. Thus, from now on, we assume that [V'], # [U,], for all k > n.
Our aim is to show that under this assumption @ |p: D’ = C is an

isomorphism. We shall first prove that

v-(@u)e| ® u)e( @y (4)

i<n n<i<m i>m

for every m > n, by induction on m. For m = n there is nothing to prove.
Suppose that (4) holds for m — 1, i.e., that

v-(@uje( @ uje(®u) (5)

i<n n<i<m-1 i>m

Let =, M — U, denote the canonical projection with kernel K =
(@ [Jz) (&) (EB [Jz/) (&3] (®i>m[]i)' Then 7Tm|V opV|Um +

1<n
Tulp ° Pplu, = 1y,

Note that |, is not injective, because V' N (&,_,U) # 0, and that
either |y or p,ly is not surjective, because otherwise [V], = [U,,],,
contrary to our assumption. Hence |, ° p, |y, is neither injective nor

surjective by Lemma 2.4. Since U, is uniserial, it follows from Lemma

n<i<m-1
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2.5(b) that m,[p ° pply, is an automorphism. Therefore the restriction of
the projection m,, to p,(U,) = U, is an isomorphism. By Lemma 2.7 we
get that (4) holds.

From (4) it follows that (&,_, U) N (&, ,U;
C is a monomorphism.

Now we shall use the locally semi-T-nilpotency of the family {U} | i € I}
to show that 7|p: D’ — C is an epimorphism. Our argument is inspired
by a technique used in the proof of [12, Theorem 5].

Suppose, on the contrary, that w-(D’) # C. This means that there exist
a positive integer m > n and an element x € U,, such that x & 7.(D").
Since

') =0, hence wlp: D' —

=(@q)@( ) U,-)GB( @ U)

i<n n<i<m ixm+1

we obtain from (4) and Lemma 2.7 that the canonical projection of M onto

®, ..., U withkernel (& _ U) & (&, U), restricted to &, _,_, U/, is
an isomorphlsm We denote this |som0rph|sm by
f © U-> @
n<i<m n<i<m

Set x' = f, *(x). Then we have x' =a +x + b, where a € (&,_, U)
and b€ &,_, U. Clearly m.(x') =x + b. From x & m(D’) it follows
that b = (7(x') —x) & w(D’). Therefore, there is a positive integer
m, = m + 1such that the m,-component of b in &,_, U; does not belong
to m-(D"). Let m,, =(8,.,0) » U, bethe canonical projection. Set
X, =, f ' (x) c U , then x; & wC(D) Denote by g, the homomor-
phism =, f,.}lv,: U, 5 U, then x; = go(x).

Now we repeat the same argument for x, instead of x. By an obvious
induction, we get an infinite sequence of positive integers m < m; <
my, < - < my < ---, and a countable family of homomorphisms {g,:
U, - 3owith £=1,2,3,..., so that g, g, ; - go(x) # 0 for all
k> 1 Slnce for any U,, there eX|sts only a finite number of m, such that
U, = , this readlly |mpI|es that the family {U, | n € N} is not locally
semi-7- nllpotent (for instance, if gq, g;,---, g, are isomorphisms, but g, . ,
is not an isomorphism, then the compositionmap g, *** 8180: U, = U, .,
is not an isomorphism, and so on). Thus we obtain the contradiction which
shows that m.|p:: D' — C must be an isomorphism.

Now, again by Lemma 2.7, it follows that M = (&,_, U,) ® D'. Then D’
is also a direct summand of D, hence D = D' & D" for some submodule
D" of D. Thus we can write M =1 & D =V & D' & D", which implies

that V@ D" = (&@,_ U,). Thus the uniserial module V' is isomorphic to a

1<n
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direct summand of a finite direct sum (&,_, U), so, by Lemma 2.6,

[V], = [U], for some 1 <i < n, which completes the proof. |

THEOREM 5.4. Let {U;|i € I} and {Vj | j €J} be two locally semi-T-
nilpotent families of nonzero uniserial modules over an arbitrary ring R. Then

&, U = &,V if and only if there are two bijections o, 7: 1 = J such

that [U],, = [V, ), and [U]], = [V, )], for everyi € I

Proof. By Theorems 3.1 and 3.3, it is sufficient to prove that if the two
modules &,_,U; and @, V; are isomorphic, then a bijection 7 with the

iel

required properties exists. This can be done by modifying the proof of
Theorem 3.3. By Lemma 4.2 and [9, Lemma 5] we may assume that I and
J are countable sets. With the notation of Theorem 3.3, if I(k) and J(k)
are both infinite, they are countable, hence |I(k)| = |J(k)|. If at least one
of them is finite, the proof is entirely similar to the proof of Theorem 3.3
using Proposition 5.3. I
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