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1. INTRODUCTION

w xThe well-known Krull]Schmidt]Azumaya theorem 2 says that if
M s [ M s [ N are two indecomposable decompositions of ai jig I jg J
module M, where M has local endomorphism ring for each i g I, theni
there is a bijection s : I ª J such that M ( N for every i g I. In thisi s Ž i.
theorem the local endomorphism ring hypothesis is crucial to ensure the
uniqueness of the decomposition of M into indecomposable summands,
and it is always tempting to ask whether under some weaker hypotheses
the indecomposable decomposition of a module is unique. This was done,

w xfor example, by Anderson and Fuller 1, Theorem 12.4 , who showed that
the conclusion of the Krull]Schmidt]Azumaya theorem still remains valid
for modules with an indecomposable decomposition that complements
maximal direct summands. In general, however, there exist various exam-
ples in the literature which show that Krull]Schmidt may fail even under
‘‘rather good’’ hypotheses on the rings or on the indecomposable sum-

Ž w x w x w x.mands see, e.g., 5 , 7 , and 8 .
In 1975 Warfield proved that every finitely presented module over a

serial ring is a finite direct sum of uniserial modules, and asked whether
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DIRECT SUMS OF UNISERIAL MODULES 103

the direct decomposition of a finitely presented module into uniserial
w xsummands is unique up to isomorphism 11 . Recently the second author

has answered Warfield’s question completely, showing that although there
exist serial rings for which the Krull]Schmidt theorem does not hold for
finitely presented modules, it is possible to prove a weak Krull]Schmidt

w xtheorem for finite direct sums of uniserial modules 4 . In order to recall
w xthis main result of 4 we need the concepts of monogeny class and epigeny

class of a module. Two modules A and B are said to belong to the same
w x w xmonogeny class, written A s B , if there are a monomorphism A ª Bm m

and a monomorphism B ª A. Similarly, the modules A and B are said to
w x w xbelong to the same epigeny class, written A s B , if there are ane e

epimorphism A ª B and an epimorphism B ª A. The weak Krull]
w xSchmidt theorem for finite direct sums of uniserial modules proved in 4

says that if U , . . . , U , V , . . . , V are nonzero uniserial modules over an1 n 1 t
arbitrary ring R, then U [ ??? [ U ( V [ ??? [ V if and only if n s t1 n 1 t

� 4 w xand there are two permutations s , t of 1, 2, . . . , n such that U si m
w x w x w xV and U s V for every i s 1, 2, . . . , n.s Ž i. m i e t Ž i. e

The purpose of this paper is to determine necessary and sufficient
� < 4conditions for two arbitrary families of uniserial modules U i g I andi

� < 4V j g J in order to have the property that [ U ( [ V . Ourj i jig I jg J
main results are Theorems 3.1, 3.3, 4.7, 4.8, and 5.4, which show that most

w xof the results proved in 4 for finite families can be extended to arbitrary
Ž .infinite families as well, and during this extension new concepts, like the

Žconcept of quasismall uniserial modules, appear in a natural way see Sect.
.3 for the definition of quasismall modules .

The weak Krull]Schmidt theorem for finite direct sums of uniserial
Žmodules consists of two logical implications the necessary condition and

.the sufficient condition . In Theorems 3.1 and 3.3 we prove that ‘‘one and
a half’’ of these two logical implications still hold for infinite direct sums of

w xuniserial modules. This generalizes the results in 4 considerably. In
� < 4 � < 4Theorem 4.8 we show that if U i g I and V j g J are two families ofi j

quasismall uniserial modules over an arbitrary ring R, then [ U (iig I
[ V if and only if there are two bijections s , t : I ª J such thatjjg J
w x w x w x w xU s V and U s V for every i g I. The class of quasismalli m s Ž i. m i e t Ž i. e

uniserial modules is large enough to contain all finitely generated and all
uncountably generated uniserial modules, and also uniserial modules with
local endomorphism rings. Moreover, we show that, in some sense, this is
the largest possible class of uniserial modules for which the above weak

Ž .Krull]Schmidt theorem holds Theorem 4.9 . Finally, we establish a weak
Krull]Schmidt theorem for locally semi-T-nilpotent families of uniserial

Ž .modules Theorem 5.4 . This also is a generalization of the finite direct
w xsum case studied in 4 , but in a different direction.
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2. PRELIMINARY LEMMAS

Throughout this paper we consider unitary right modules over an
associative ring R with identity. If f : A ª B is a mapping and C is a

<subset of A, we will write f for the restriction of f to C.C

Recall that a module is uniserial if its lattice of submodules is linearly
ordered under inclusion, and is serial if it is a direct sum of uniserial
modules. Two modules A and B are said to belong to the same monogeny

w x w xclass, written A s B , if there are a monomorphism f : A ª B and am m
monomorphism g : B ª A. Similarly, A and B are in the same epigeny

w x w xclass, written A s B , if there are an epimorphism h: A ª B and ane e
epimorphism ll : B ª A. Obviously, these are two equivalence relations.
Roughly speaking, the modules which belong to the same monogeny or
epigeny classes share many common properties, but they need not be
isomorphic. The significance of these concepts for uniserial modules is
highlighted by the fact that any uniserial module is uniquely determined by
its monogeny and epigeny classes.

w x w xLEMMA 2.1. Let U and V be uniserial modules such that U s Vm m
w x w xand U s V . Then U ( V.e e

w xProof. See 4, Proposition 1.6 .

In the rest of this section, for the reader’s convenience, we collect some
results that will be used repeatedly in the sequel. The proof of Lemma 2.2

w xfollows from 4, Proposition 1.7 and Lemma 1.8 , Lemmas 2.3 and 2.4 are
w x w4, Proposition 1.6 and Lemma 1.1 , and Lemma 2.5 is a special case of 4,

xLemma 1.4 .

LEMMA 2.2. Let V, V 9 be uniserial modules. Suppose that there exists a
w x w x w x w xuniserial module U such that U s V and U s V 9 . Then there arem m e e

uniserial submodules X and Y of V [ V 9 such that V [ V 9 s X [ Y and
w x w x w x w xX ( U. Moreo¨er, Y s V 9 and Y s V .m m e e

Ž .LEMMA 2.3 cancellation property . Let A, B be right modules o¨er an
arbitrary ring R, and let U be a uniserial right R-module such that A [ U ( B
[ U. Then A ( B.

LEMMA 2.4. Let A, C be nonzero right modules o¨er an arbitrary ring R,
let B be a uniserial right R-module, and let a : A ª B, b : B ª C be
homomorphisms. Then

Ž .a ba is a monomorphism if and only if b and a are both monomor-
phisms;

Ž .b ba is an epimorphism if and only if b and a are both epimor-
phisms.



DIRECT SUMS OF UNISERIAL MODULES 105

LEMMA 2.5. Let U be a uniserial module o¨er an arbitrary ring R.

Ž .a If f and g are two endomorphisms of U, f is injectï e and nonsurjec-
tï e, and g is surjectï e and noninjectï e, then f q g is an automorphism.

Ž .b Con¨ersely, suppose that f , . . . , f are n endomorphisms of U,1 n
none of which is an automorphism. If f q ??? qf is an automorphism, then1 n
there exist two distinct indices i, j s 1, 2, . . . , n such that f is injectï e andi
nonsurjectï e, and f is surjectï e and noninjectï e.j

The proof of the next result is essentially based on Lemmas 2.4 and
Ž . w x2.5 b ; see 4, Proposition 1.5 and 1.7 for details.

LEMMA 2.6. Suppose U is a uniserial module such that U [ B s C1
[ ??? [ C for arbitrary modules B, C , . . . , C and n G 2. Then there aren 1 n
two distinct indices i and j and a direct decomposition C [ C s U9 [ C9i j

Ž .such that U9 ( U and B ( C9 [ [ C . In particular, if C , . . . , C arek 1 nk / i, j
w xuniserial modules, there are two indices i, j, possibly equal, such that U sm

w x w x w xC and U s C .i m e j e

Finally, we record the following elementary lemma which is very useful
in the study of direct sum decompositions of modules.

LEMMA 2.7. Let M be a module and A, B, C submodules of M. Suppose
M s A [ B. Let p : M s A [ B ª B denote the canonical projection.B

<Then M s A [ C if and only if p : C ª B is an isomorphism.CB

w xProof. See 1, Proposition 5.5 .

3. ARBITRARY FAMILIES OF UNISERIAL MODULES

In this section we consider two arbitrary families of uniserial modules
� < 4 � < 4 � < 4U i g I and V j g J . Our first result says that if the families U i g Ii j i

� < 4and V j g J have the same monogeny and epigeny classes, then [ Uj iig I
w x( [ V . This fact was proved in 4 for finite families by induction onjjg J

the number of uniserial summands. In the case in which the index sets I
and J are infinite, such induction argument does not seem to be applica-
ble, and a new method of proof is required. The idea of our proof below is
reminiscent of the proof of the classical Cantor]Schroeder]Bernstein
theorem in set theory.

� < 4 � < 4THEOREM 3.1. Let U i g I and V j g J be two families of uniseriali j
modules o¨er an arbitrary ring R. Suppose that there are two bijections s , t :

w x w x w x w xI ª J such that U s V and U s V for e¨ery i g I. Theni m s Ž i. m i e t Ž i. e
[ U ( [ V .i jig I jg J
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Proof. Suppose that there are two bijections s , t : I ª J such that
w x w x w x w xU s V and U s V for every i g I. We have to show thati m s Ž i. m i e t Ž i. e
[ U ( [ V .i jig I jg J

The symmetric group S consisting of all bijection I ª I acts on the setI
I in a natural way. Let C be the cyclic subgroup of S generated byI
ty1s g S . Then C acts on the set I. For every element i g I letI

zy1 <w xi s t s i z g ZŽ . Ž .� 4
Žw x. � Ž . < w x4denote the C-orbit of i. Let s i s s x x g i be the image of the

w xorbit i via the bijection s .
Fix an element i g I. We claim that [ U ( [ V .k llk gw i x ll g s Žw i x.

Ž y1 . zŽ . Ž .For simplicity of notation set i s t s i , j s s i , U s U , andz z z z i z

w x Žw x.V s V for every z g Z. Hence if the orbit i is infinite, then s i isz jz w xinfinite, and U s U if and only if n s m. If the orbit i is finite of ordern m
Žw x.q, then s i is finite of order q, and U s U if and only if n ' mn m

Ž . Ž . Ž y1 . zŽ . Ž y1 . zy1Ž . Ž .mod q . Note that t i s t t s i s s t s i s s i s j .z zy1 zy1
w x w xIn this notation the equality U s V for every i g I implies thati m s Ž i. m

w x w xU s V 1Ž .z zm m

w x w xfor all z g Z, and similarly the equality U s V implies thati e t Ž i. e

w x w xU s V 2Ž .z zy1e e

for all z g Z.
For every integer n G 0 define two direct sum decompositions X [n

Y s V [ V of V [ V and X X [ Y X s U [ U of Un n yny1 n yny1 n n nq1 yny1 nq1
[ U by induction on n with the following properties:yny1

Ž . w x w x w x w xa X s U and X s U for every n G 0;n m n m n e yn e

Ž . Xb X ( X for every n G 0;nq1 n

Ž . Xc Y ( Y for every n G 0.n n

w x w x w x w xSince U s V and U s V , there are submodules X and0 m 0 m 0 e y1 e 0
w x w xY of V [ V such that V [ V s X [ Y , X ( U , Y s V ,0 0 y1 0 y1 0 0 0 0 0 m y1 m

w x w x Ž . w x w xand Y s V Lemma 2.2 . Hence U s Y . Similarly, we get that0 e 0 e 1 e 0 e
w x w x w xU s V s Y . Hence, again by Lemma 2.2, there are submod-y1 m y1 m 0 m
ules X X and Y X of U [ U such that U [ U s X X [ Y X and Y X ( Y .0 0 1 y1 1 y1 0 0 0 0
Thus X , Y , X X , Y X have the required properties.0 0 0 0

Suppose now n G 1 and that X , Y , X X, Y X satisfying the required prop-t t t t
erties have already been defined for every t s 0, 1, . . . , n y 1. Then Xny1

w x w x w x Ž .[ Y s V [ V . Since X s U s V by a andny1 ny1 yn ny1 m ny1 m ny1 m
Ž . w x w x w x1 , it follows from Lemma 2.2 that Y s V s U . Similarly,ny1 m yn m yn m
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w x w x w x Ž . Ž . w x w xX s U s V by a and 2 , so that Y s V sny1 e ynq1 e yn e ny1 e ny1 e
w x Ž . w X x w x w X x w xU . By c it follows that Y s U and Y s U . Thesen e ny1 m yn m ny1 e n e
last two equalities and X X [ Y X s U [ U imply thatny1 ny1 n yn

w X x w x w X x w xX s U and X s U . 3Ž .ny1 n ny1 ynm m e e

Ž . Ž . w X x w x w X x w xFrom 1 and 2 we get that X s V and X s V . Byny1 m n m ny1 e yny1 e
Lemma 2.2 there exist X , Y such that X [ Y s V [ V andn n n n n yny1

X Ž . Ž .X ( X . Then property a holds for X and Y by 3 . And propertyn ny1 n n
Ž .b holds as well.

Ž . w x w X x w x w x w xFrom 3 it follows that X s X s U s V and X sn m ny1 m n m n m n e
w X x w x w xX s U s V . These equalities and X [ Y s V [ny1 e yn e yny1 e n n n

w x w x w x w x w xV imply that Y s V and Y s V . Hence Y syny1 n m yny1 m n e n e n m
w x w x w x Ž . Ž .U and Y s U by 1 and 2 . Lemma 2.2 yields a decompo-yny1 m n e nq1 e
sition X X [ Y X s U [ U of U [ U , where X X and Y X aren n nq1 yn y1 nq1 yny1 n n
suitable uniserial submodules of U [ U and Y X ( Y . This com-nq1 yny1 n n

Ž .pletes the induction. Note that a implies that X ( U .0 0
w xSuppose that the orbit i is an infinite set. Then

U s U s U [ X X [ Y XŽ .[ [ [k n 0 n nž /w x ngZ nG0kg i

( X [ X [ Y s V [ V s V .Ž . Ž .[ [ [0 nq1 n n yny1 llž /
nG0 nG0 Žw x.llgs i

w xThis proves the claim for the case of an infinite orbit i .
w xNow suppose that the orbit i is a finite set with q elements. Consider

the case that q s 2n q 1 for some n G 0. Then V s V , and by then yny1
w xequality X [ Y s V [ V , it follows by Lemma 2.2 that X sn n n yny1 n m

w x w x w xV and X s V , hence by Lemma 2.1 we get X ( V . Thereforen m n e n e n n

n n
X XU s U [ U [ U s U [ X [ YŽ . Ž .[ [ [k 0 k yk 0 ky1 ky1ž / ž /w x ks1 ks1kg i

n ny1

( X [ X [ Y s X [ Y [ XŽ . Ž .[ [0 k ky1 k k nž /ks1 ks0

ny1

( V [ V [ V s V ,Ž .[ [k yky1 n ll
ks0 Žw x.llgs i

w xwhich proves our claim for the case of a finite orbit i with an odd number
q of elements. Similarly, for the case q s 2n with n G 1, we have U sn
U , hence the equality X X [ Y X s U [ U implies that Y (yn ny1 ny1 n yn ny1
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Y X ( U . Then we haveny1 n

ny1

U s U [ U [ U [ UŽ .[ [k 0 k yk nž /w x ks1kg i

ny1
X Xs U [ X [ Y [ UŽ .[0 ky1 ky1 nž /ks1

ny1

( X [ X [ Y [ YŽ .[0 k ky1 ny1ž /ks1

ny1

s V [ V s V .Ž .[ [k yky1 ll
ks0 Žw x.llgs i

This concludes the proof of the claim.
w xWhen the index i runs over all the indices in I, we get that the orbits i

w xform a partition of I into disjoint countable subsets I s D i and theirig I
Žw x.images s i form a partition of J into disjoint countable subsets J s

Žw x. w xD s i . By the claim [ U ( [ V for every orbit i , soig I k llk gw i x ll g s Žw i x.
that [ U ( [ V .i jig I jg J

In view of Theorem 3.1 it is natural to ask whether the existence of two
� < 4bijections between the monogeny and epigeny classes of U i g I andi

� < 4V j g J is a necessary condition for the isomorphism [ U ( [ V .j i jig I jg J
Now we establish a partial converse of Theorem 3.1, namely that if

� < 4 � < 4[ U ( [ V , then the families U i g I and V j g J have thei j i jig I jg J
same monogeny classes.

First we prove an auxiliary lemma.

LEMMA 3.2. Let M s [ A be a direct sum of arbitrary modules A .j jjg J
Suppose that M s U [ B, where U and B are submodules of M, and U is
nonzero uniserial. Let p : M s U [ B ª U and p : M s [ A ª AU i j ijg J
be the canonical projections. Then there exists an index k g J such that

< <p (p is an injectï e endomorphism of U.A UU kk

Proof. Take a nonzero element x g U. Then x g A [ ??? [ A forj j1 n

some j , . . . , j g J. Set C s [ A , so that M s A [ ??? [ A [1 n j j jj/ j , . . . , j 1 n1 nŽ .C. If « , p , « , p , « , p t s 1, . . . , n and « , p are the injectionsU U B B j j C Ct t

and the projections associated with the two direct decompositions M s
U [ B s A [ ??? [ A [ C, thenj j1 n

1 s p « s p « p q ??? q« p q « p «Ž .U U U U j j j j C C U1 1 n n

s p « p « q ??? qp « p « q p « p « .U j j U U j j U U C C U1 1 n n
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Ž .By Lemma 2.5 b at least one of these summands must be a monomor-
Ž .phism. Since p « p « x s 0, the last summand cannot be a monomor-U C C U

phism. Therefore there is an index t s 1, . . . , n such that p « p « is aU j j Ut t

monomorphism. Set k s j .t
� < 4 � < 4THEOREM 3.3. Let U i g I and V j g J be two families of nonzeroi j

uniserial modules o¨er an arbitrary ring R and suppose that [ U (iig I
w x w x[ V . Then there is a bijection s : I ª J such that U s V forj i m s Ž i. mjg J

e¨ery i g I.

Proof. We may suppose that M s [ U s [ V with U , Vi j i jig I jg J
nonzero uniserial modules for every i and j.

Ž . � < w xFix an index k g I and consider the two subsets I k s i g I U si m
� x 4 Ž . � < w x w x 4U of I and J k s j g J V s U of J. It is obvious that thek m j m k m
Ž . Ž .I k , k g I, form a partition of I. Note that the J k , k g I, also form a

w x w xpartition of J, because for every j g J there is a k g I with V s Uj m k m
w x w x Ž Ž .and for every k g I there is a j g J with V s U Lemmas 2.4 aj m k m

.and 3.2 .
In order to establish the existence of the bijection between the monogeny

� < 4 � < 4classes of U i g I and V j g J , it is sufficient to prove that thei j
< Ž . < < Ž . <cardinalities I k and J k are equal for every k g I.

Ž . Ž .Suppose first that either I k or J k is a finite set. Without loss of
< Ž . < < Ž . < < Ž . < < Ž . <generality we may assume I k F J k . Suppose that I k - J k . If

Ž . � 4 � 4 Ž .I k s i , . . . , i , let j , . . . , j be a subset of J k of cardinality1 n 1 nq1
n q 1. Write

M s U [ ??? [ U [ B s V [ ??? [ V [ C ,i i j j1 n 1 nq1

where

B s U and C s V .[ [i j
i/i , . . . , i j/j , . . . , j1 n 1 nq1

We shall show by induction on n that the serial module B has a uniserial
direct summand V isomorphic to V for some t s 1, . . . , n q 1, which givesjt

Ž .us a contradiction because by Lemmas 2.4 a and 3.2 there exists i g I R
� 4 w x w x w xi , . . . , i with U s V s V .1 n i m m j mt

Apply Lemma 2.6 to U and the finite direct sum M s V [ ??? [ Vi j j1 1 nq1

[ C. One of the following two cases must hold.

Ž .1 There are distinct indices, say j and j , and a direct decomposi-1 2
tion V [ V s W [ W of V [ V such that W ( U . From Lemmaj j 1 2 j j 1 i1 2 1 2 1w x w x w x w x w x2.6 it follows that either U s V or U s V . Since U si e j e i e j e i m1 1 i 2 1w x w x Ž .V s V , it follows that either U ( V or U ( V Lemma 2.1 . If,j m j m i j i j1 2 1 1 1 2

for instance, U ( V , theni j1 1

U [ ??? [ U [ B ( V [ ??? [ V [ Ci i j j2 n 2 nq1
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Žbecause the cancellation property holds for uniserial modules Lem-
.ma 2.3 .

Ž .2 There is an index, say j , and a direct decomposition V [ C s1 j1
W [ D of V [ C such that W ( U . Then again by Lemma 2.31 j 1 i1 1

U [ ??? [ U [ B ( V [ ??? [ V [ D.i i j j2 n 2 nq1

An easy induction shows that after n steps we get the required contra-
diction.

Ž . Ž .Now suppose that I k and J k are both infinite. By symmetry it is
< Ž . < < Ž . <sufficient to prove that J k F I k . Let p : [ U ª U and p :k i k llig I

[ V ª V be the canonical projections. For every t g I define a subsetj lljg J
Ž . Ž . � < < <A t of J as follows: A t s ll g J p : V ª U and p : U ª V areV Ut ll t ll t llll t

4both monomorphisms .
Ž .Note that A t is a finite set because there is a finite subset F of J with

Ž . <U l [ V / 0, so that p is not a monomorphism for every ll g JUt j lljg F t

R F.
We claim that

J k : A t .Ž . Ž .D
Ž .tgI k

Ž .In order to prove the claim take an index j g J k . By Lemma 3.2 applied
to the direct summand V of M s [ U , there exists an index t g I suchj iig I

< < < <that p ( p is a monomorphism. Hence both p and p areV U V Ut j t jj t j t

Ž . Ž . w x w xmonomorphisms by Lemma 2.4 a , i.e., j g A t . Since U s V st m j m
w x Ž .U , it follows that t g I k . This proves the claim.k m

< Ž . < < Ž . < < Ž . < < Ž . < < Ž . < Ž .It follows that J k F / I k s I k . Hence J k s I k if I k0
Ž .and J k are both infinite.

Remark. A careful analysis of our arguments shows that the results of
this section hold for a class of modules more general than the class of
uniserial modules, namely, the class of modules of both Goldie dimension

Ž1 and dual Goldie dimension 1 i.e., modules A with the property that, for
any submodules B, C of A, B l C s 0 implies B s 0 or C s 0 and

.B q C s A implies B s A or C s A . However, the condition that the
modules are uniserial will be essential in the next section.

4. QUASISMALL UNISERIAL MODULES

Suppose M s [ U s [ V with U , V uniserial modules for everyi j i jig I jg J
i g I and j g J. In this section we discuss the existence of a bijection t :

w xI ª J preserving the epigeny classes. In 4 it was shown that such a
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bijection always exists if M has finite Goldie dimension. However, when
M has infinite Goldie dimension, the situation is more complicated. We
will show that there exists a bijection between the epigeny classes of only

� < 4 � < 4certain subfamilies of U i g I and V j g J , and these subfamilies arei j
in some sense the largest possible subfamilies for which our weak
Krull]Schmidt theorem holds.

DEFINITION 4.1. Let U be a module over an arbitrary ring R. We say
that U is quasismall if whenever U is isomorphic to a direct summand of a
direct sum [ M of arbitrary modules M , there is a finite subsetl llg L

F : L such that U is isomorphic to a direct summand of [ M .llg F

The reason for the terminology just introduced is the following. A
module U is small if for any direct sum M s [ M with projection pl llg L

and any monomorphism f : U ª M we have p ( f s 0 for all but a finitel

Ž w x w x.number of indices l see 6 or 9 . Obviously every small module is
quasismall. In particular, every finitely generated module is quasismall.

w xThe following result is due to Fuchs and Salce 6, Lemma 24 . Since
their lemma was considered in the setting of commutative valuation rings,
we include its proof for the reader’s convenience.

LEMMA 4.2. E¨ery uniserial module is either countably generated or small.

Proof. Let U be a uniserial module and suppose that U is not small.
Then U is a submodule of a direct sum [ A of suitable modules Ai iig I
such that U ­ [ A for every finite subset F of I.iig F

Ž . Ž . � < 4For every element x s x g [ A set supp x s i g I x / 0 .i ig I i iig I
Define a sequence of elements u g U by induction on the positiven
integer n as follows. Let u be an arbitrary nonzero element of U. Suppose1
u g U has been defined. Then U ­ [ A , so that there is ann iig suppŽu .nŽ . Ž .element u g U with supp u ­ supp u . This defines the sequencenq1 nq1 n
u .n

Ž . Ž .Since U is uniserial, u R = u R, so that supp u > supp u .nq1 n nq1 n
Suppose that D u R ; U. If ¨ g U is an element such that ¨ fnG 0 n

Ž .D u R, then supp ¨ is a finite subset of I that contains all the sets ofnG 0 n
Ž . Ž . Ž .the strictly ascending chain supp u ; supp u ; supp u ; ??? . This1 2 3

contradiction shows that D u R s U, so that U is countably gener-nG 0 n
ated.

In particular, it follows from the lemma above that every uncountably
generated uniserial module is quasismall. We do not know an example of a
uniserial module that is not quasismall.

Another important class of quasismall modules is the class of modules
with local endomorphism rings. To show this, we recall a definition.

w xDEFINITION 4.3. Following Crawley and Jonsson 3 , a module M is said´
to have the exchange property if whenever M is a direct summand of a
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direct sum A s [ A , there are submodules B of A such thati i iig I
Ž .A s M [ [ B . If M satisfies this property for any finite index set I,iig I

we say that M has the finite exchange property.
Ž .A module M with End M local has the exchange property by Warfield’s

w xtheorem 10 . Thus, if M is a direct summand of a direct sum A s [ A ,iig I
for each i g I there are submodules B and C of A such that A s B [i i i i i

Ž .C and A s M [ [ B . It follows that M ( [ C , and since M isi i iig I ig I
indecomposable, M ( C for some index j g I. Hence M is quasismall.j

In the next lemma we give an internal characterization of quasismall
uniserial modules in terms of summable families of endomorphisms. Let A

� < 4and B be arbitrary modules. We say that a family f i g I of homomor-i
phisms from A into B is a summable family if for every x g A we have
Ž . Ž w x.f x s 0 for all but a finite set of indices i g I e.g., see 12 . Note that ifi

� < 4f i g I is a summable family of homomorphisms from A into B, it isi
possible to define their sum Ý f : A ª B in the obvious way.ig I i

LEMMA 4.4. The following conditions are equï alent for a uniserial mod-
ule U:

Ž .a U is quasismall.
Ž . � < 4b If f i g I is a summable family of endomorphisms of U suchi

that Ý f s 1 , then at least one of the f is an epimorphism.ig I i U i

Ž . Ž . Ž . � < 4Proof. a « b Suppose that a holds and f i g I is a summablei
family of endomorphisms of U such that Ý f s 1 and no f is anig I i U i
epimorphism. Then for every i g I there exists a cyclic module C withi
Ž .f U : C : U. Consider the homomorphisms f : U ª [ C defined byi i iig I
Ž . Ž Ž ..f x s f x for every x g U and g : [ C ª U defined byi ig I iig I
ŽŽ . . Ž .g x s Ý x for every x g [ C . The composite mappingi ig I ig I i i ig I iig I

g f is equal to 1 , so that U is isomorphic to a direct summand of [ C .U iig I
Since U is quasismall, there is a finite subset F of I such that U is
isomorphic to a direct summand of [ C . In particular, U is finitelyiig F

� < 4generated, hence cyclic. It follows that in the summable family f i g Ii
all but a finite number of f are zero. Since U is uniserial, the equalityi

Ž .Ý f U s U implies that at least one of the f is an onto mapping. Thisig I i i
is a contradiction.
Ž . Ž . Ž .b « a Suppose that b holds and that M s [ A s U [ C. Letiig I

« : A ª M, p : M ª A , « : U ª M, and p : M ª U be the canonicali i i i U U
embeddings and projections relative to these decompositions. Then
� < 4p « p « i g I is a summable family of endomorphisms of U whoseU i i U
sum is 1 . One of these endomorphisms, say p « p « , must be onto byU U j j U

Ž .hypothesis b . By Lemma 3.2 there is an index k such that p « p « isU k k U
an injective endomorphism. If p « p « is an automorphism, the compos-U j j U

Ž .y1ite mapping of p « : U ª A and p « p « p « : A ª U is thej U j U j j U U j j
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identity of U, hence U is isomorphic to a direct summand of A , and wej

are done. Similarly, if p « p « is an automorphism, U must be isomor-U k k U

phic to a direct summand of A . Otherwise, p « p « q p « p « is ank U j j U U k k U
Ž .automorphism by Lemma 2.5 a . Now it follows easily that U is isomorphic

to a direct summand of A [ A , which shows that U is quasismall.i j

We will need the following characterization of the uniserial modules
that are not quasismall. By Lemma 4.2, such a uniserial module must be
countably generated.

LEMMA 4.5. Let U be a countably generated uniserial module. The
following conditions are equï alent:

Ž .a U is not quasismall.

Ž .b For any element x g U there is an endomorphism f of U such that
Ž .f x s x, but f is not an automorphism of U.

Furthermore, if U is not quasismall, then any nonzero factor module of U is
not quasismall either.

Ž . Ž . Ž .Proof. a « b Suppose b false, i.e., that there exists an element u
Ž .of U such that for every endomorphism f of U, f u s u implies that f is

� < 4an automorphism. Let f i g I be a summable family of endomorphismsi

of U such that Ý f s 1 . Let J be a finite subset of I such thatig I i U
Ž . Ž .f u s 0 for every i g I _ J. Then Ý f u s u, hence Ý f is ani ig J i ig J i

Ž .automorphism. It follows from Lemma 2.5 b that one of the mappings fi

is onto. Hence U is quasismall by Lemma 4.4.
Ž . Ž . Ž .b « a Suppose that b holds. Let x , n G 0, be a countable set ofn

Ž .generators of U with 0 ; x R ; x R ; x R ??? . Since b holds, for every0 1 2
Ž .n there is an endomorphism f of U such that f x s x but f is not ann n n n n

Ž .automorphism. Since U is uniserial and f x s x with x / 0, it followsn n n n

that f is monic for every n. Therefore the mappings f are not onto.n n

Define a family of endomorphisms as follows: g s f , and g s f y f0 0 n n ny1
� < 4for every n G 1. It is easily seen that g n G 0 is a summable family ofn

endomorphisms of U, Ý g s 1 , and each g is not onto. Hence U isnG 0 n U n

not quasismall by Lemma 4.4.
Now suppose that U is a uniserial module, U not quasismall, and UrA is

a nonzero factor of U. For every element x g U, there is an endomor-
Ž .phism f of U such that f x s x and f is not an epimorphism. Hence for

the nonzero element x q A of UrA, the endomorphism f of U is the
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identity on A, so that f induces an endomorphism f 9 of UrA. Moreover
Ž .f 9 x q A s x q A and f 9 is not an epimorphism. Therefore UrA is not

quasismall by the first part of the statement.

w x w xCOROLLARY 4.6. Let U and V be uniserial modules such that U s V .e e
Then U is quasismall if and only if V is quasismall.

Proof. It follows immediately from Lemma 4.5, because there are
epimorphisms f : U ª V and g : V ª U.

� < 4 � < 4THEOREM 4.7. Let U i g I and V j g J be two families of nonzeroi j
uniserial modules o¨er an arbitrary ring R and suppose that [ U (iig I

� < 4 � < 4[ V . Set I9 s i g I U is quasismall and J9 s j g J V is quasismall .j i jjg J
w x w xThen there is a bijection t : I9 ª J9 such that U s V for e¨ery i g I9.i e t Ž i. e

Proof. Without loss of generality we may suppose that M s [ U siig I
[ V . Let « : U ª [ U and e : V ª [ V be the embeddings,j k k i ll ll jjg J ig I jg J
and let p : [ U ª U and p : [ V ª V be the canonical projec-k i k ll j llig I jg J
tions.

Observe the following fact, which will be crucial for the proof. Fix an
� < 4index i g I9. Then the family p e p « j g J is a summable family ofi j j i

endomorphisms of the quasismall module U and its sum is the identity 1 ,i Ui

hence there exists an index j g J such that p e p « is an epimorphismi j j i
Ž . Ž .Lemma 4.4 . It follows from Lemma 2.4 b that both p e : V ª U andi j j i

w x w xp « : U ª V are epimorphisms, hence V s U . In particular, V isj i i j j e i e j
quasismall by Corollary 4.6. Therefore j g J9.

Similarly, for every j g J9 there exists an i g I9 such that both p e :i j
V ª U and p « : U ª V are epimorphisms.j i j i i j

Ž . � < w xFix an index k g I9 and consider the two subsets I k s i g I9 U si e
w x 4 Ž . � < w x w x 4 Ž .U of I9 and J k s j g J9 V s U of J9. The I k , k g I9, formk e j e k e
a partition of I9, and from the fact that we have just observed it follows

Ž .that the J k , k g I9, also form a partition of J9.
As in the proof of Theorem 3.3, in order to establish the existence of the

< Ž . < < Ž . <bijection t it is sufficient to prove that the cardinalities I k and J k
are equal for every k g I9.

Ž . Ž .In the case in which either I k or J k is a finite set, we can use the
fact observed above and argue exactly as in the proof of Theorem 3.3.

Ž . Ž . < Ž . <If I k and J k are both infinite, it is sufficient to prove that J k F
< Ž . < Ž . Ž . �I k . For every t g I define a subset A t of J9 as follows: A t s j g

< 4J9 p e : V ª U and p « : U ª V are both epimorphisms .t j j t j t t j
Ž .By Lemma 4.2 there is a countable subset H t of J such that U :t

Ž . Ž .[ V , hence clearly A t : H t is a countable set.jjg H Ž t .
Now the same argument of the proof of Theorem 3.3 allows us to

< Ž . < < Ž . <conclude that J k F I k .
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We are now in the position to establish a weak Krull]Schmidt theorem
for two families of quasismall uniserial modules. The proof follows from
Theorems 3.1, 3.3, and 4.7.

� < 4 � < 4THEOREM 4.8. Let U i g I and V j g J be two families of nonzeroi j
quasismall uniserial modules o¨er an arbitrary ring R. Then [ U (iig I

w x[ V if and only if there are two bijections s , t : I ª J such that U sj i mjg J
w x w x w xV and U s V for e¨ery i g I.s Ž i. m i e t Ž i. e

The natural question that arises here is: What happens to decomposi-
tions of a serial module if a uniserial summand that is not quasismall
appears? Our next result shows that given any non-quasismall uniserial
module U, we can construct a serial module with two different decomposi-
tions into uniserial summands for which the above weak Krull]Schmidt
theorem does not hold.

THEOREM 4.9. Let U be a uniserial R-module that is not quasismall. Then
Ž .U [ [ A ( [ A for any family A , i g I, of proper submodules ofi i iig I ig I

U with D A s U. In particular, there exists a countable family C , n G 0,ig I i n
Ž .of cyclic submodules of U such that U [ [ C ( [ C .n nnG 0 nG 0

Proof. By Lemma 4.2 the module U is countably generated and not
finitely generated. Let x , n G 0, be a countable family of generators of Un
such that x R ; x R ; x R ; ??? .0 1 2

Ž .For every n G 0 we define an index i n g I and an endomorphism fn
Ž . Ž . Ž .of U with the following properties: 1 x g A ; 2 f x s x for anyn iŽn. n

Ž . Ž .x g A and n G 1; 3 f U : A . We proceed by induction on n.iŽny1. n iŽn.
Since U is not quasismall, there is an endomorphism f of U such that0
Ž . Ž . Ž .f x s x and f is not onto Lemma 4.5 . Let i 0 g I be an index such0 0 0 0

Ž .that f U : A .0 iŽ0.
Ž .Suppose that i n g I and f with the required properties have beenn

defined. If y is any element of U R A , by Lemma 4.5 there is aniŽn.
Ž .endomorphism f of U that is not onto and such that f y s y. Innq1 nq1

Ž . Ž .particular f x s x for every x g A . Let i n q 1 g I be an indexnq1 iŽn.
Ž .such that A : A , x g A , and f U : A . TheniŽn. iŽnq1. nq1 iŽnq1. nq1 iŽnq1.

Ž . Ž . Ž .i n q 1 and f satisfy properties 1 ] 3 , which completes the construc-nq1
tion by induction. Note that U s D A .nG 0 iŽn.

Ž .Now set g s f and g s f y f for every n G 1. Note that g x s0 0 n n ny1 n
0 for every x g A , so that for every element x g U one has thatiŽny2.
Ž . � < 4g x s 0 for almost all n. This shows that the family g n G 0 is an n

Ž .summable family of endomorphisms of U. Moreover g U : A , so thatn iŽn.
Ž . Ž Ž ..we can define a homomorphism g : U ª [ A via g x s g x .iŽn. n nG 0nG 0

ŽŽ . .Consider the homomorphism h: [ A ª U, h x s Ý x .iŽn. n nG 0 nG 0 nnG 0
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Ž .If x g U, we have that x g A for some n, so that g x s 0 for everyiŽn. m
Ž . nq1 Ž . Ž .m G n q 2, and thus hg x s Ý g x s f x s x. This proves thatis0 i nq1

hg s 1 , hence U [ ker h ( [ A .U iŽn.nG 0
For every n G 0 let K be the submodule of A [ A defined byn iŽn. iŽnq1.

�Ž . < 4 Ž . � < 4K s x,y x x g A note that A : A . Clearly, K n G 0n iŽn. iŽn. iŽnq1. n
is an independent family of submodules of M s [ A , and K (iŽn. nnG 0

Ž .A , so that K s [ K ( [ A . If x s x , x , . . . , x , 0, 0, . . .iŽn. n iŽn. 1 2 nnG 0 nG 0
g ker h, then x q x q ??? qx s 0, so x s yx y ??? yx . Thus we1 2 n n 1 ny1
can write x as

x s x , yx , 0, 0, . . . q 0, x q x , yx y x , 0, 0, . . . q ???Ž . Ž .1 1 1 2 1 2

ny1 ny1

q 0, . . . , 0, x , y x , 0, 0, . . . .Ý Ýi iž /
is1 is1

Ž . Ž .It follows that K s ker h. Thus U [ [ A ( [ A , whichiŽn. iŽn.nG 0 nG 0
Ž . Ž .implies that U [ [ A ( [ A . This concludes the proof of thei iig I ig I

first part of the statement.
The second part follows immediately from the first and the fact that the

uniserial module U is not quasismall, and thus it is the union of a
countable chain of cyclic submodules.

Note that if two modules belong to the same epigeny class, they must
have the same number of generators. Therefore the above theorem shows
that, in Theorem 4.7, there may not exist a bijection between the epigeny

� < 4 � < 4classes of U i g I and V j g J if I / I9 or J / J9, that is, if at leasti j
one of the modules U or V is not quasismall.i j

Remark. For uniserial modules the property of being quasismall has a
topological interpretation as well. If E is the endomorphism ring of a
uniserial right R-module U / 0, then E is endowed with the finite topology
having as a basis of neighborhoods of zero the left ideals of the form

<W x s f g E f x s 0 ,� 4Ž . Ž .
where x is an element of U. In this topology E is a Hausdorff and
complete left linearly topologized ring. If the uniserial module U is cyclic,

w xthe topology on E is the discrete topology. As was observed in 4 , E has
Ž . Ž .at most two maximal right ideals, namely, II, the two-sided ideal of E
consisting of all the endomorphisms of U that are not monic, and JJ, theR
Ž .two-sided ideal of consisting of all the endomorphisms of U that are notR
epic. Note that the ideal II is always an open ideal in E, because

Ž .II s D W x . In particular II is always closed. It is possible to provex / 0
that a countably generated uniserial module U is not quasismall if and
only if the element 1 g E belongs to the closure of JJ in the finiteU
topology.
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5. LOCALLY SEMI-T-NILPOTENT FAMILIES

In this section we do not impose any conditions on the uniserial
summands, but instead we require certain additional hypotheses on the
families of uniserials. As the main result of this section, we establish a
weak Krull]Schmidt theorem for two locally semi-T-nilpotent families of
uniserial modules, which may be regarded as a generalization of the finite

w xdirect sum case considered in 4 .
First we recall the following definition.

� < 4DEFINITION 5.1. A family of modules M i g I is called locally semi-i
�T-nilpotent if, for any countably infinite set of nonisomorphisms f :n

4M ª M with all the i distinct in I, and for any x g M , there existsi i n in nq1 1
Ž . Ž .a positive integer k depending on x such that f ??? f x s 0.k 1

It is obvious from the definition that every finite family of modules is
locally semi-T-nilpotent. And it is well known that any family of indecom-

Žposable right modules over a right pure semisimple ring i.e., a ring over
.which every right module is pure-injective , in particular over a ring of

finite representation type, is locally semi-T-nilpotent.
We quote the following important result, due to Zimmermann-Huisgen

w xand Zimmermann 12 , which provides the connection between the locally
semi-T-nilpotency of a family of modules with local endomorphism rings
and the exchange property of their direct sum.

Ž .PROPOSITION 5.2. Let M , i g I, be modules with End M local for alli i
Ž .i g I. Then M s [ M has the finite exchange property if and only if theiig I

� < 4family M i g I is locally semi-T-nilpotent.i

w xProof. See 12, Corollary 6 .

The next proposition is crucial for establishing our weak Krull]Schmidt
theorem for two locally semi-T-nilpotent families of uniserial modules.

PROPOSITION 5.3. Let M s [ U be a direct sum of uniserial modulesiig I
U , and let V be a nonzero uniserial direct summand of M. Assume that thei

� < 4family U i g I is locally semi-T-nilpotent. Then there exists j g I such thati
w x w xV s U .e j e

Proof. Suppose that for some i g I there is an infinite number of k g I
such that U ( U . Then it follows from the condition of locally semi-T-i k
nilpotency that any monomorphism f : U ª U must be an automorphism,i i

Ž . � <hence End U is local. Now set A s [ U , where T s i g I U ( Ui i i kig T
4 Ž .for an infinite number of k g I . Then A has the finite exchange

property by Proposition 5.2.
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Set B s [ U , so that M s A [ B. Let D be a complement of Viig I R T
in M, hence M s V [ D. By the finite exchange property of A, there is a
submodule D9 of D such that either M s A [ D9 or M s A [ V [ D9.
The direct summand D9 of M is contained in D, hence D s D9 [ D0 for
some submodule D0. Thus M s V [ D9 [ D0. If M s A [ D9, we can
factorize M modulo D9 and get that V [ D0 ( A. Since V is indecompos-
able and A s [ U is a direct sum of modules with local endomor-iig T

w xphism rings, we can apply Azumaya’s theorem 1, Theorem 12.6 to deduce
that V is isomorphic to U for some i g T , and we are done. If M s A [i
V [ D9, we get V [ D9 ( B. Therefore, without loss of generality, from
now on we may assume that M s [ U s V [ D, where for each i g Iiig I
there exists only a finite number of k g I such that U ( U .i k

By Lemma 4.2 we may assume I countable. If I is finite, the result
follows from Lemma 2.6. Hence we can assume I s N, the set of natural
numbers.

Ž .There is n g N such that V l [ U / 0. If we set C s [ U ,i iiF n iG nq1
Ž .then we have M s [ U [ C s V [ D.iiF n

Ž .Let p : M s [ U [ C ª C, p : M s V [ D ª V, and p : M sC i V DiF n
V [ D ª D denote the canonical projections relative to these decomposi-

Ž .tions. Since V l [ U / 0 and V is uniserial, it follows that V l C siiF n
< X Ž .0. Hence p : C ª D is a monomorphism. Set U s p U for all i ) n.CD i D i

� X < 4Then U i ) n is an independent family of submodules of D. Consideri
X w x w xthe submodule D9 s [ U of D. If V s U for some k ) n, wei e k ei) n

w x w xare done. Thus, from now on, we assume that V / U for all k ) n.e k e
<Our aim is to show that under this assumption p : D9 ª C is anD 9C

isomorphism. We shall first prove that

M s U [ U X [ U 4Ž .[ [ [i i iž / ž / ž /
iFn n-iFm i)m

for every m G n, by induction on m. For m s n there is nothing to prove.
Ž .Suppose that 4 holds for m y 1, i.e., that

M s U [ U X [ U . 5Ž .[ [ [i i iž / ž / ž /
iFn n-iFmy1 iGm

Let p : M ª U denote the canonical projection with kernel K sm m
Ž . Ž X . Ž . < <[ U [ [ U [ [ U . Then p ( p qV Ui i i m Vi F n n - i F m y 1 i ) m m

< <p ( p s 1 .D Um D Um m
< Ž .Note that p is not injective, because V l [ U / 0, and thatVm iiF n

< < w x w xeither p or p is not surjective, because otherwise V s U ,V Um V e m em

< <contrary to our assumption. Hence p ( p is neither injective norV Um V m

surjective by Lemma 2.4. Since U is uniserial, it follows from Lemmam
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Ž . < <2.5 b that p ( p is an automorphism. Therefore the restriction ofD Um D m

Ž . Xthe projection p to p U s U is an isomorphism. By Lemma 2.7 wem D m m
Ž .get that 4 holds.
Ž . Ž . Ž X. <From 4 it follows that [ U l [ U s 0, hence p : D9 ªD 9i i CiF n i) n

C is a monomorphism.
� < 4Now we shall use the locally semi-T-nilpotency of the family U i g Ii

<to show that p : D9 ª C is an epimorphism. Our argument is inspiredD 9C
w xby a technique used in the proof of 12, Theorem 5 .
Ž .Suppose, on the contrary, that p D9 / C. This means that there existC

Ž .a positive integer m ) n and an element x g U such that x f p D9 .m C
Since

M s U [ U [ U ,[ [ [i i iž / ž / ž /
iFn n-iFm iGmq1

Ž .we obtain from 4 and Lemma 2.7 that the canonical projection of M onto
Ž . Ž . X[ U with kernel [ U [ [ U , restricted to [ U , isi i i in- iF m iF n i) m n- iF m

an isomorphism. We denote this isomorphism by

f : U X ª U .[ [m i i
n-iFm n-iFm

y1Ž . Ž .Set x9 s f x . Then we have x9 s a q x q b, where a g [ Um iiF n
Ž . Ž .and b g [ U . Clearly p x9 s x q b. From x f p D9 it followsi C Ci) m

Ž Ž . . Ž .that b s p x9 y x f p D9 . Therefore, there is a positive integerC C
m G m q 1 such that the m -component of b in [ U does not belong1 1 ii) m

Ž . Ž .to p D9 . Let p : M s [ U ª U be the canonical projection. SetC m i miG11 1y1Ž . Ž .x s p f x g U , then x f p D9 . Denote by g the homomor-1 m m m 1 C 01 1y1 < Ž .phism p f : U ª U , then x s g x .Um m m m 1 0m1 1

Now we repeat the same argument for x instead of x. By an obvious1
induction, we get an infinite sequence of positive integers m - m -1

�m - ??? - m - ??? , and a countable family of homomorphisms g :2 k k
4 Ž .U ª U , with k s 1, 2, 3, . . . , so that g g ??? g x / 0 for allm m k ky1 0k kq1

k G 1. Since for any U there exists only a finite number of m such thatm lk
� < 4U ( U , this readily implies that the family U n g N is not locallym m nl k

Žsemi-T-nilpotent for instance, if g , g , . . . , g are isomorphisms, but g0 1 n nq1
is not an isomorphism, then the composition map g ??? g g : U ª Unq1 1 0 m nq2

.is not an isomorphism, and so on . Thus we obtain the contradiction which
<shows that p : D9 ª C must be an isomorphism.D 9C

Ž .Now, again by Lemma 2.7, it follows that M s [ U [ D9. Then D9iiF n
is also a direct summand of D, hence D s D9 [ D0 for some submodule
D0 of D. Thus we can write M s V [ D s V [ D9 [ D0, which implies

Ž .that V [ D0 ( [ U . Thus the uniserial module V is isomorphic to aiiF n
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Ž .direct summand of a finite direct sum [ U , so, by Lemma 2.6,iiF n
w x w xV s U for some 1 F i F n, which completes the proof.e i e

� < 4 � < 4THEOREM 5.4. Let U i g I and V j g J be two locally semi-T-i j
nilpotent families of nonzero uniserial modules o¨er an arbitrary ring R. Then
[ U ( [ V if and only if there are two bijections s , t : I ª J suchi jig I jg J

w x w x w x w xthat U s V and U s V for e¨ery i g I.i m s Ž i. m i e t Ž i. e

Proof. By Theorems 3.1 and 3.3, it is sufficient to prove that if the two
modules [ U and [ V are isomorphic, then a bijection t with thei jig I jg J
required properties exists. This can be done by modifying the proof of

w xTheorem 3.3. By Lemma 4.2 and 9, Lemma 5 we may assume that I and
Ž . Ž .J are countable sets. With the notation of Theorem 3.3, if I k and J k

< Ž . < < Ž . <are both infinite, they are countable, hence I k s J k . If at least one
of them is finite, the proof is entirely similar to the proof of Theorem 3.3
using Proposition 5.3.
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