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Abstract 

This paper is concentrated on the polynomial regression model, which is useful when there is reason to believe that relationship between 
two variables is curvilinear. The polynomial regression model has been applied using the characterisation of the relationship between 
strains and drilling depth. Parameters of the model were estimated using a least square method. After fitting, the model was evaluated 
using some of the common indicators used to evaluate accuracy of regression model. The data were analyzed using computer program 
MATLAB that performs these calculations. 
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Nomenclature 

e error vector 
h hole depth (mm) 
MAPE mean absolute percentage error 
RMSE root mean squared error 
R2 R-squared 

2R∗  adjusted R-squared 
X design matrix 
Y response vector 
Greek symbols 
ββββ vector of regression parameters 
 strain ( m/m) 

1. Introduction 

Regression analysis involves identifying the relationship between a dependent variable and one or more independent 
variables. It is one of the most important statistical tools which is extensively used in almost all sciences. It is specially used 
in business and economics to study the relationship between two or more variables that are related causally. A model of the 
relationship is hypothesized, and estimates of the parameter values are used to develop an estimated regression equation. 
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Various tests are then employed to determine if the model is satisfactory. Model validation is an important step in the 
modelling process and helps in assessing the reliability of models before they can be used in decision making. 

2. The multiple regression  

Multiple regression refers to regression applications in which there are more than one independent variables. Multiple 
regression includes a technique called polynomial regression. In polynomial regression we regress a dependent variable on 
powers of the independent variables. 

2.1. The multiple regression model 

The basic multiple regression model of a dependent (response) variable Y on a set of k independent (predictor) variables 

1 2, , , kX X X  can be expressed as  
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i.e. 

0 1 1 2 2i i i k i k iy x x x eβ β β β= + + + + + , for 1, 2, ,i n=

                                                                

(2)

where yi is the value of the dependent variable Y for the ith case, xij is the value of the jth independent variable Xj for the 
ith case, β0 is the Y-intercept of the regression surface (think multidimensionality), each βj, 1, 2, ,j k= , is the slope of the 
regression surface with respect to variable Xj and ei is the random error component for the ith case. In basic equations (1) we 
have n observations and k predictors ( 1n k> + ). 

The assumptions of the multiple regression model are similar to those for the simple linear regression model. Model 
assumptions [1]: 
• For each observation the errors ei are normally distributed with mean zero and standard deviation σ and are independent 

of the error terms associated with all other observations. The errors are uncorrelated with each other. That is ei ~ N(0,σ2) 
for all 1, 2, ,i n= , independent of other errors. 

• In the context of regression analysis, the variables Xj are considered fixed quantities, although in the context of 
correlation analysis, they are random variables. In any case, Xj are independent of the error term. When we assume that Xj

are fixed quantities, we are assuming that we have realizations of k variables Xj and that the only randomness in Y comes 
from the error term.  
In matrix notation, we can rewrite model (1) as 

Y X e= +

                                                                

(3)

where response vector Y and error vector e are column vectors of length n, vector of parameters ββββ is column vector of 
length k+1 and design matrix X is n by k+1 matrix (with its first column having all elements equal to 1, the second column 
being filled by the observed values of X1, etc.). We want to estimate unknown values of ββββ and e.

2.2. Least squared error approach in matrix form 

We estimate the regression parameters by the method of least squares. This is an extension of the procedure used in 
simple linear regression. First, we calculate the sum of the squared errors and, second, find a set of estimators that minimize 
the sum.  

Using equation (3) we obtain for the errors  

e Y X= − .

                                                                

(4)
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Find estimator ˆ we want to minimize the sum of squares of the errors 

( ) ( )e e Y X Y XT T= − −

                                                                

(5)

where the symbol ()T denotes the transpose of the matrix. 
Here e eT  is scalar. We can take the first derivate of this object function with respect to the vector ββββ. Making these equal 

to 0 (a vector of zeros) we obtain normal equations 

ˆX X X YT T= .

                                                                

(6)

Multiply the inverse matrix of 1( )X XT −  on the both left sides in equation (6), and we have the least squared estimator for 
the multiple regression model in matrix form [8]

1ˆ ( )X X X YT T−= .

                                                                

(7)

Vector ˆ  is an unbiased estimator of ββββ. The fitted (predicted) values for the mean of Y (let us call them Ŷ ), are 
computed by  

1ˆˆ (Y X X X X) X Y H YT T−= = =

                                                               

(8)

where 1( )H X X X XT T−= . We call this the hat matrix because is turns Y into Ŷ . Matrix H is symmetric, i.e. 
H HT= and idempotent, i.e. 2H H= . 

The fitted values for error terms ei are residuals îe , 1, 2, ,i n= , that are computed by 

ˆˆ ( )e Y Y Y HY I H Y= − = − = −

                                                                

(9)

where I is an identity matrix. 
The sum of squares of the residuals ˆ ˆe eTSSE =  has the 2χ distribution with ( 1)Edf n k= − +  degrees of freedom, and is 

independent of ˆ .  

2.3. Polynomial regression model and evaluating of its accuracy 

Polynomial regression is a special case of multiple regression, with only one independent variable X. One-variable 
polynomial regression model can be expressed as 

2 3
0 1 2 3

k
i i i i k i iy x x x x eβ β β β β= + + + + + + , for 1, 2, ,i n=

                                                                

(10)

where k is the degree of the polynomial. The degree of the polynomial is the order of the model. 
Effectively, this is the same as having a multiple model with 1X X= , 2

2X X= , 3
3X X= , etc. 

The mean squared error MSE is an unbiased estimator of the variance σ2 of the random error term and is defined in 
equation  
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(11)

where yi are observed values and ˆiy  are the fitted values of the dependent variable Y for the ith case. Since the mean 
squared error is the average squared error, where averaging is done by dividing by the degrees of freedom, MSE is 
a measure of how well the regression fits the data. The square root of MSE is an estimator of the standard deviation σ of the 
random error term. The root mean squared error RMSE MSE=  is not an unbiased estimator of σ, but it is still a good 
estimator. MSE and RMSE are measures of the size of the errors in regression and do not give a indication about the 
explained component of the regression fit [1]. 
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Mean absolute percentage error MAPE is the most useful measure to compare the accuracy of forecasts between different 
items or products since it measures relative performance [5]. It is one measure of accuracy commonly used in quantitative 
methods of forecasting. This measure is defined in equation  

1

ˆ100 n
i i

i i

y y
MAPE

n y=

−
= .

                                                                

(12)

If MAPE calculated value is less than 10 %, it is interpreted as excellent accurate forecasting, between 10 – 20 % good 
forecasting, between 20 – 50 % acceptable forecasting and over 50 % inaccurate forecasting [4]. 

The R-squared R2 (coefficient of determination) of the multiple regression is similar to the simple regression where the 
coefficient of determination R2 is defined as  
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(13)

where SST is the total sum of squares and y  is the arithmetic mean of the Y variable. R2 measures the percentage of 
variation in the response variable Y explained by the explanatory variable X. Thus, it is an important measure of how well 
the regression model fits the data. The value of R2 is always between zero and one, 20 1R≤ ≤ . An R2 value of 0.9 or above 
is very good, a value above 0.8 is good, and a value of 0.6 or above may be satisfactory in some applications, although we 
must be aware of the fact that, in such cases, errors in prediction may be relatively high. When the R2 value is 0.5 or below, 
the regression explains only 50 % or less of the variation in the data; therefore, prediction may be poor [1, 9]. 

Adjusted R-squared 2R∗  is computed by 

2
2 2 (1 )

( 1)

R k
R R

n k
∗ −= −

− +
.

                                                                

(14)

Formula (14) shows explicitly the „adjustment” process, and also demonstrates that the adjusted R-squared is always 
smaller as R-squared. 2R∗  is adjusted for the number of variables included in the regression equation. If the value of 2R∗  is 
much lower than R2 value, it is an indication our regression equation may be over-fitted to the sample, and of limited 
generalization. 2R∗  is always preferred to R2 when data are being examined because of the need to protect against spurious 
relationships [1, 9]. 

3. Application of polynomial regression model 

The principle of the hole-drilling method lies in determination of stress state alteration which occurs when drilling a hole 
into the structural element in which residual stresses are found. Detailed description of the procedure can be found in 
various writings devoted to this method [2, 7, 11, 12]. The hole-drilling method was applied for determination of residual 
stresses in case of the transverse beam of the casting ladle supporting structure directly in a metallurgical plant. Strain gauge 
rosette applied to the structural element revealed strain values εa, εb, εc in particular directions marked as a, b, c. Stress state 
alteration was identified after the hole of 0.5 mm was drilled into the surface of the structural element and was registered 
even in the depth (drilling stage) of 5 mm. The strain values measured in particular drilling stages (hole depths) are listed in 
Table 1 [3].   

                                                                     Table 1. Measured strain values in particular drilling stages 

strain values in particular directions 
 ( m/m) drilling stage h

(mm) εa εb εc

0.50 −16.00 −9.00 −6.00
1.00 −38.00 −22.00 −8.00
1.50 −50.00 −32.00 −5.00
2.00 −65.00 −48.00 −2.00
2.50 −72.00 −55.00 2.00 
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3.00 −80.00 −63.00 4.00 
3.50 −85.00 −67.00 5.00 
4.00 −89.00 −81.00 6.00 
4.50 −93.00 −83.00 8.00 
5.00 −100.00 −85.00 9.00 

The purpose of this study was to determine the relationship between strains εa, εb, εc in particular directions marked as a,
b, c and hole depth h. All analyses were done using MATLAB and with its Curve Fitting Toolbox too [10].  

It is recommended that data analysts should endeavour to always plot a simple scatter diagram before using any 
regression model in order to know the type of relationship that exists between the variable of interest. Figures 1(a), 2(a), 
3(a) show the comparison of polynomial regression models with measured data in particular directions marked as a, b, c. 
Looking at this data we may suspect a simple linear model may not be the best choice here. So, instead of simple linear 
regression here it makes sense to consider polynomial regression with degree of the polynomial 1k > .  

Thus, when applied polynomial regression in this example, we fit a linear, quadratic, cubic, maybe a quartic polynomial, 
and then see if can reduce the model by a few terms. In this case, the polynomial may provide a good approximation of the 
relationship.  

The basic statistical outputs for particular directions a, b, c are, respectively, shown in Tables 2 − 4. 

                                                              Table 2. Polynomial regression results for direction a 

 polynomial model 
 linear quadratic cubic 

RMSE 7.876 3.011 1.295 
MAPE 14.9473 4.8526 1.5763 

R2 0.9233 0.9902 0.9984 
2R∗ 0.9137 0.9874 0.9977 

                                                              Table 3. Polynomial regression results for direction b 

 polynomial model 
 linear quadratic cubic 

RMSE 5.357 2.542 2.732 
MAPE 13.5912 3.0394 2.6997 

R2 0.9638 0.9929 0.9929 
2R∗ 0.9593 0.9908 0.9894 

                                             Table 4. Polynomial regression results for direction c 

 polynomial model 
 linear quadratic cubic quartic 

RMSE 1.501 1.516 1.319 0.656 
MAPE 26.2045 24.0227 19.7495 8.1552 

R2 0.9467 0.9524 0.9691 0.9936 
2R∗ 0.94 0.9388 0.9537 0.9885 

• Direction a:  
The cubic polynomial regression model outperforms the other two models with lowest error statistics and highest 
deterministic coefficient. 
Least squares parameter estimates for this model are ˆ (9.2000, 56.9503, 12.3007, 1.0521)T= − − . 

• Direction b: 
We find that the quadratic polynomial regression model appears to fit the data best.  
Least squares parameter estimates for this model are ˆ (5.8667, 30.2242, 2.3636)T= − . 

• Direction c: 
The quartic polynomial regression model is here the best.  
Least squares parameter estimates for this model are ˆ (0.5000, 20.9751, 17.0268, 4.2906, 0.3590)T= − − . 

There are several possible uses of a regression model. One is understand the relationship between the two or more 
variables. A more common use of a regression analysis is prediction, providing estimates of values of the dependent 
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variable (variables) by using the prediction equation. Point predictions are not perfect and are subject to error. The error is 
due to the uncertainty in estimation as well as the natural variation of points about the regression line.  

We can compute e.g. 95 % prediction interval for strains εa, εb, εc in particular directions marked as a, b, c (see the 
formula in 1, 10). Figures 1(b), 2(b), 3(b) show the 95 % prediction interval for strains in particular directions by using the 
best polynomial regression model. 

(a)                                                                                              (b) 

Fig. 1. (a) comparison of polynomial models with measured data − direction a, (b) 95 % prediction interval using cubic polynomial − direction a

(a)                                                                                              (b) 

Fig. 2. (a) comparison of polynomial models with measured data − direction b, (b) 95 % prediction interval using quadratic polynomial − direction b

(a)                                                                                              (b) 

Fig. 3. (a) comparison of polynomial models with measured data − direction c, (b) 95 % prediction interval using quadratic polynomial − direction c
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4. Conclusion 

Regression analysis is a statistical tool for the investigation of relationships between variables. The multiple regression 
analysis is a useful method for generating mathematical models where there are several (more than two) variables involved. 
Polynomial regression model is consisting of successive power terms. Each model will include the highest order term plus 
all lower order terms (significant or not). We can view polynomial regression as a particular case of multiple linear 
regression. Polynomial models are an effective and flexible curve fitting technique.  

The most widely used method of regression analysis is ordinary least squares analysis. This method works by creating 
a “best fit” line through all of the available data points and parameter estimates are chosen to minimize error sum of squares. 

Fitting a regression model requires several assumptions. Estimation of the model parameters requires the assumption that 
the errors are uncorrelated random variables with mean zero and constant variance. Tests of hypotheses and interval 
estimation require that the errors are normally distributed. There are a number of advanced statistical tests that can be used 
to examine whether or not these assumptions are true for any given regression equation.  
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