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1. Introduction

The presented paper is a continuation of [31,32]. We study a planar nonautonomous differential
equations of the form

ż = v(t, z) =
n∑

j=0

a j(t)z j, (1)

where n � 3 and a j ∈ C(R,C) are T -periodic.
An extensive study of the set of periodic solutions of Eq. (1) was initiated in [25] and continued in

many papers e.g. [1–3,11–14,17–19,21,23,24,26]. In those papers the coefficients a j are real. One of the
most important problem is to examine the structure of the set of periodic solutions. The second one
is the investigation of a centre which is motivated by the Poincaré centre–focus problem. The third
one is connected with the XVIth Hilbert problem for degree two equations in the plane which can be
reduced to the problem of finding the maximal number of closed solutions of Eq. (1) with n = 3 and
special coefficients a j . This leads to investigations of the maximal number of periodic solutions of (1).
It is proved in [20] that in the general case there is no upper bound for this number provided that
n � 3.
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The complex coefficients are considered in [6,7] and a few sufficient conditions for the existence
of periodic solutions are presented. The upper bound of the number of periodic solutions and struc-
ture of the centre variety is considered in [10]. The problem of nonexistence of periodic solutions is
investigated in [34] where it is proved that there exist coefficients a j such that Eq. (1) has no periodic
solutions.

In the presented paper we develop the ideas from [31,32] and give a few sufficient conditions
for the existence of one or two periodic solutions. We deal with condition of geometric type which
corresponds to the ones from [32, Section 3.1]. Namely, we try to include sets a j(R) in some sectors
of the complex plane. The point is, we try to find one sector appropriate for all a j ’s. By the existence
of greater number of coefficients a j than in the case of the Riccati equation (i.e. Eq. (1) with n = 2),
it is convenient to consider sectors which axis of symmetry is the real axis. Other sectors need a
change of variables of the form w = eiαz. We prove that there exists in every of such sectors exactly
one T -periodic solution.

After the change of variables w = 1
z Eq. (1) has the form

ẇ = −
n∑

j=0

a j(t)w2− j .

Thus unlike the Riccati equation it is not well defined in the point z = ∞ and the Poincaré map
is more complicated than a Möbius transformation. In fact, complexity of the Poincaré map unables
us to cover the whole plane with sectors, so we cannot provide an upper bound for the number of
periodic solutions.

We consider behaviour of the vector field on the boundary of the sectors which allows us to con-
struct some sets which are almost periodic isolating segments and detect periodic solutions inside
them (see [28–30] for the notion of isolating segments). By the special properties of holomorphic
functions we can use the Denjoy–Wolff fixed point theorem (cf. [9,27]) instead of the Brouwer one.
It allows us to obtain asymptotic stability or asymptotic unstability of detected periodic solutions.
Moreover, they are attracting or repelling in the whole sector, which leads to the heteroclinic solu-
tions connecting periodic ones. By using Ważewski method, we are able to prove the existence of
solutions which blow up and are contained in the considered sectors.

The paper is organised as follows. In Section 2 we give definitions and introduce notion. The
next section is devoted to (1) with a0 �≡ 0. In the next one we deal with the equation in the very
simple form, namely ż = zn +a0(t), and state theorems on the lower bound of the number of periodic
solutions depending on whether or not n is even. Section 5 provides considerations in the case a0 ≡ 0
and a1 �≡ 0. In the last section we assume a0 = a1 ≡ 0 and a2 �≡ 0.

2. Definitions

2.1. Dynamical systems and Ważewski method

Let X be a topological space and W be a subset of X . Denote by cl W the closure of W . The
following definitions come from [29].

Let D be an open subset of R × X . By a local flow on X we mean a continuous map φ : D → X ,
such that three conditions are satisfied:

(i) Ix = {t ∈ R: (t, x) ∈ D} is an open interval (αx,ωx) containing 0, for every x ∈ X ,
(ii) φ(0, x) = x, for every x ∈ X ,

(iii) φ(s + t, x) = φ(t, φ(s, x)), for every x ∈ X and s, t ∈ R such that s ∈ Ix and t ∈ Iφ(s,x) .

In the sequel we write φt(x) instead of φ(t, x).
Let φ be a local flow on X , x ∈ X and W ⊂ X . We call the set

φ+(x) = φ
([0,ωx) × {x})

the positive semitrajectory of x ∈ X .
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We distinguish three subsets of W given by

W − = {
x ∈ W : φ

([0, t] × {x}) �⊂ W , for every t > 0
}
,

W + = {
x ∈ W : φ

([−t,0] × {x}) �⊂ W , for every t > 0
}
,

W ∗ = {
x ∈ W : φ(t, x) /∈ W , for some t > 0

}
.

It is easy to see that W − ⊂ W ∗ . We call W − the exit set of W , and W + the entrance set of W .
We call W a Ważewski set provided

(1) if x ∈ W , t > 0, and φ([0, t] × {x}) ⊂ cl W then φ([0, t] × {x}) ⊂ W ,
(2) W − is closed relative to W ∗ .

Proposition 1. If both W and W − are closed subsets of X then W is a Ważewski set.

The function σ : W ∗ → [0,∞)

σ (x) = sup
{

t ∈ [0,∞): φ
([0, t] × {x}) ⊂ W

}
is called the escape-time function of W .

The following lemma is called the Ważewski lemma.

Lemma 2. (See [29, Lemma 2.1(iii)].) Let W be a Ważewski set and σ be its escape-time function. Then σ is
continuous.

Finally, we state one version of the Ważewski theorem.

Theorem 3. (See [29, Corollary 2.3].) Let φ be a local flow on X, W ⊂ X be a Ważewski set and Z ⊂ W . If W −
is not a strong deformation retract of Z ∪ W − in W then there exists an x0 ∈ Z such that φ+(x0) ⊂ W .

(For the definition of the strong deformation retract see e.g. [15].)

2.2. Processes

Let X be a topological space and Ω ⊂ R × X × R be an open set.
By a local process on X we mean a continuous map ϕ : Ω → X , such that three conditions are

satisfied:

(i) I(σ ,x) = {t ∈ R: (σ , x, t) ∈ Ω} is an open interval containing 0, for every σ ∈ R and x ∈ X ,
(ii) ϕ(σ , ·,0) = idX , for every σ ∈ R,

(iii) ϕ(σ , x, s + t) = ϕ(σ + s,ϕ(σ , x, s), t), for every x ∈ X , σ ∈ R and s, t ∈ R such that s ∈ I(σ ,x) and
t ∈ I(σ+s,ϕ(σ ,x,s)) .

For abbreviation, we write ϕ(σ ,t)(x) instead of ϕ(σ , x, t).
Local process ϕ on X generates a local flow φ on R × X by the formula

φ
(
t, (σ , x)

) = (
σ + t,ϕ(σ , x, t)

)
.

Let M be a smooth manifold and let v : R× M → T M be a time-dependent vector field. We assume
that v is so regular that for every (t0, x0) ∈ R × M the Cauchy problem
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ẋ = v(t, x), (2)

x(t0) = x0 (3)

has unique solution. Then Eq. (2) generates a local process ϕ on X by ϕ(t0,t)(x0) = x(t0, x0, t + t0),
where x(t0, x0, ·) is the solution of the Cauchy problem (2), (3).

Let T be a positive number. In the sequel T denotes the period. We assume that v is T -periodic
in t . It follows that the local process ϕ is T -periodic, i.e.,

ϕ(σ+T ,t) = ϕ(σ ,t) for all σ , t ∈ R,

hence there is a one-to-one correspondence between T -periodic solutions of (2) and fixed points of
the Poincaré map ϕ(0,T ) .

2.3. Periodic isolating segments

Let X be a topological space. We assume that ϕ is a T -periodic local process on X .
For any set Z ⊂ R × X and t ∈ R we put

Zt = {
x ∈ X: (t, x) ∈ Z

}
.

Let π1 : R × X → R be the projection on the time variable.
We call a compact set W ⊂ [a,b] × X an isolating segment over [a,b] for ϕ if the exit and entrance

sets W − , W + of W are also compact and there exist compact subsets W −−, W ++ ⊂ W (called,
respectively, the proper exit set and the proper entrance set) such that

(1) ∂W = W − ∪ W + ,
(2) W − = W −− ∪ ({b} × Wb),
(3) W + = W ++ ∪ ({a} × Wa), W ++

a = cl(∂(Wa) \ W −−
a ),

(4) there exists homeomorphism h : [a,b] × Wa → W such that π1 ◦ h = π1 and h([a,b] × W −−
a ) =

W −− , h([a,b] × W ++
a ) = W ++ .

An isolating segment W over [a,b] is said to be (b − a)-periodic (or simply periodic) if Wa = Wb ,
W −−

a = W −−
b and W ++

a = W ++
b .

The definition of periodic isolated segment from [29] does not contain the second equality from
the point (3). Presented definition is more general then the ones from [28,30]. All segments which
appear in the paper satisfy also definitions introduced in [28–30].

The simplest isolating segments are of the form W = [0, T ] × B , where W −− = [0, T ] × ∂ B ,
W ++ = ∅ or W −− = ∅, W ++ = [0, T ] × ∂ B and B is some arbitrary compact subset of X . All seg-
ments in the sequel are of one of this form with B such that int B is holomorphic equivalent to the
unit disc.

Let a local process ϕ be generated by Eq. (2). To prove that a set W ⊂ R × M is an isolating
segment for ϕ it is enough to check the behaviour of the vector field (1, v) on the boundary of W .
Then, by an appropriate fixed point theorem, there exists a periodic solution inside the segment. The
Lefschetz fixed point theorem is used in the general case but, by the simplicity of our segments,
we need only the Brouwer one. In fact, we use the Denjoy–Wolff fixed point theorem because the
Poincaré map ϕ(0,T ) is holomorphic.

2.4. Basic notions

We make the general assumptions about Eq. (1) that its coefficients a j ∈ C(R,C) are T -periodic.
Let g : M → M and n ∈ N. We denote by gn the nth iterate of f , and by g−n the nth iterate of g−1

(if exists).
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We say that the point z0 is attracting (repelling) for g in the set W ⊂ M if the equality
limn→∞ gn(w) = z0 (limn→∞ g−n(w) = z0) holds for every w ∈ W .

We call a T -periodic solution of (2) attracting (repelling) in the set W ⊂ M if the corresponding
fixed point of the Poincaré map ϕ(0,T ) is attracting (repelling) in the set W .

Let −∞ � α < ω � ∞ and s : (α,ω) → C be a full solution of (1). We call s forward blowing up
(shortly f.b.) or backward blowing up (b.b.) if ω < ∞ or α > −∞, respectively.

We call an isolated periodic solution simple if it corresponds to the simple fixed point of the
Poincaré map ϕ(0,T ) .

We define the sector

S(α,β) = {
z ∈ C: α < Arg(z) < β

}
,

where −π � α < β � π . Moreover, for 0 < α � π we define S(α) = S(−α,α) and Ŝ(α) to be a set
symmetric with respect to the origin to sector S(α). Obviously, 0 /∈ S(α,β).

Let n � 2 and j ∈ Z, l ∈ N. We define sectors

S n
j = ei π

n−1 j S
(

0,
π

n − 1

)
,

S n
j, j+l = int

j+l⋃
k= j

cl S n
k .

It is easy to see that S n
j = S n

k iff k ≡ j mod 2n − 2.
Let I ⊂ R. We denote the angular width of function f : I → C by

�( f ) = inf
{
β − α: there exists θ ∈ R such that eiθ f (I) ⊂ S(α,β) ∪ {0}}.

It is easy to see that for f , g,h : R → C with f (t) = ei sin(t) we have �( f ) = 2, for g(t) = 1 + eit it is
�(g) = π and for h(t) = eit the angular width �(h) is not defined.

Let us recall that the inner product of two vectors a,b ∈ C is given by the formula 〈a,b〉 =
Re(ab) = Re(ab).

Denote by K (w, r), O (w, r) the open disc, circle, respectively, of radius r and centre w .
In the sequel we write Arg(0) = 0. Let a j ∈ C(R,C) be the coefficients of the vector field v from

Eq. (1). We define τ j � 0 and τ̂ j � 0 to be the smallest numbers such that |Arg[a j(t)]| � τ j and
|Arg[−a j(t)]| � τ̂ j hold for every t ∈ R.

3. Nontrivial free term

We investigate the case a0 �≡ 0. This allows us to control the solution starting from the origin.
We also assume that a1 ∈ C(R,R). It is possible to consider a1 ∈ C(R,C) (cf. [32, Section 3.1]),

provided the inequality

T∫
0

Im
[
a1(s)

]
ds = 0 (4)

holds. In this case we make the change of variables

w = B(t)z, (5)

where

B(t) = e
−i

∫ t
t0

Im[a1(s)]ds
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for some fixed t0 ∈ R and get the equation

ẇ = B(t)a0(t) + Re
[
a1(t)

]
w +

n∑
j=2

B1− j(t)a j(t)w j .

The following theorem corresponds to [32, Theorem 1] but it does not give a full description of
dynamics because it describes dynamics in at most two sectors which do not cover for n � 3 the
whole plane C.

Theorem 4. Let n � 3, a1 ∈ C(R,R) and a j ∈ C(R,C) for j ∈ {0,2,3, . . . ,n} be T -periodic. If there exists
number M � n such that

a0 �≡ 0 and τ̂0 <
π

M − 1
, (6)

⎧⎪⎪⎨
⎪⎪⎩

τ j <
j − 1

M − 1
π, for 2 � j � M + 1

2
,

τ j � M − j

M − 1
π, for

M + 1

2
< j � n,

(7)

n∑
j=2

|a j| �≡ 0 (8)

hold, then Eq. (1) has in the sector S( π
M−1 )

• exactly one T -periodic solution ξ . It is asymptotically unstable and repelling in the whole sector,
• infinitely many forward blowing up solutions.

Moreover, the equation

ż = v1(t, z) =
n∑

j=0

(−1) ja j(t)z j (9)

has in the sector Ŝ( π
M−1 )

• exactly one T -periodic solution χ . It is asymptotically stable and attracting in the whole sector,
• infinitely many backward blowing up solutions.

If in addition we assume that the equalities

a j ≡ 0, for all odd numbers j � 3 (10)

hold, then Eq. (1) has

• exactly one T -periodic solution χ in the sector Ŝ( π
M−1 ). It is asymptotically stable and attracting in the

whole sector,
• infinitely many backward blowing up solutions in the sector Ŝ( π

M−1 ),
• infinitely many solutions which are heteroclinic from ξ to χ .
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Proof. Our goal is to define a compact set E ⊂ C, such that int E is holomorphic equivalent to unit
disc and there exists t0 ∈ R satisfying ϕ−1

(t0,t0+T )(E) ⊂ int E . It allows us to apply the Denjoy–Wolff
fixed point theorem and get the existence of asymptotically unstable periodic solution inside the
set E .

We set

0 < ε < min

{
π

M − 1
− τ̂0,

j−1
M−1 π − τ j

j − 1
, for 2 � j � n

}

and

A(ε) =
{

z ∈ C:
∣∣Arg(z)

∣∣ � π

M − 1
− ε

}
.

Let us recall that 0 ∈ A(ε). We show that the vector field (1, v) points outward or is tangent to the
set [0, T ] × A(ε) in every point from [0, T ] × [∂ A(ε) \ {0}].

We make the following calculations mod 2π .
Let a j(t) �= 0 and z = rei( π

M−1 −ε) , where r > 0. By (7), we get for every 2 � j � M+1
2 and t ∈ R the

following inclusion

arg
(
a j(t)

) ∈
(

− j − 1

M − 1
π + ( j − 1)ε,

j − 1

M − 1
π − ( j − 1)ε

)
,

so

arg
(
a j(t)z j) ∈

(
π

M − 1
− ε,

2 j − 1

M − 1
π − (2 j − 1)ε

)

⊂
(

π

M − 1
− ε,

π

M − 1
− ε + π

)
. (11)

The last inclusion holds due to 3 � 2 j − 1 � M . Similarly, by (7), we get for every 2 � M+1
2 < j � n

and t ∈ R inclusion

arg
(
a j(t)

) ∈
(

− j − 1

M − 1
π + ( j − 1)ε,

M − j

M − 1
π

]
,

so

arg
(
a j(t)z j) ∈

(
π

M − 1
− ε,

M

M − 1
π − jε

]

⊂
(

π

M − 1
− ε,

π

M − 1
− ε + π

)
. (12)

We have just proved that every term of the form (1,a j(t)z j) for 2 � j � n does not point at any point
of the set R × {z ∈ C: Arg(z) = π

M−1 − ε} inward the set R × A(ε) (it points outward or is tangent
provided that a j(t) = 0). The term (1,a1(t)z) is tangent since a1 is real. Moreover, by (6) and the
definition of ε, the term (1,a0(t)) points outward or is tangent provided that a0(t) = 0. If the vector
field (1, v(t, z)) is tangent for t in some time interval, then parts of some trajectories are subsets of
the set R × {z ∈ C: Arg(z) = π

M−1 − ε}. But, by (8), the time interval is shorter than T .
Finally, every trajectory starting in the set R × {z ∈ C: Arg(z) = π

M−1 − ε} leaves R × A(ε) in time
shorter than T . The same is true for R × {z ∈ C: Arg(z) = − π

M−1 + ε}.
We fix ε0 > 0 such that the set A(ε0) has properties described above. We set A = A(ε0).
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The vector field (1, v) points at the point (t0,0) outward or is tangent to R× A provided a0(t0) �= 0
or a0(t0) = 0, respectively. But, by (6), every trajectory starting in R×{0} leaves the set R× A in time
shorter than T .

Let m = M−1
2 � 1. We make the change of variables in the set {z ∈ C: |Arg(z)| < π

M−1 } \ {0} given

by ξ = f (z) = zm := em Log z . It gives

ξ̇ = m
n∑

j=0

a j(t)ξ
m+ j−1

m .

We set B = f (A \{0}). Thus B ⊂ {ξ ∈ C: |Arg(ξ)| � π
2 −mε0}. Another change of variables w = g(ξ) =

1
ξ

gives

ẇ = u(t, w) = −m
n∑

j=0

a j(t)w
m− j+1

m . (13)

Let γ > 0. We set

C(γ ) = g(B) ∩ {
w ∈ C: Re(w) � γ

}
,

Ĉ(γ ) = C(γ ) ∩ {
w ∈ C: Re(w) = γ

}
.

It is easy to see that C(γ ) ⊂ {w ∈ C: |Arg(w)| � π
2 − mε0}.

We show that the vector field (1, u) points in every point of the set [0, T ]× Ĉ(γ ) outward [0, T ]×
C(γ ), provided γ is sufficiently small and the inequality

n∑
j=2

|a j | > 0 (14)

holds.
Let w ∈ Ĉ(γ ). Then w = reiψ for some r > 0 and ψ ∈ [−π

2 + mε0,
π
2 − mε0]. By (7), the inclusion

Arg
(
a j(t)w

m− j+1
m

) ∈
(

− j − 1

2m
π + ( j − 1)ε0 + m − j + 1

m
ψ,

j − 1

2m
π − ( j − 1)ε0 + m − j + 1

m
ψ

)

⊂
(

−π

2
+ mε0,

π

2
− mε0

)

holds for every 2 � j � M+1
2 and t ∈ R.

Similarly, (7) and M+1
2 < j imply

Arg
(
a j(t)

) ∈
[
− M − j

M − 1
π,

M − j

M − 1
π

]
=

[
−2m + 1 − j

2m
π,

2m + 1 − j

2m
π

]

and

Arg
(
a j(t)w

m− j+1
m

) ∈
[
−π

2
− (m − j + 1)ε0,

π

2
+ (m − j + 1)ε0

]
,

where m − j + 1 < 0.
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An outward normal vector is in every point of the set [0, T ] × Ĉ(γ ) equal to [0,−1]T . It follows
by the above calculations that

〈−1,−a j(t)w
m− j+1

m
〉
� κ j

∣∣a j(t)
∣∣|w| m− j+1

m (15)

holds where j ∈ {2, . . . ,n}, (t, w) ∈ [0, T ] × Ĉ(γ ) while κ j = sin(mε0) > 0 for 2 � j � M+1
2 and

κ j = sin(−(m − j + 1)ε0) > 0 for M+1
2 < j � n. Let κ = min{κ j: 2 � j � n}. It is easy to see that

|〈−1,−a0(t)w
m+1

m 〉| � |a0(t)||w| m+1
m and |〈−1,−a1(t)w〉| � |a1(t)||w| hold.

It follows by (14) that there exists λ > 0 such that for every t ∈ R there exists j ∈ {2, . . . ,n}
satisfying |a j(t)| � λ. Let (t, w) ∈ [0, T ] × Ĉ(γ ). Thus the inequality

Re
[
u(t, w)

]
�

∣∣a0(t)
∣∣|w| m+1

m + ∣∣a1(t)
∣∣|w| − mκλ|w| m− j+1

m < 0

holds, provided γ is sufficiently small. We fix γ0 > 0 such that the above estimation holds.
Finally, the vector field (1, u) points on [0, T ] × Ĉ(γ0) outward the set [0, T ] × C(γ0).
We define E = ( f −1 ◦ g−1)(C(γ0)) ∪ {0}. Then the Poincaré mapping ϕ−1

(0,T ) : E → int E is well
defined.

Now we prove the same without assuming (14). To obtain a contradiction, we suppose that for
every γ > 0 there exists a solution η of Eq. (13) such that η(t0) ∈ Ĉ(γ ) and η(t0 + T ) ∈ C(γ ) hold.

Write

ι >
m

sin(mε0)

(∣∣a0(t)
∣∣ + ∣∣a1(t)

∣∣) for every t ∈ R

and

R = R ×
{

w ∈ C \ {0}:
∣∣Arg(w)

∣∣ � π

2
− mε0, Re(w) � γ eιT

}
,

where γ is fixed and so small that R ⊂ R × K (0,1). By (8), we find t0 such that a j(t0) �= 0 holds for
some j � 2. Let ν,μ > 0 be such that |a j(t)| > μ > 0 is satisfied for every t ∈ [t0 − ν, t0] and the
inequality

Re
[
u(t, w)

]
< −mμκ

2
|w|1− j−1

m � −β|w|q � −β
(
Re[w])q

< 0 (16)

holds for every (t, w) ∈ R ∩ ([t0 − ν, t0] × C) where β = mμκ
2 > 0, 1 > q = m−1

m � 0, provided γ is
small enough. By (15),

Re
[
u(t, w)

]
� ιRe(w) (17)

is true for every (t, w) ∈ R .
By (17), the inequality

Re
[
η(t0 + T )

]
� γ eιT

holds. But by (16), the solution is swept out the set C(γ ), provided γ is small enough. Indeed, the
solution of the scalar equation

ṗ = −βpq (18)
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with the initial condition p(t2) = � is given by

p(t2 + t) = [
(q − 1)βt + � 1−q] 1

1−q .

Let t2 = t0 + T − ν , � = γ eιT , then p(t2 + t) = γ , provided

t = γ 1−q[eιT (1−q) − 1]
(1 − q)β

.

Taking γ small enough we get t < ν , so Re[η(t0 + T − ν + t)] � γ and, if defined, Re[η(t0 + T )] < γ ,
which gives the desired contradiction.

We now fix 0 < γ0 small enough and define E as above. It follows that ϕ−1
(t0,T )

(E) ⊂ int E .
Finally, int E is holomorphic equivalent to the unit disc then, by the Denjoy–Wolff fixed point the-

orem, there exists exactly one T -periodic solution of Eq. (1) which image is contained in E . Moreover,
it is asymptotically unstable and repelling in E .

For every z ∈ S( π
M−1 ) there exist ε and γ such small that by using them in construction of E

we get z ∈ E . Thus there exists exactly one T -periodic solution in S( π
M−1 ) and it is asymptotically

unstable and repelling in S( π
M−1 ).

We now prove the existence of infinitely many f.b. solutions inside S( π
M−1 ). It is enough to prove

the existence of solutions η : (−∞,ωη) → C\{0} of Eq. (13) inside the sector S( π
2 ) satisfying ωη < ∞

and

lim
t→ω−

η

η(t) = 0.

By (8), there exist j � 2, t0 ∈ R and ν,μ > 0 such that |a j(t)| > μ > 0 for every t ∈ [t0, t0 + 2ν].
Let ζ be the solution of (18) satisfying ζ(t0) = γ > 0. Then ζ(t0 + t) > 0 iff t < 1

β(1−q)
γ 1−q . Let γ be

such small that

1

β(1 − q)
γ 1−q < ν (19)

holds. Write

D(γ ) =
{

w ∈ C \ {0}:
∣∣Arg(w)

∣∣ � π

2
− mε0, Re(w) � γ

}

and K = [t0, t0 + 2ν] × D(γ ). Here

K − = [t0, t0 + 2ν] ×
[

D(γ ) ∩
{

w ∈ C:
∣∣Arg(w)

∣∣ = π

2
− mε0

}]
∪ {t0 + 2ν} × D(γ ),

K + = [t0, t0 + 2ν] × [
D(γ ) ∩ {

w ∈ C: Re(w) = γ
}] ∪ {t0} × D(γ ),

provided γ is so small that (16) holds for every (t, w) ∈ K . Thus K , K − are closed relative to R × C \
{0}, so, by Proposition 1, K is a Ważewski set for the local flow φ on R × [C \ {0}] generated by (13).
We fix ϑ ∈ (t0, t0 + ν] and set Q (ϑ) = K +

ϑ . To obtain a contradiction, we suppose that Q (ϑ) ⊂ K ∗ .
By Lemma 2, the map Λ : Q (ϑ) � p �→ φ(σ (ϑ, p), (ϑ, p)) ∈ K − is continuous (here σ is the escape-
time function of K ). Let π1 be the projection on the time variable. Then π1(φ(σ (ϑ, p), (ϑ, p))) =
ϑ +σ(ϑ, p) holds. The inequality (19) implies σ |{ϑ}×Q (ϑ) < ν , so connected set Λ(Q (ϑ)) is contained
in disconnected K − ∩ (t0, t0 + 2ν) × C. Moreover, Λ(Q (ϑ)) has nonempty intersection with both
its connected components which is the desired contradiction. Thus there exists p ∈ Q (ϑ) such that
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φ+(ϑ, p) ⊂ K . By (16), the solution η : (−∞,ω(ϑ,p)) → C \ {0} of (13) with initial condition η(ϑ) = p
satisfies

lim
t→ω−

(ϑ,p)

η(t) = 0.

Since ω(ϑ,p) < ∞ holds, it follows that η is f.b. solution. Let us observe that η is defined on the whole
(−∞, ϑ), because

η
(
(ς,ϑ)

) ⊂
⋃
γ >0

C(γ )

holds for every ς < ϑ . By the arbitrariness of the choice of ϑ ∈ (t0, t0 + ν], there are infinitely many
such solutions. This finishes the proof of the main part of the theorem.

By the equality v(t,−z) = v1(t, z), there exists t0 ∈ R such that the Poincaré mapping ϕ(t0,T ) :
(−E) → int(−E) of (9) is well defined. Thus there exists exactly one T -periodic solution of Eq. (9)
inside the sector Ŝ( π

M−1 ) and it is attracting. Moreover, there are infinitely many b.b. solutions inside
the sector.

Let now a1 ≡ 0 hold. Then the assumption (10) implies the equalities v(t, z) = v1(t, z) and
v(t,−z) = v1(t, z) hold for every (t, z) ∈ R × C. Thus the properties of the sets E and −E defined
as above are preserved. If we allow a1 �≡ 0 then the behaviour of the vector field v on the boundaries
of the sets is qualitatively the same: the term a1(t)z is tangent or dominated by

∑n
j=2 a j(t)z j . Fi-

nally, Eq. (1) has in every sector S( π
M−1 ) and Ŝ( π

M−1 ) exactly one T -periodic repelling and attracting,
respectively, solution and infinitely many f.b. and b.b., respectively, ones.

Let us fix t0 ∈ R such that a0(t0) �= 0. We denote by η the solution of (1) such that η(t0) = 0. It
follows that η′(t0) = a0(t0) which, by (6), implies η(t0 + ν) ∈ Ŝ( π

M−1 ) and η(t0 − ν) ∈ S( π
M−1 ) for

every ν > 0. Thus η is heteroclinic solution from ξ to χ . By the continuity of a0, there are infinitely
many such t0 inside the interval [0, T ] so there are infinitely many heteroclinic solutions. �

The following examples are straightforward applications of Theorem 4.

Example 5. The equation

ż = −1 + cos(t) + ei π
5 sin(t)z2 + z5

has inside the sector S( π
4 ) exactly one 2π -periodic solution (it is asymptotically unstable) and in-

finitely many f.b. solutions. Here M = 5, τ̂0 = 0, τ2 = π
5 < π

4 . It is worth to mention that the
coefficient at z2 allows only M < 6. Thus Theorem 4 does not imply the existence of periodic so-
lution inside S( π

5 ).

Example 6. The equation

ż = −1 − z3 + (
2 + √

3eit)z4

does not fulfil the assumptions of the main part of Theorem 4 (because of the coefficient at z3). But
the auxiliary equation

ż = −1 + z3 + (
2 + √

3eit)z4

fulfils them for M = 7. Here τ3 = 0 < π
3 and τ4 = π

3 < π
2 . Thus the main equation has exactly one

2π -periodic (asymptotically stable) solution inside Ŝ( π
6 ) and the solution is attracting in the whole

sector.
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Example 7. The equation

ż = −1 − cos(t)z + (
1 + ε + eit)z4

has for every ε > 0 exactly one 2π -periodic solution in every sector S( π
6 ) and Ŝ( π

6 ). They are asymp-
totically unstable and asymptotically stable, respectively. Moreover, there are infinitely many solutions
heteroclinic to them and infinitely many blowing up ones. Here M = 7, τ4 < π

2 and a4 �≡ 0.

Remark 8. In Theorem 4, all monomials a j(t)z j coincide with respect to the sector which symmetry
axis is the positive part of the real axis. If there is coincidence with respect to other sector one can
use the change of variables

w = eiμz. (20)

Example 9. The equation

ż = −3i + eit + iz3 + z4

does not fulfil the assumptions of Theorem 4, because τ3 = π
2 and it should be τ3 � π

3 for M = 4 and

τ3 < 2
M−1 π � π

2 for M � 5. But, by the change of variables w = e− 2π i
3 z, we get the equation

ẇ = (−3i + eit)e− 2π i
3 + e− π i

6 w3 + w4.

Here τ3 = π
6 < π

3 and τ̂0 < π
3 for M = 4. Then the main equation has in the sector S( π

3 ,π) exactly
one 2π -periodic asymptotically unstable solution and infinitely many f.b. ones.

Example 10. The equation

ż = −1 + iei t
T z + z3

has at least one T -periodic asymptotically unstable solution provided that 0 < T < π
4 . By the change

of variables (5) where t0 = 0 and B(t) = e−iT sin( t
T ) , we get

ẇ = −B(t) + Re
[
iei t

T
]

w + B−2(t)w3.

Then τ3 = 2T , τ̂0 = T . The assumptions of Theorem 4 are fulfilled provided that M = 5 and 0 < T < π
4 .

4. Free term and degree of the vector field

In the present section we deal with the special case of (1) given by

ż = zn + a0(t), (21)

where n � 3 and the free term a0 ∈ C(R,C) is T -periodic.
As we will show below, in the case of n being odd, a straightforward use of Theorem 4 helps to

find only one periodic solution of (21). But, it is sometimes possible to prove the existence of two
ones. Moreover, if the angular width of the free term a0 is small enough, then there exists at least
one periodic solution.

The case of even n is quite different. If Theorem 4 helps to find a periodic solution, it helps to
find at least two ones. But, if a0(R) lies in some regions of the plane, then we know nothing about
periodic solutions irrespective of the angular width of a0.
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Theorem 11. Let n � 3 be odd and a0 ∈ C(R,C) be T -periodic.
If there exists j ∈ Z such that a0(R) ⊂ S n

j, j+1 , then Eq. (21) has

• in sector S n
j, j+1 exactly one T -periodic asymptotically stable solution, provided j is even,

• in sector S n
n+ j−1,n+ j exactly one T -periodic asymptotically unstable solution, provided j is odd.

If there exists j ∈ Z such that a0(R) ⊂ S n
j , then Eq. (21) has exactly one T -periodic asymptotically stable χ ,

asymptotically unstable ξ solution in sectors

• S n
j, j+1 , S n

n+ j−2,n+ j−1 , respectively, provided j is even,
• S n

j−1, j , S n
n+ j−1,n+ j , respectively, provided j is odd.

Moreover, there are infinitely many heteroclinic solutions from ξ to χ .

Proof. Let a0(R) ⊂ S n
j, j+1. We consider the change of variables given by w = ei π

n−1 (n−2− j)z. Eq. (21)
has the form

ẇ = e−iπ(n−2− j)wn + ei π
n−1 (n−2− j)a0(t), (22)

where ei π
n−1 (n−2− j)a0(R) ⊂ Ŝ( π

n−1 ).

If j is odd, then e−iπ(n−2− j) = 1 holds and, by Theorem 4, Eq. (22) has T -periodic asymptotically
unstable solution in S( π

n−1 ) = S n−1,0. Thus (21) has periodic solution in S n
n−1+ j,n+ j .

If j is even, then e−iπ(n−2− j) = −1 = (−1)n holds, and, by Theorem 4 for the auxiliary equation (9),
Eq. (22) has T -periodic asymptotically stable solution in Ŝ( π

n−1 ) = S n
n−2,n−1. Thus (21) has periodic

solution in S n
j, j+1.

If a0(R) ⊂ S n
j , then a0(R) ⊂ S n

j, j+1 and a0(R) ⊂ S n
j−1, j hold, so the existence of periodic solutions

follows by the previous arguments. Vector v(t,0) points inward the sector S n
j thus every solution

passing close to the origin is attracted by the periodic asymptotically stable one (periodic solution is
attracting in the whole sector). Analogously, they are repelled by the periodic asymptotically unstable
one. Finally, they are the desired heteroclinic solutions. �
Corollary 12. If n � 3 is odd, a0 ∈ C(R,C) is T -periodic, a0 �≡ 0 and �(a0) < π

n−1 hold, then Eq. (21) has at
least one T -periodic solution.

Proof. There exists j ∈ Z such that after the change of variables w = ei π
n−1 j z one gets ẇ = wn + A0(t)

with τ̂0 < π
n−1 . It is now enough to apply Theorem 4. �

The following examples are straightforward applications of Theorem 11 and Corollary 12.

Example 13. The equation

ż = z3 + 2i + eit

has exactly one 2π -periodic asymptotically stable solution inside the sector S 3
0,1 = {z ∈ C: Im(z) > 0}

because a0(R) ⊂ S 3
0,1 holds.

Example 14. The equation

ż = z5 + 5 + 2i + eit
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has exactly one 2π -periodic solution in every of the sectors S 5
0,1 and S 5

3,4. They are asymptotically
stable and asymptotically unstable, respectively. There are also infinitely many solutions which are
heteroclinic to them because a0(R) ⊂ S 5

0 holds.

Example 15. The equation

ż = zn + (1 + i)(n − 1) + eit

has at least one 2π -periodic solution, provided n � 3 is odd, because �(a0) = 2 arcsin(
√

2
2(n−1)

) < π
n−1

holds.

One can follow the proof of Theorem 11 and prove the following one.

Theorem 16. Let n � 3 be even and a0 ∈ C(R,C) be T -periodic. If there exists even j ∈ Z such that
a0(R) ⊂ S n

j, j+1 holds, then Eq. (21) has exactly one T -periodic solution in every of the sectors S n
j, j+1 and

S n
n+ j−1,n+ j . They are asymptotically stable and asymptotically unstable, respectively. There are also infinitely

many solutions which are heteroclinic to them.

Example 17. By Theorem 16, the equation

ż = z8 + 7i + eit

has exactly one 2π -periodic solution in every of the sectors S 8
2,3, S 8

9,10 and infinitely many hetero-

clinic to them solutions, because a0(R) ⊂ S 8
2,3 holds.

Remark 18. If n � 3 is even and

a0(R) ∩ S n
j �= ∅, a0(R) ∩ S n

j+1 �= ∅ hold for some odd j, (23)

then the presented method says nothing about the existence of periodic solutions. Moreover, in the
case n = 2, i.e. the Riccati equation (the condition (23) can be interpreted as saying that the critical
line condition for the Riccati equation is not satisfied) there can be no periodic solutions (cf. [8,16,21,
22,32–34]).

Remark 19. It is possible to state similar theorems for the equation

ż = zn + a1(t)z + a0(t),

provided a1 ∈ C(R,R).

5. Trivial free term

In this section we investigate the equation

ż = v(t, z) =
n∑

j=1

a j(t)z j . (24)

Linear term is the dominating one in the neighbourhood of the origin. If it satisfies the inequality

T∫
a1(t)dt < 0, (25)
0
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then it is possible to adapt method from the proof of Theorem 4. In this case a1z plays similar role
to a0.

As in Section 3, we consider only a1 ∈ C(R,R). It is possible to allow a1 to be complex, provided
it satisfies (4).

We state the main theorem of the section.

Theorem 20. Let n � 3, a1 ∈ C(R,R) and a j ∈ C(R,C) for j ∈ {2,3, . . . ,n} be T -periodic. If there exists
M � n such that (25), (7) and (8) are satisfied, then Eq. (24) has in the sector S( π

M−1 )

• exactly one T -periodic solution ξ . It is asymptotically unstable and repelling in the whole sector,
• infinitely many f.b. solutions,
• infinitely many solutions which are heteroclinic from ξ to the zero solution.

Moreover, the equation

ż = v1(t, z) =
n∑

j=1

(−1) ja j(t)z j (26)

has in the sector Ŝ( π
M−1 )

• exactly one T -periodic solution χ . It is asymptotically stable and attracting in the whole sector,
• infinitely many b.b. solutions,
• infinitely many solutions which are heteroclinic from the zero solution to ξ .

Proof. We adopt notation and modify the proof of Theorem 4. Let 0 < δ < 1. We define E(δ) = E ∩
{z ∈ C: |z| � δ} and Ê(δ) = E ∩ {z ∈ C: |z| = δ}.

We show that for every solution η such that η(0) ∈ Ê(δ), the condition |η(T )| < δ holds, provided
δ is small enough. We denote d(t) = a1(t) + ∑n

j=2 |a j(t)|δ1 where δ1 > 0. Then for 0 < r < δ1 < 1 one
gets

d(t)r � sup

{〈
z

|z| , v(t, z)

〉
: |z| = r

}
. (27)

We fix δ1 so small that the inequality
∫ T

0 d(t)dt < 0 holds. Let ζ be the solution of

ṙ = d(t)r (28)

satisfying ζ(0) = δ for some 0 < δ < δ1. Solutions of (28) have the form

r(t) = r(0)eD(t), where D(t) =
t∫

0

d(s)ds,

so the condition ζ([0, T ]) ⊂ (0, δ1) holds for δ small enough. Moreover, if η is the solution of (24)
with the property |η(0)| = δ, then |η(T )| � ζ(T ). Thus it is possible to fix 0 < δ < δ1 such small that
for every solution of (24) satisfying |η(0)| = δ the inequality

∣∣η(T )
∣∣ <

∣∣η(0)
∣∣ (29)

holds.
Finally, there exist δ0 > 0 and t0 ∈ R such that the Poincaré map ϕ(t0,−T ) : E(δ0) → int E(δ0) is well

defined. Similar arguments to those used in the proof of Theorem 4 show that there exists in sector
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S( π
M−1 ) exactly one T -periodic asymptotically unstable solution ξ which is repelling in the whole

sector and infinitely many f.b. solutions.
By (29), there are solutions which are heteroclinic from ξ to the trivial one. We prove that in-

finitely many of them are contained in S( π
M−1 ).

Let us consider Eq. (24) on the set C\{0}. It generates the local flow φ on the set X = R×[C\{0}].
We fix 0 < δ < δ0 and denote

L(δ) =
{
(t, z) ∈ R × [

C \ {0}]:
∣∣Arg(z)

∣∣ � π

M − 1
− ε0

}

∩ [{
(t, z): |z| � δ

} ∪ {
(t, z): |z| > δ and z = η(t), where η is the

solution of (24) such that
∣∣η(t1)

∣∣ = δ for some t1 < t, |t − t1| < T
}]

.

By the behaviour of the vector field on the set Ê(δ), it is easy to see that L(δ) is closed relative to X .
Moreover, (11) and (12) imply

L(δ)− = L ∩
[
R ×

{
z ∈ C:

∣∣Arg(z)
∣∣ = π

M − 1
− ε0

}]
.

Since L(δ)− is closed relative to X , it follows that L(δ) is the Ważewski set. We fix θ ∈ R. Let
R(θ) = {θ} × {z ∈ C: |z| = δ, |Arg(z)| � π

M−1 − ε0}. By the Ważewski theorem (Theorem 3), there
exists zθ ∈ R(θ) such that φ+((θ, zθ )) ⊂ L(δ) holds. Let η : (−∞,ω(θ,zθ )) → C be the full solution of
(24) in C such that η(θ) = zθ . Then

lim
t→ω−

(θ,zθ )

η(t) = 0

holds. If ω(θ,zθ ) < ∞, then η(ω(θ,zθ )) = 0, which is impossible, because the equation satisfies the
uniqueness condition for solutions of the Cauchy problem. Thus ω(θ,zθ ) = ∞ and η is the desired
heteroclinic solution. By the arbitrariness of the choice of θ , there are infinitely many heteroclinic
solutions.

The equality v(t,−z) = v1(t, z) and analysis similar to the above finishes the proof in the case of
(26). �

The following examples are straightforward applications of Theorem 20.

Example 21. The equation

ż = (
sin(t) − 1

)
z + z3 + ei π

4 cos(t)z8

has in sector S( π
10 ) exactly one 2π -periodic solution ξ which is asymptotically unstable and infinitely

many f.b. ones and heteroclinic solutions from ξ to the trivial one. Here M = 11 and τ8 = π
4 � 3

10 π .

Example 22. The equation

ż = (
2 + sin(t)

)
z − z3 + ei cos(t)z4 (30)

does not fulfil the assumptions of Theorem 20 because signs of the real parts of terms at z3 and z4

are not the same. Let us consider the auxiliary equation

ż = −(
2 + sin(t)

)
z + z3 + ei cos(t)z4.
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Now a1 < 0 holds and for M = 6 one gets τ3 = 0 as well as τ4 = 1 � 2
5 π . Thus the auxiliary equation

has in the sector S( π
5 ) exactly one 2π -periodic solution. Finally, Eq. (30) has in the sector Ŝ( π

5 )

exactly one 2π -periodic solution η which is asymptotically stable and attracting in the whole sector,
infinitely many solutions which are heteroclinic from the trivial one to η and infinitely many b.b.
solutions.

Now we investigate Eq. (24) where the condition

T∫
0

a1(t)dt � 0 (31)

is satisfied. In this case, the trivial solution is not necessarily a simple periodic solution (cf. [2,4,5,21])
and it is repelling or attracting in some sectors. The following statements can also be adapted to the
case a1 ∈ C(R,C).

Theorem 23. Let n � 3, a1 ∈ C(R,R) and a j ∈ C(R,C) for j ∈ {2,3, . . . ,n} be T -periodic. If there exists
M � n such that the conditions (31), (7), (8) are satisfied, then in S( π

M−1 ) Eq. (24)

• has infinitely many f.b. solutions,
• the trivial solution is repelling in the whole sector.

Moreover, in Ŝ( π
M−1 ) Eq. (26)

• has infinitely many b.b. solutions,
• the trivial solution is attracting in the whole sector.

Proof. We adopt notation from the proof of Theorem 20.
The existence of f.b. solutions follows by the same arguments as in the proof of Theorem 4.
Similarly to the proof of Theorem 20, one shows that ϕ(t0,−T )(E \{0}) ⊂ int E holds for some t0 ∈ R

and ϕ(t0,−T )(0) = 0.
Let the inequality

T∫
0

a1(t)dt > 0 (32)

be satisfied. Write Y = E ∪ K (0, δ0). Then, by analysis similar to that from the proof of Theorem 20,
the inclusion ϕ(t0,−T )(cl K (0, δ0)) ⊂ K (0, δ0) holds. Thus ϕ(t0,−T )(Y ) ⊂ Y is satisfied. By the Denjoy–
Wolff fixed point theorem, there exists exactly one fixed point z0 of ϕ(t0,−T ) inside Y , so it must be
z0 = 0. Finally, the trivial solution is repelling in the sector S( π

M−1 ).
Let now the inequality

T∫
0

a1(t)dt = 0 (33)

be satisfied. To use the Denjoy–Wolff fixed point theorem for proving that the point z = 0 is attracting
for ϕ(t0,−T ) in int E it is enough to show that ϕ(t0,−T ) has no fixed points in int E .
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Without loss of generality we can assume that t0 = 0. To obtain a contradiction, we suppose that
there exists a fixed point z0 ∈ int E for ϕ(0,−T ) . It is also a fixed point of ϕ(0,T ) . Then there exists a

fixed point zμ of the Poincaré map ϕ
[μ]
(0,T ) of the equation

ż = [
a1(t) + μ

]
z +

n∑
j=2

a j(t)z j (34)

such that zμ ∈ S( π
M−1 ), provided μ > 0 is small enough. Indeed, if ϕ(0,T ) − id ≡ 0 in some neighbour-

hood of z0 then ϕ(0,−T ) = id on the whole E but it cannot be true since the vector field v points
outward E on ∂ E(δ) \ {0}. Thus z0 is an isolated zero of ϕ(0,−T ) − id. Then the existence of zμ fol-
lows by the continuous dependence of solutions on the vector field and the Rouche theorem, which
contradicts the first part of the proof.

The statement for Eq. (26) follows by the equality v(t,−z) = v1(t, z) for (t, z) ∈ R × Ŝ( π
M−1 ). �

The following examples are straightforward applications of Theorem 23.

Example 24. The trivial solution of the equation

ż = z + ei π
10 cos(t)z5 + z6

is repelling in S( π
5 ). Here M = 6 and τ5 = π

10 � π
5 .

Example 25. The trivial solution of the equation

ż = cos(t)z − (1 + i)z3 + z4

is attracting in the whole Ŝ( π
3 ). To see this let us observe that the auxiliary equation

ż = − cos(t)z + (1 + i)z3 + z4

fulfils the assumptions of Theorem 23 with M = 4 and τ3 = π
4 � π

3 .

Corollary 26. Let n � 3, a1 ∈ C(R,R) and a j ∈ C(R,C) for j ∈ {2,3, . . . ,n} be T -periodic. If

a j ≡ 0, for all even numbers j � 2

and there exists M � n such that the conditions (7), (8) are satisfied, then Eq. (24)

• has infinitely many f.b. solutions in every of the sectors S( π
M−1 ), Ŝ( π

M−1 ),
• has exactly one T -periodic solution in every of the sectors (it is asymptotically unstable and repelling in

the whole sector),
• has in every of the sectors infinitely many solutions which are heteroclinic from the periodic to the trivial

one

provided (25) is satisfied.
Moreover, Eq. (24)

• has infinitely many f.b. solutions in every of the sectors S( π
M−1 ), Ŝ( π

M−1 ),
• the trivial solution is repelling in every of the sectors

provided (31) holds.
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The following examples are straightforward applications of Corollary 26.

Example 27. The trivial solution of the equation

ż = z + ei π
5 cos(t)z3 + z5

is repelling in S( π
4 ) and Ŝ( π

4 ). Here M = 5 and τ3 = π
5 < π

2 .

Example 28. The trivial solution of the equation

ż = ei π
4 cos(t)z3 + z5 + z7

is repelling in S( π
6 ) and Ŝ( π

6 ). Here M = 7 and τ3 = π
4 < π

3 .

Example 29. The equation

ż = −z + (1 + i)z3 + z5

has in every of the sectors S( π
4 ) and Ŝ( π

4 ) exactly one 2π -periodic solution and infinitely many
solutions which are heteroclinic from the periodic to the trivial one. Here M = 5 and τ3 = π

4 < π
2 .

Corollary 30. Let n � 3, a1 ∈ C(R,R) and a j ∈ C(R,C) for j ∈ {2,3, . . . ,n} be T -periodic. If (10) holds and
there exists M � n such that the conditions (7), (8) are satisfied, then Eq. (24)

• has exactly one T -periodic solution in the sector S( π
M−1 ) (it is asymptotically unstable and repelling in

the whole sector),
• has in the sector infinitely many solutions which are heteroclinic from the periodic to the trivial one,
• has in the sector infinitely many f.b. solutions,
• has in the sector Ŝ( π

M−1 ) infinitely many b.b. solutions,
• the trivial solution is attracting in the whole sector

provided (25) is satisfied.
Moreover, Eq. (24)

• has infinitely many f.b. solutions in the sector S( π
M−1 ),

• the trivial solution is repelling in the whole sector,
• has infinitely many b.b. solutions in the sector Ŝ( π

M−1 ),
• the trivial solution is attracting in the whole sector

provided (33) holds.
Eq. (24)

• has in the sector S( π
M−1 ) infinitely many f.b. solutions,

• the trivial solution is repelling in the whole sector,
• has exactly one T -periodic solution in the sector Ŝ( π

M−1 ) (it is asymptotically stable and attracting in the
whole sector),

• has in the sector infinitely many solutions which are heteroclinic from the trivial to the periodic one,
• has in the sector infinitely many b.b. solutions

provided (32) is satisfied.

The following examples are straightforward applications of Corollary 30.
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Example 31. The equation

ż = −z + ei cos(t)z4 + (1 + i)z6

has in the sector S( 3
20π) exactly one 2π -periodic solution and the trivial solution is attracting in

Ŝ( 3
20π). Here M = 23

3 , τ4 = 1 < 9
20π and τ6 = π

4 � π
4 .

Example 32. The trivial solution of the equation

ż = cos(t)z + ei π
8 cos(t)z2 + z4

is repelling in S( π
3 ) and attracting in Ŝ( π

3 ). Here M = 4 and τ2 = π
8 < π

3 .

Example 33. The equation

ż = z + ei sin(t)z4 + z8

has in the sector Ŝ( π
7 ) exactly one 2π -periodic solution and the trivial solution is repelling in S( π

7 ).
Here M = 8 and τ4 = 1 < 3

7 π .

6. Trivial free and linear terms

In Section 3 we proved the existence of periodic solutions provided the free term of the vector
field was nontrivial. Then the same method was used in the case of the trivial free term and nontriv-
ial linear one. It occurs that application of the method to Eq. (1) with the trivial free and linear terms
meets with difficulties. Let j � 2 be the smallest index such that a j �≡ 0. Then we need Re(a j) < 0,
so the term a j(t)z j points on ∂ E ∩ {z ∈ C: Arg(z) = α} inward the set E . But an(t)zn points outwards.
Thus inward tangency points occurs which preserves the application of the method of isolating seg-
ments. That is why we modify the construction of the set E which gives results less general that the
ones from Sections 3 and 5.

We construct an isolating segment [0, T ]× E in such a way that ∂ E is not longer a subset of a line
but a solution of the equation ż = z j . To simplify calculations we assume that j = 2. It is possible to
deal with j > 2 but this case is more difficult because solutions of ż = zm are given by complicated
formulas, whereas for m = 2 they are just circles.

In this section we investigate a special case of (1) given by

ż = v(t, z) = a(t)z2 + b(t)zn, (35)

where n � 3 and a ∈ C(R, (−∞,0)), b ∈ C(R,C \ {0}) are T -periodic. We assume that a is real-valued
to simplify calculations. Let τb be the smallest number such that |Arg[b(t)]| � τb holds for every
t ∈ R. Write

J = min
t∈R

∣∣∣∣a(t)

b(t)

∣∣∣∣
1

n−2

and L = max
t∈R

∣∣∣∣a(t)

b(t)

∣∣∣∣
1

n−2

.

The following lemma is crucial to the main theorem of the section.

Lemma 34. Let n � 3 and mappings a ∈ C(R, (−∞,0)), b ∈ C(R,C \ {0}) be T -periodic. If there exist con-
stants 0 < p < 1, q > 1 and C >

qL
2 such that
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Fig. 1. The set E is marked in grey.

τb < (n − 2)arcsin

(
p J

2C

)
, (36)

4C2(1 − p2n−4) > p2 J 2, (37)

τb + (n − 1)arcsin

(
qL

2C

)
<

π

2
, (38)

cos

[
τb + (n − 1)arcsin

(
qL

2C

)]
> q2−n (39)

hold, then Eq. (35) has at least one T -periodic asymptotically unstable solution ξ in the sector S(arcsin(
qL
2C )).

If, in addition, we assume that

J > 2Cpn−3 (40)

holds, then there exist in the sector S(arcsin(
qL
2C )) infinitely many solutions which are heteroclinic from ξ to

the trivial one.

Proof. Our goal is to construct isolating segment W = [0, T ] × E such that the vector field (1, v)

points inward W on [0, T ] × ∂ E .
Let E ⊂ S( π

2 ) be the closure of the set bounded by four circles O (iC, C), O (−iC, C), O (0, p J )
and O (0,qL) (cf. Fig. 1). Let A, B ∈ E be the common points of O (iC, C) and O (0,qL), O (iC, C) and
O (0, p J ), respectively. Let α = Arg(A) and β = Arg(B). Obviously, 0 < β < α holds.

We investigate the vector field v on the common part of ∂ E and O (iC, C). Let z = |z|eiθ . Then
θ ∈ [β,α] and e2iθ is a vector tangent to ∂ E at z. The vector field a(t)z2 is tangent to ∂ E and b(t)zn

satisfies Arg[b(t)|z|neiθn] ∈ [nθ − τb,nθ + τb]. Thus b(t)zn points outward E provided that

[nθ − τb,nθ + τb] ⊂ (2θ,2θ + π).

But it is satisfied, provided the inequalities

τb < (n − 2)β, (41)
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τb + (n − 2)α < π (42)

hold. The situation is the same on the common part of ∂ E and O (−iC, C). The inequality (38) gives
τb + (n − 1)α < π

2 which implies (42).
We parameterise the set ∂ E ∩ O (0, p J ) by s(o) = p Jeio where o ∈ [−β,β]. An outward normal

vector is equal to n(o) = −eio . Thus

〈
n(o), v

(
t, s(o)

)〉 = Re
[−a(t)p2 J 2eio − b(t)pn Jneio(n−1)

]
�

∣∣a(t)
∣∣p2 J 2 cos(β) − ∣∣b(t)

∣∣pn Jn = (�), (43)

so (�) > 0 holds provided that

cos(β) >
|b(t)|
|a(t)| pn−2 Jn−2.

Since the inequality

|b(t)|
|a(t)| pn−2 Jn−2 � max

t∈R

|b(t)|
|a(t)| pn−2 Jn−2 = pn−2

is satisfied, it is enough to

cos(β) > pn−2 (44)

hold. Since Re[b(t)qn Lnei(n−1)o] � cos(τb + (n − 1)α)|b(t)|qn Ln holds, similar argument to that above
shows that the vector field v points outward E on ∂ E ∩ O (0,qL) provided that the inequality

cos
(
τb + (n − 1)α

)
> q2−n (45)

is satisfied.
Let us observe that

sin(α) = qL

2C
, (46)

sin(β) = p J

2C
(47)

hold. The inequality (36) is equivalent to (41) and (39) to (45). Similarly, since cos[arcsin(x)] =√
1 − x2 holds, the inequalities (37) and (44) are also equivalent.

Finally, the vector field (1, v) points on [0, T ] × ∂ E outward W . Thus the Poincaré map ϕ(0,−T ) :
E → int E is well defined. By the Denjoy–Wolff fixed point theorem, there exists T -periodic repelling
solution ξ inside E . Observation that int E ⊂ S(arcsin(

qL
2C )) finishes the main part of the proof.

Let F = cl[K (0, p J ) ∩ S(β)]. We parameterise the set ∂ F ∩ {z ∈ C: Arg(z) = β} by s1(o) = oeiβ

where o ∈ (0, p J ]. An outward normal vector is equal to n1(o) = ieiβ . Thus

〈
n1(o), v

(
t, s1(o)

)〉 = Re
[−a(t)o2ieiβ − b(t)oniei(n−1)β

]
� −∣∣a(t)

∣∣o2 sin(β) + ∣∣b(t)
∣∣on < 0,

where the latter inequality holds provided that
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sin(β) > pn−2 (48)

which is equivalent to (40). Similarly, the vector field v points inward F on ∂ F ∩{z ∈ C: Arg(z) = −β}.
Calculations similar to (43) and (44) show that v points inward F ∩ K (0, r) on every arc F ∩ O (0, r)

provided that r ∈ (0, p J ]. Thus F is positive invariant and every solution starting in F is attracted by
the trivial one, i.e. is heteroclinic from ξ to the zero solution. �
Proposition 35. Let the assumption of Lemma 34 be satisfied. If, in addition, n is even, then Eq. (35) has at
least one T -periodic asymptotically stable solution χ in the sector Ŝ(arcsin(

qL
2C )). In this case, (40) implies

the existence of infinitely many solutions which are heteroclinic from the trivial one to χ and contained in
Ŝ(arcsin(

qL
2C )).

Proof. It is a straightforward consequence of the symmetry of the vector field v(t, z) = v(t,−z) and
argument similar to that from the proof of Theorem 4. �
Proposition 36. Let the assumption of Lemma 34 be satisfied. If, in addition, n is odd, then the trivial solution
of Eq. (35) is repelling in the sector Ŝ(

π−τb
n−1 ). Moreover, the sector contains infinitely many f.b. solutions.

Proof. By the change of variables w = −z one gets

ẇ = −aw2 + bwn. (49)

Thus τ2 = 0, τn = τb and, by (38), τb < π
2 . Let us write M = nπ−τb

π−τb
, so M � n. Since (49) satisfies (31),

then, by Theorem 23, the trivial solution is repelling in S(
π−τb
n−1 ). �

Setting appropriate values to p, q and C in Lemma 34, we obtain the following theorem.

Theorem 37. Let n � 3 and mappings a ∈ C(R, (−∞,0)), b ∈ C(R,C \ {0}) be T -periodic. If

τb <
n − 2

3(n − 1)
cos

(
π

18

)
J

L
(50)

holds, then Eq. (35) has in the sector S(arcsin( 2
3(n−1)

)) at least one T -periodic asymptotically unstable solu-
tion.

Similarly, if

τb <
19(n − 2) J

40(n − 1)L
and n � 5 (51)

holds, then Eq. (35) has in the sector S(arcsin( 1
n−1 )) at least one T -periodic asymptotically unstable solution ξ .

If besides (51) the following condition

J > 2(n − 1)

(
19

20

)n−3

L (52)

is satisfied, then there are infinitely many solutions which are heteroclinic from ξ to the trivial one and con-
tained in S(arcsin( 1

n−1 )).

Proof. It is enough to show that the inequalities (38), (41), (44), (45) and in some cases (48) hold.
Write C = wL where 2w > q.
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Since (46), (47) hold, the conditions sin(β) = cos( π
18 ) J

3(n−1)L < 1
6 and sin(α) = 2

3(n−1)
are satisfied pro-

vided that p = cos( π
18 ), q = 2 and w = 3(n−1)

2 . Then (50) is equivalent to τb < (n − 2) sin(β) which

implies (41). Moreover, β < π
3 sin(β) < π

18 holds and implies (44). By (50), it follows that τb < 1
3

holds. Since α < π
3 sinα = 2π

9(n−1)
, we have τb + (n − 1)α < 3+2π

9 < π
3 < π

2 which gives (38). More-

over, cos[τb + (n − 1)α] > cos π
3 = 2−1 � 22−n which gives (45).

We now investigate the case where (51) is satisfied. Let us fix p = 19
20 , q = 2, w = n − 1 which

imply sin(β) = 19 J
40(n−1)L � 19

160 and sin(α) = 1
n−1 . Then the first inequality from (51) is equivalent to

τb < (n − 2) sin(β) which implies (41). Moreover, β < π
3 sin(β) � 19π

480 holds, and cos( 19π
480 ) > ( 19

20 )2 is
satisfied which gives (44).

By (51), it follows that τb < 19
40 holds. Then τb + (n − 1)α < 19

40 + π
3 < π

2 implies (38). Moreover,

cos[τb + (n − 1)α] > cos( 19
40 + π

3 ) > 0.04 > 22−n is satisfied for n � 7. For n = 6 one gets τb � 19
50 and

cos[τb + 5α] > cos( 19
50 + π

3 ) > 0.14 > 2−4. Similarly, for n = 5 one gets τb � 57
160 and cos[τb + 4α] >

cos( 57
160 + π

3 ) > 0.16 > 2−3. Finally, (45) holds.
It is easy to see that (52) is equivalent to (48). �
The following examples are straightforward applications of Theorem 37 and Propositions 35, 36.

Example 38. The equation

ż = (
sin(t) − 2

)
z2 + ei·0.05·cos(t)z3

has at least one 2π -periodic asymptotically unstable solution in the sector S(arcsin( 1
3 )) and the trivial

solution is repelling in the sector Ŝ( π−0.05
2 ). Here J = 1, L = 3, τb = 0.05 and the condition (50) is

satisfied.

Example 39. The equation

ż = −z2 + (
sin(t) + 3

)
ei·0.3·cos(t)z6

has at least one 2π -periodic asymptotically unstable solution in S(arcsin( 1
5 )) and at least one 2π -

periodic asymptotically stable one in Ŝ( π
2 ). Here J = 1√

2
, L = 1

4√2
, τb = 0.3 and the condition (51) is

satisfied.

Example 40. The equation

ż = −z2 + 3ei π
7 cos(t)z110

has in S(arcsin( 1
109 )) at least one 2π -periodic asymptotically unstable solution ξ and infinitely many

solutions which are heteroclinic from ξ to the trivial one. Moreover, it has in Ŝ(arcsin( 1
109 )) at least

one 2π -periodic asymptotically stable solution χ and infinitely many solutions which are heteroclinic

from the trivial one to χ . Here J = L = 3− 1
108 , τb = π

7 and the conditions (51), (52) are satisfied.

Remark 41. The values of the constants p, q, C are in the proof of Theorem 37 chosen to maximise
τb for small n. For n = 3 the condition (50) implies τb < 1

6 but for n � 5 the inequality (51) gives

τb < 57
160 . In some cases, the straightforward application of Lemma 34 allows τb to be bigger, as

exemplified below.
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Example 42. The equation

ż = −z2 + ei·0.7·cos(t)z199

has in S(arcsin( 309
79600 )) ⊂ S(0.004) at least one 2π -periodic asymptotically unstable solution ξ and

infinitely many solutions which are heteroclinic from ξ to the trivial one. Moreover, the trivial solution
is repelling in Ŝ( π−0.7

2 ). Here J = L = 1, τb = 0.7, p = 0.97, q = 1.03, C = 398
3 and the conditions

(36)–(40) hold.

In the following example we combine results from the previous and present sections.

Example 43. Let us consider the equation

ż = εz2 + ei·0.05·sin(t)z4.

If ε � 0, then, by Corollary 30, the trivial solution is repelling in the sector S( π
4 ) and attracting in

Ŝ( π
4 ). Here M = 5 and τ4 = 0.05 � π

4 .
If ε < 0, then by Lemma 34, there are in every of the sectors S(arcsin( 1

3 )), Ŝ(arcsin( 1
3 )) at least

one 2π -periodic solution and infinitely many solutions which are heteroclinic between the periodic
and trivial ones. Here J = L, τb = 0.05, p = 0.2, q = 1.5, C = 9

4 L and the conditions (36)–(40) hold.
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