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Abstract

In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may 
exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral 
splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenom-
ena – synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop 
an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply 
it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This 
turns out to be possible in part due to the existence of the (previously unknown) exact conservation law sat-
isfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects 
in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes 
of neutrino flavour evolution.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is well known that neutrino oscillations in dense neutrino backgrounds existing at cer-
tain stages of supernova explosion and in the early Universe may differ drastically from the 
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oscillations in ordinary matter or in vacuum. In particular, synchronized oscillations [1–8], bipo-
lar oscillations [5,9–14], spectral splits and swaps [11,15–17] and multiple spectral splits [18]
are possible. These phenomena have attracted a great deal of attention recently, see Refs. [19,20]
for reviews and extensive lists of literature.

The simplest system that exhibits collective neutrino oscillations is a dense uniform and 
isotropic gas consisting of only neutrinos (or only antineutrinos). In such a system, for suffi-
ciently large neutrino density, neutrinos of different energies oscillate with the same frequency 
(i.e. undergo synchronized oscillations), and therefore even for wide neutrino spectra the oscil-
lations do not average out with time. This is in sharp contrast with what is expected in the case 
of neutrino oscillations in vacuum, in usual matter or in low-density neutrino backgrounds. In 
particular, in vacuum neutrinos of different energies oscillate with different frequencies and over 
the time develop large phase differences, leading to decoherence and averaging out of the oscilla-
tions. On the other hand, synchronized neutrino oscillations in a dense neutrino gas mean that no 
decoherence occurs (or at least that some degree of coherence is maintained) in such a system, 
since complete decoherence would destroy the synchronization.

In this paper we explore late-time decoherence effects on collective neutrino oscillations. 
To this end, we concentrate on the simplest possible system where collective oscillations can 
take place – a uniform and isotropic neutrino gas. Decoherence of neutrino oscillations can be 
described either in momentum space or in coordinate space. In the momentum space it comes 
from the dephasing of different neutrino modes at late times and is related to the integration over 
the neutrino spectrum. In the coordinate space decoherence is related to the spatial separation 
of the wave packets of different neutrino propagation eigenstates after they have traveled long 
enough distance. The momentum-space and coordinate-space descriptions are equivalent (see, 
e.g., [21]).

Since in supernovae and in the early Universe neutrinos are produced at very high densities, 
their production processes are well localized in space and time and therefore their wave pack-
ets are very short in coordinate space [22–24]. As a result, one could expect decoherence by 
wave packet separation to occur rather quickly and to affect significantly collective neutrino os-
cillations. In particular, this would destroy synchronized neutrino oscillations at sufficiently late 
times. Numerical calculations show, however, no trace of such decoherence when the density 
of the neutrino gas is high enough. One of the main goals of the present study was therefore 
to understand why no decoherence (and therefore no de-synchronization) occurs in high-density 
neutrino gases, and how in general coherence and decoherence are related to the synchroniza-
tion of neutrino oscillations or lack thereof. Our study is in a sense complementary to that in 
[4] where the possibility for a neutrino system to develop a spontaneous synchronization starting 
with a completely incoherent initial state was considered.

The paper is organized as follows. In Section 2 we review the standard flavour spin formalism 
which is especially well suited for describing neutrino oscillations and flavour conversions in 
dense neutrino backgrounds. We also discuss the conservation law for a quantity E which can 
be interpreted as the total energy of self-interacting magnetic moments in an external magnetic 
field. This section mainly serves to introduce our framework and notation. Sections 3–5 contain 
our new results. In Section 3 we develop a formalism of spectral moments �Kn describing a ho-
mogeneous and isotropic gas of neutrinos or neutrinos and antineutrinos. We derive equations of 
motion for these quantities and relations between the time derivatives of �Kn and �Kn+1. We also 
establish a new conservation law for this neutrino system, not previously known in the litera-
ture. In Section 4 we develop two approximate analytical approaches for describing decoherence 
effects on synchronized neutrino oscillations. They are based on the formalism of Section 3 aug-
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mented by certain assumptions about the late-time behaviour of the neutrino flavour spin vector 
in the system under consideration. In this section we also compare our approach and its results 
with those in Ref. [8], where decoherence effects on synchronized neutrino oscillations have 
also been studied. In Section 5 we give a qualitative interpretation of coherence and partial or 
full decoherence in terms of wave packet separation based on the consideration in the neutrino 
propagation eigenstate basis. The roles of adiabaticity and adiabaticity violation for possible de-
coherence effects is considered. In Section 6 we summarize and discuss our results. Technical 
details of some derivations related to our analysis in Section 4 are given in the Appendix.

2. The flavour spin formalism

Flavour mixing and evolution in a neutrino gas can be described by time-dependent density 
matrices �p, which for each momentum mode p are matrices in flavour space [25–27]. Their 
diagonal elements are actually occupation numbers for neutrinos of given flavour, while the off-
diagonal elements contain information about coherence properties of the system. The evolution 
of these matrices is governed by the Liouville equation [27–30].

We will consider a homogeneous and isotropic neutrino gas evolving in time. It has been 
recently realized that even very small initial deviations from space–time symmetries of a system 
of self-interacting neutrinos may be strongly enhanced in the course of its evolution [31–33]. 
Such effects could profoundly influence the flavour evolution of the system and are currently 
under active investigation. Here we ignore such complications and assume that the uniformity 
and isotropy of the neutrino gas are exact and are preserved during its evolution.

For simplicity, we confine ourselves to 2-flavour neutrino oscillations νe ↔ νx , where νx =
νμ, ντ or a superposition thereof. For an isotropic system one can use the absolute value of the 
neutrino momentum p ≡ |p| rather than the momentum itself to label the neutrino kinematic 
characteristics. However, it is more convenient to use instead the vacuum oscillation frequency

ω = �m2

2p
, (1)

with �m2 being the mass squared difference of neutrino mass eigenstates. In the 2-flavour case 
one can decompose the density matrices and the Hamiltonian in terms of the Pauli matrices σi . 
The flavour evolution of each ω-mode can then be described by the equation of motion (EoM) of 
the corresponding flavour spin vector [27]:

�̇P ω = �Hω × �Pω. (2)

Here �Hω is the Hamiltonian (or “effective magnetic field”) vector:

�Hω = ω �B + λ �L + μ �P (3)

with

�B = (s20, 0, −c20), �L = �nz ≡ (0, 0, 1), λ = √
2GF ne, μ = √

2GF nν. (4)

Here s20 ≡ sin 2θ0, c20 ≡ cos 2θ0 with θ0 being the leptonic mixing angle in vacuum, GF is the 
Fermi constant, and ne and nν are the net electron and neutrino number densities, respectively 
(i.e. the differences of number densities of the corresponding particles and antiparticles). The 
quantity �P is the global flavour spin vector of the neutrino system:
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�P =
∞∫

−∞
dω �Pω. (5)

We use the convention according to which positive values of ω correspond to neutrinos and neg-
ative values to antineutrinos [19,27]. The terms in eq. (3) proportional to ω, λ and μ correspond, 
respectively, to the vacuum contribution to the neutrino Hamiltonian and to the contributions 
coming from coherent forward scattering of a test neutrino on the particles of ordinary matter 
and on the neutrino background. If the density of ordinary matter is constant or nearly constant 
in the region where collective neutrino oscillations are expected to take place, effects of ordinary 
matter can be removed by going into a frame rotating around �L and replacing θ0 by an effective 
mixing angle [10,12]. In what follows we will be assuming that this has already been done (or 
that the effects of ordinary matter are negligible), and we will keep the notation θ0 for the mixing 
angle defining the vector �B. The vector �Hω can then be written as

�Hω = ω �B + μ �P . (6)

Equations of motion (EoMs) (2) describe the precession of the flavour spin vectors �Pω of the 
individual neutrino modes around their corresponding “magnetic field” vectors �Hω. Obviously, 
they conserve the lengths of �Pω:

| �Pω| ≡ P0gω = const. (7)

The function gω is just the spectrum of neutrinos in the variable ω, which we will assume to be 
normalized according to∫

gωdω = 1 (8)

and to have the effective width σω. For example, for the Gaussian spectrum

gω = 1√
2πσω

e
− (ω−ω0)2

2σ2
ω . (9)

In our study we will be assuming that gω corresponds to the ω-spectrum of the wave packets 
of individual neutrinos, i.e. we deal with an ensemble of neutrinos described by identical wave 
packets with the same mean energy. Generalizations to more general neutrino spectra is straight-
forward. Note that a system of wave packets with the energy distribution function gω is equivalent 
to a system of neutrinos with well defined energies and spectrum gω [34], to which our treatment 
will therefore also apply.

The flavour content of a given ω-mode is defined by the projection of �Pω on the z-axis in 
the flavour space; for νe and ν̄x this projection is positive, whereas for ν̄e, νx it is negative. For 
systems consisting initially of arbitrary numbers of the flavour eigenstate neutrinos νe and νx and 
of their antineutrinos the initial conditions for the individual ω-modes are therefore

�Pω(0) = P0gω�nz. (10)

The initial condition for the global flavour spin vector is then

�P (0) = P0�nz. (11)

The parameter P0 (i.e. the initial length of the vector �P ) could in principle be set equal to one 
through a proper redefinition of the neutrino self-interaction strength μ. However, in certain 
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situations it may be convenient to define μ as being proportional to the number density of just 
one neutrino species (e.g., ν̄e [19]). We therefore keep P0 as a free parameter.

Integrating eq. (2) over ω, we obtain the EoM for �P :

�̇P = �B × �S, where �S ≡
∫

dωω �Pω. (12)

From the conservation of | �Pω| and the initial condition (11) it follows that for t > 0 the length of 
the vector �P satisfies P(t) ≡ | �P(t)| ≤ P0. At the same time, eq. (12) implies

�P · �B = const. = �P (0) · �B = −c20P0. (13)

Therefore,

c20P0 ≤ P(t) ≤ P0. (14)

From the EoMs (2) and (12) it follows that the following quantity is an integral of motion 
[10,12]:

E ≡ �B · �S + μP 2

2
= const. (15)

It can be interpreted as the total energy of a system of ‘spins’ �Pω with magnetic moments char-
acterized by ‘gyromagnetic ratios’ ωi . The quantity �S is then the total magnetic moment of 
the system. In this interpretation, the first term in (15) describes the interaction of the spins 
with the ‘external magnetic field’ �B, whereas the second term describes the spin-spin interaction 
[5,10,12]. The system of self-interacting neutrinos is thus mathematically equivalent to the sys-
tem of classical magnetic dipoles with the Hamiltonian given by eq. (15). Many properties of the 
former can therefore be understood from the properties and symmetries of the latter [35]. The 
initial conditions (10) imply that

�S(0) = ω0P0�nz, where ω0 = 〈ω〉 ≡
∫

gωωdω. (16)

Here ω0 is the mean neutrino ‘energy’ corresponding to the spectrum gω. For symmetric spectra 
(such as e.g. the Gaussian spectrum (9)) ω0 coincides with the frequency at which gω reaches its 
peak value. Substituting eqs. (11) and (16) into (15), we find

μP 2

2
+ �B · �S = μP 2

0

2
− c20ω0P0. (17)

3. The formalism of spectral moments

Let us introduce the spectral moments �Kn(t) of the flavour spin vector:

�Kn(t) =
∫

dωωn �Pω(t), n ≥ 0. (18)

The integral on the right hand side of (18) is well defined as far as the neutrino spectrum gω goes 
to zero fast enough for |ω| → ∞ (this is the case e.g. for the Gaussian spectrum and for any 
spectrum which vanishes outside a finite interval of ω, such as the box-type spectrum). Note that 
the quantities �P and �S discussed in Section 2 are just particular cases of the spectral moments:

�P(t) = �K0(t), �S(t) = �K1(t). (19)
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Rewriting eq. (2) as �̇P ω = (ω �B +μ �P) × �Pω , multiplying by ωn and integrating over ω, we obtain

�̇Kn = �B × �Kn+1 + μ �P × �Kn. (20)

From this equation it is straightforward to find a scalar relation between the derivatives of �Kn

and �Kn+1
2:

�B · �̇Kn+1 + μ �P · �̇Kn = 0. (21)

For n = 0 this gives �B · �̇S + μ �P · �̇P = 0, which can be immediately integrated. The result is the 
already known conservation law for E , eq. (15). For n = 1 we obtain

�B · �̇K2 + μ �P · �̇S = 0. (22)

Let us show that this relation can also be integrated. Indeed, from eq. (12) it follows that �S · �̇P = 0. 

Therefore, �P · �̇S = (d/dt)( �P · �S). This allows us to integrate eq. (22), which yields another 
conservation law satisfied by a system of self-interacting neutrinos3:

Ẽ ≡ �B · �K2 + μ �P · �S = const. (23)

While eq. (15) is well known, the conservation law (23) is new. The constant on its right hand 
side can be readily found if one observes that the initial conditions (10) imply

�Kn(0) = P0〈ωn〉�nz, where 〈ωn〉 ≡
∫

dωωngω. (24)

One can then rewrite eq. (23) as

�B · �K2 + μ �P · �S = P0[μP0ω0 − c20(ω
2
0 + σ 2

ω)]. (25)

Here we have used the relation 〈ω2〉 = ω2
0 + σ 2

ω, which is just the definition of the variance σ 2
ω of 

the ω-spectrum.

4. Late-time regime of collective neutrino oscillations

4.1. Previous studies

Oscillations in a dense uniform and isotropic neutrino gas have been extensively studied in 
the literature (see, e.g., [1,2,4–8]). However, to the best of our knowledge, the only paper that 
dealt with the late-time decoherence effects on synchronized neutrino oscillations was Ref. [8].4

Here we briefly review its main results.
The authors studied decoherence effects numerically and (under certain assumptions) ana-

lytically. As particular examples, two different neutrino spectra were considered: the Gaussian 
spectrum of unit variance (σω = 1) and the box-type spectrum of overall width 2 (in units of some 

2 Alternatively, one can derive eq. (21) by noting that eq. (2) implies �Hω · �̇Pω = 0. Multiplying this relation by ωn and 
integrating over ω immediately yields eq. (21).

3 Alternatively, one can derive (23) by multiplying eq. (4.10) of Ref. [36] by ω2 and integrating it over ω. We thank 
Baha Balantekin for this comment.

4 Decoherence effects on flavour transformations of supernova neutrinos was also studied in Ref. [23]. However, the 
influence of the coherence loss on collective neutrino oscillations has not be considered there.
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Fig. 1. Order parameter RA ≡ P⊥/(P0 sin 2θ0) at late times for Gaussian (solid curve) and box-type (dashed curve) 
neutrino spectra, θ0 = π/4. Reprinted with permission from [8]; © 2010 American Physical Society.

fiducial frequency). As an order parameter characterizing decoherence, the deviation of the trans-
verse (with respect to the vector �B) component of the global flavour spin vector �P from its initial 
value was taken. This choice, first suggested in [4], is well justified: Indeed, decoherence leads to 
a shrinkage of �P .5 Since the longitudinal (with respect to �B) component of �P , �P‖ ≡ ( �P · �B) �B , is 
conserved, only the transverse component �P⊥ ≡ �P − ( �P · �B) �B can shrink as a result of decoher-
ence. A convenient choice for the order parameter is therefore RA ≡ P⊥/P⊥(0) = P⊥/(s20P0); 
RA = 1 would then correspond to perfect coherence, whereas RA = 0 would imply complete 
decoherence [4].

The authors of [8] found three regimes of neutrino oscillations in the system, depending on 
the value of neutrino self-interaction parameter μ.

(1) Large μ regime – “perfect synchronization”. Despite differences in ω, all �Pω evolve in a 
synchronized way, starting practically immediately from time t = 0. The flavour spin vector 
�P exhibits a simple precession around �B with the frequency ω0 equal to the mean frequency 

of the neutrino spectrum:

�̇P = ω0 �B × �P . (26)

The length of the vector �P is conserved and is given by its initial value: P = P0.
(2) Small μ regime – complete late-time de-synchronization. At asymptotically large times os-

cillations completely average out; �P aligns with �B and remains constant, its length having 
shrunk to the minimal possible value Pmin = c20P0.

(3) Intermediate μ regime – partial de-synchronization at late times. The evolution of �P at 
asymptotic times is a precession around �B with some frequency ωs (in general, different 
from ω0), with the length of �P satisfying Pmin < P < P0. P⊥ remains finite.

These results are illustrated by Fig. 1, where the late-time value of RA ≡ P⊥/(P0 sin 2θ0) is 
plotted as a function of μ for Gaussian and box-type neutrino spectra. A very interesting feature 
of the μ-dependence of RA is its threshold behaviour: decoherence is achieved for all values of 
μ below a certain threshold value μ0 which depends on the neutrino spectrum and is of order 

5 Note that, although the lengths of the vectors �Pω of the individual modes are conserved by their EoMs, the length of 
�P is in general not conserved.
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of its effective width σω. This was not a priori expected – it could well be that the complete 
decoherence would have occurred only in the limit μ → 0, with the curves on Fig. 1 smoothly 
approaching the origin.

In addition to numerical studies, in Ref. [8] also an analytical approach was developed, based 
on the following assumptions and approximations:

(i) It is assumed that the asymptotic (late time) evolution of the global flavour spin vector �P is 
a simple precession around �B with a constant frequency ωs .

(ii) “Sudden approximation”: �P(t) is replaced by its asymptotic expression starting immedi-
ately at t = 0.

(iii) The angles between the individual �Pω and the vectors �B and �P at the onset of asymptotic 
regime are taken to be those corresponding to t = 0.

(iv) In the corotating frame (the frame rotating around �B together with �P ) the individual flavour 
spin vectors �P ′

ω are replaced by their asymptotic averages assumed to be given by their pro-

jections on �H ′
ω: �P ′

ω → 〈 �P ′
ω〉 = �P ′

ω· �H ′
ω

H ′2
ω

�H ′
ω . Here the primed quantities refer to the corotating 

frame.

The analytical results based on the above approximations reproduced very well the results of 
the numerical calculations of P⊥ performed in [8]. Yet, the underlying assumptions were of 
heuristic nature and are certainly rather far from being realistic. Note also that assumptions (ii) 
and (iii) are not fully consonant: as �P is the sum of all �Pω, it does not seem to be consistent to 
take, at the onset of the asymptotic regime, for �Pω their values specified by the initial conditions 
and for �P its asymptotic value (even if the asymptotic regime sets in immediately after t = 0). 
It is also interesting to note that the analytical results obtained in [8] violate the conservation 
laws (17) and (25) (except in the limit μ � μ0, where no decoherence occurs). We will discuss 
this point in more detail in Section 6. We will also explain there the reasons why the analytical 
approach of [8] works well despite its underlying assumptions being rather unrealistic. In the 
next subsections we develop two different analytical approaches, based on our spectral moments 
formalism augmented only by very simple assumptions about the late-time behaviour of the 
global flavour spin vector �P (such as assumption (i) discussed above), without invoking any 
additional conjectures.

4.2. A simplified analytical approach

Eqs. (20)–(23) and (25) describing flavour evolution of a dense uniform and isotropic neutrino 
gas are exact and are satisfied for all t . We shall now assume that at asymptotically large times the 
evolution of the system is such that the length of the flavour spin vector �P is conserved. One ex-
ample of such an evolution is the simple precession of �P around a fixed axis in the flavour space, 
such as the one described in eq. (26). Thus, our treatment here should be valid if the late-time 
evolution of the system has the form of synchronized collective oscillations, albeit possibly with 
the length of the flavour spin vector �P decreased by decoherence effects. If not noted otherwise, 
in what follows we will be considering all the relevant quantities at asymptotically large times, 
without specifying this explicitly and keeping the same notation for these quantities as before.

From the evolution equation (12) it follows that the conservation of P ≡ | �P | at asymptotically 
large times implies

�P · �̇P = �P · ( �B × �S) = 0. (27)
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This condition can be satisfied when one (or more) of the following conditions is satisfied: 
(a) �P = 0; (b) �P ‖ �B; (c) �S = 0; (d) �S ‖ �B; (e) �S⊥ ‖ �P⊥. Note that in case (e) only transverse 
components of the vectors �S and �P enter, because their components along �B drop out of eq. (27). 
We will not consider case (a) (shrinkage of �P to zero) which, as follows from (14), can only be 
realized when c20 = 0. Cases (b), (c) and (d) are of no interest to us either, since they correspond 
to the situations when at large t not only P ≡ | �P | stays constant, but there is no evolution of �P at 
all. Therefore we concentrate on case (e), in which at asymptotic times �S⊥ is parallel or antiparal-
lel to �P⊥, that is �S⊥ = ωs

�P⊥. Here we shall make an additional assumption that the longitudinal 
components of �S and �P satisfy a similar relation with the same proportionality coefficient (we 
will lift this extra assumption in the next subsection). In this case we can write

�S(t) = ωs
�P(t). (28)

In principle, the quantity ωs could be time dependent; however, as we shall show below, eq. (17)
implies that it is constant.

Substituting (28) into (12), we find that �P satisfies

�̇P = ωs
�B × �P . (29)

Thus, in the considered case the evolution of the global flavour spin vector �P at late times is 
a simple precession around �B, and the proportionality coefficient ωs in eq. (28) is just the fre-
quency of this precession. From eq. (28) and the definitions of �P and �S it follows that

ωs =
∫

dωωPω,i∫
dωPω,i

, (30)

where Pω,i (i = x, y, z) is any of the components of the vector �Pω. Consistency of our approach 
requires that the ratio in eq. (30) be independent of i.

Eq. (29) describes synchronized neutrino oscillations. Substituting (28) into the conservation 
law for E given in eq. (17) and using eq. (13), we obtain

μ

2
[P 2

0 − P 2] = c20P0(ω0 − ωs). (31)

Let us discuss the consequences of this relation. First, we note that all the quantities in it 
except possibly ωs are constant, so ωs must be constant as well. Second, since the left hand side 
of (31) is non-negative, so must be its right hand side, i.e. ωs ≤ ω0. Third, because ω0 and ωs are 
certain averages of ω over the same spectrum gω characterized by an effective width σω, their 
difference cannot exceed σω by much, that is

ω0 − ωs � σω. (32)

From the latter and eq. (31) it immediately follows that in the limit μ → ∞ we must have 
P → P0 (no shrinkage of �P for very large μ). Later on we will also demonstrate that in the limit 
μ → ∞ the frequency of synchronized oscillations ωs approaches ω0.

Eq. (31) also allows us to clarify the meaning of the formal limit μ → ∞. In practical terms, 
this limit means that μ becomes large compared to some quantity of dimension of energy char-
acterizing the neutrino system under consideration. In our case this could be e.g. ω0, ωs or σω. 
We shall now show that this characteristic parameter is actually σω. Indeed, let us rewrite (31) as

P 2
0 − P 2

P 2
= 2c20

ω0 − ωs

μP
� 2c20

σω

μP
, (33)
0 0 0
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where the approximate inequality follows from (32). From (33) one can immediately see that 
‘perfect synchronization’, when the asymptotic value of P coincides with its initial value P0 and 
decoherence effects are negligible, is achieved for μP0 � σω. At the same time it is irrelevant 
whether or not μP0 is large compared to ω0 (or to ωs ). This is in accord with the fact that ω0
or ωs can always be eliminated by going into a proper rotating frame. Thus, one can expect 
noticeable decoherence effects only for μP0 � σω.

Eq. (31) relates two unknowns – the late-times value of P and the frequency of synchronized 
oscillations ωs . To find these quantities, we need one more relation between them. As such, 
we will use the new conservation law (23) that was derived in Section 3. Let us first note that 
eqs. (28) and (29) together with time independence of ωs imply that at asymptotic times the 
vector �S satisfies the EoM similar to (29),

�̇S = ωs
�B × �S, (34)

and so its length is conserved: �S · �̇S = 0. On the other hand, from eq. (20) with n = 1 we have an 
exact relation

�̇S = �B × �K2 + μ �P × �S. (35)

The conservation of the length of �S then implies

�S · ( �B × �K2) = 0. (36)

Following now the arguments similar to those given just below eq. (27), we conclude that eq. (36)
is nontrivially realized only if at asymptotically large times �K2 is parallel or antiparallel to �S (and 
therefore also to �P ), that is �K2(t) = ω1 �S(t). Comparing then eqs. (35) and (34), we find ω1 = ωs , 
that is, asymptotically,

�K2(t) = ωs
�S(t) = ω2

s
�P (t). (37)

Substituting this into (25) yields

−ω2
s c20P0 + ωsμP 2 = P0[μP0ω0 − c20(ω

2
0 + σ 2

ω)]. (38)

Excluding now P 2 from eqs. (31) and (38), we find the following equation for ω0 − ωs :

(ω0 − ωs)
2 − μP0

c20
(ω0 − ωs) + σ 2

ω = 0. (39)

Its solution is

ω0 − ωs = 1

2c20

[
μP0 −

√
μ2P 2

0 − 4c2
20σ

2
ω

]
. (40)

We have discarded the solution with the plus sign in front of the square root because for μP0 �
σω it would lead to ω0 − ωs � σω, in contradiction with (32).

Let us now discuss eq. (40). First, we notice that it exhibits a threshold behaviour: the real 
solution only exists (and therefore synchronized oscillations can only take place) for μ > μ0, 
where μ0 is given by

μ0P0 = 2c20σω. (41)

Next, we find that for μP0 � 2c20σω (i.e. far above the threshold)
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ω0 − ωs � c20
σ 2

ω

μP0
� σω. (42)

Thus, for large μP0 the precession frequency ωs → ω0. The difference ω0 − ωs reaches its 
maximum at the threshold μ = μ0:

ω0 − ωs(μ0) = σω. (43)

By using ω0 − ωs from eq. (40) in eq. (31) (or equivalently in eq. (38)), one can find the 
asymptotic value of P as a function of μ:

P = P0

(
1 − μ2

0

μ2

)1/4
. (44)

The above results for the asymptotic regime have several attractive features: they demonstrate 
in a very simple way the existence of the threshold μ0 below which no synchronized oscillations 
are possible, give the correct order-of-magnitude estimate for its value (μ0P0 ∼ σω), and lead 
to a reasonable behaviour of P far above the threshold. However, eq. (44) gives a wrong value 
of P at the threshold: P = 0. This is obviously incorrect because, due to the conservation of 
�P · �B = −c20P0, the length of �P cannot be smaller than c20P0. A possible reason for this is that 

eq. (28) involves an additional assumption about the longitudinal components of �P and �S which 
actually does not directly follow from eq. (27). It can be shown that this additional assumption 
(and so the relation in eq. (28)) is actually well satisfied far above the threshold μ0 but breaks 
down close to the threshold.

Indeed, we have found that for μ � μ0 the asymptotic length of �P coincides with P0. This 
means that the time interval between t = 0 and the onset of the asymptotic regime, during which 
P may shrink, is essentially zero, and the P -preserving synchronized oscillations described by 
eq. (29) start practically immediately at t = 0. Thus, P is conserved at all times. From eq. (15) it 
then follows that �B · �S is also conserved at all times. Together with the relation �S⊥(t) = ωs

�P⊥(t)

this means that, starting practically from t = 0, the vector �S precesses around �B with the angular 
velocity ωs , just as �P does. Since �S and �P are collinear at t = 0 (both pointing in the z-direction 
in the flavour space), they will then remain collinear at all times. Obviously, this argument fails 
close to the threshold μ0.

In the next subsection we shall lift the additional assumption about the longitudinal compo-
nents of �S and �P . As we shall see, the assumption about the asymptotic behaviour of P⊥ will 
also need to be corrected.

4.3. An analytical approach valid for all μ

We shall now attempt to develop an approximate analytical approach valid for all μ.

4.3.1. Approximation of constant asymptotic value of P
Let us first assume, as we did in the Section 4.2, that the evolution of the system at asymp-

totically large times conserves the length of the vector �P , that is, eq. (27) is satisfied. As was 
discussed above, a nontrivial realization of this condition requires the following relation between 
the transverse components of �P and �S at late times:

�S⊥(t) = ωs
�P⊥(t). (45)

Unlike we did in Section 4.2, we will not make here the additional assumption �S‖ = ωs
�P‖, which 

is valid only far above the threshold μ0.
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Fig. 2. Time dependence of P (upper curve) and P⊥ (lower curve). Gaussian neutrino spectrum, P0 = 1, ω0 = 1, 
σω = 0.1, θ0 = 0.5, μ = 0.108.

Substituting eq. (45) into eq. (12), we again obtain the EoM (29) describing the precession of 
the flavour spin vector �P around �B with the angular velocity ωs . In our analysis in Section 4.2
we found that the parameter ωs introduced through eq. (28) was time-independent; this followed 
from the conservation law (15) (along with �B · �P = const. and the late-time relation P = const.). 
Here we cannot use the same argument, as the parameter ωs now relates only the transverse 
components of the vectors �P and �S, whereas the conservation law (15) constrains only the lon-
gitudinal component of �S. Instead, we will assume that the parameter ωs can be considered as 
constant at asymptotically large times. Thus, our assumption here about the late-time behaviour 
of the flavour spin vector in fact coincides with assumption (i) discussed in Section 4.1. How-
ever, we will not use listed there assumptions (ii)–(iv), employed in [8]; our spectral moments 
formalism will allow us to fully determine the late-time behaviour of the system basing solely on 
assumption (i).

It is easy to demonstrate by induction that at asymptotic times all the spectral moments �Kn

satisfy the evolution equations similar to (29) with all �Kn⊥ being collinear with �P⊥:

�̇Kn = ωs
�B × �Kn, �Kn⊥ = αn

�P⊥, (46)

where αn is constant. Similar relations hold also for the flavour spin vectors of the individual 
modes �Pω. The derivation is especially simple in the corotating frame, see the Appendix. As 
shown there, for P⊥ �= 0 one can then find the ratio of the longitudinal and transverse components 
of the asymptotic vectors �Pω. Combining this with the normalization condition P 2

ω‖ + P 2
ω⊥ =

P 2
ω = P 2

0 g2
ω allows one to determine Pω‖ and Pω⊥. With the expressions for these quantities at 

hand, the longitudinal and transverse components of all the spectral moments �Kn at asymptotic 
times can then be found from eq. (18). However, the direct calculation shows that, except in the 
limit μ → ∞, the values of P⊥ obtained in this way do not reproduce correctly the results of 
numerical integration of the exact EoMs; in particular, no threshold behaviour in μ is found. 
This means that the assumption that P ≡ | �P | approaches a constant value at asymptotically large 
times, on which our consideration here was thus far based, must actually be incorrect.

This point is partly illustrated by Fig. 2, which shows that for μ exceeding the critical value μ0
(but not far above it) the quantities P⊥ and P keep oscillating around their mean values even at 
very late times. Obviously, this figure cannot serve as a proof that the oscillations will survive for 
all times (which actually follows from our analytical results), but it shows that these oscillations 
continue even up to t = 10 000 (in the units in which ω0 = 1), which is several orders of magni-
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tude larger than the naively expected coherence length Lcoh � 1/(2σω). The situation is different 
for μ � μ0, when P is practically constant at all times.

4.3.2. Invoking the averaging procedure
As the amplitude of the late-time oscillations of P⊥ is relatively small, it seems to be a rea-

sonable approximation to replace it at asymptotic times by its mean value, found by averaging 
over these oscillations. However, as our analysis in the previous subsection shows, this should be 
done through a consistent averaging procedure rather than by simply assuming that at large times 
P⊥ = const. To carry out the averaging systematically, we average the EoMs of the flavour spin 
vectors over a very large (formally infinite) time interval. It is convenient to do this in the corotat-
ing frame, where the late-time precession of the flavour spin vector �P is ‘rotated away’ from its 
evolution, and its direction at late times is essentially fixed (see the Appendix). Note that going 
to the corotating frame does not change the longitudinal (with respect to �B) components of the 
flavour spin vectors and spectral moments as well as the lengths of their transverse components.

The relevance of the averaging procedure for studying the behaviour of the system at late 
times follows from the well known property of infinite-interval averages, that for any function 
f (t) that is integrable on any finite interval in [0, ∞), the average can be found as

〈f (t)〉 = lim
t→∞f (t) (47)

provided that the limit on the right hand side exists. If at t → ∞ the limit in (47) does not exist 
but f (t) → f0 + oscillating terms, where f0 is a finite constant and the oscillating terms are of 
finite amplitude and average to zero, then 〈f (t)〉 = f0.

As demonstrated in the Appendix, the averaging procedure allows us to find the ratio of the 
averages of the transverse and longitudinal components of �Pω, which can be cast into the form

〈 �Pω⊥〉 = f (ω,μ)〈μ �P⊥〉,
〈Pω‖〉 = f (ω,μ)

[
ω − ωr(μ)

]
, (48)

with as yet unknown function f (ω, μ). Note that we cannot combine the ratio 〈Pω⊥〉/〈Pω‖〉 with 
the normalization condition for P 2

ω in order to find 〈Pω⊥〉 and 〈Pω‖〉 separately since these aver-
ages do not satisfy the same normalization condition as the un-averaged quantities Pω⊥ and Pω‖. 
Therefore, in order to determine 〈Pω‖〉 and 〈 �Pω⊥〉 one needs one more relation between them. 
As shown in the Appendix, such a relation can be found by considering the average 〈 �Pω · �Hω〉 in 
the corotating frame. Together with eq. (48), this gives

f (ω,μ) = P0gω

−c20(ω − ωr) + s20〈μP⊥〉
(ω − ωr)2 + 〈μP⊥〉2

. (49)

Here we have introduced the notation

ωr ≡ ωs(μ) + c20μP0. (50)

Next, we calculate the averages6

〈P⊥〉 =
∫

dω〈Pω⊥〉, 〈P‖〉 =
∫

dω〈Pω‖〉. (51)

From eqs. (48), (49) and (13) it follows that these relations can be rewritten as

6 Note that 〈 �Pω⊥〉 and 〈μ �P⊥〉 are parallel, which follows from the first equation in (48).
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1 = μP0

∫
dωgω

−c20(ω − ωr) + s20〈μP⊥〉
(ω − ωr)2 + 〈μP⊥〉2

, (52)

−c20 =
∫

dωgω

−c20(ω − ωr) + s20〈μP⊥〉
(ω − ωr)2 + 〈μP⊥〉2

(ω − ωr). (53)

For any neutrino spectrum function gω and a given μ, these two equations can be solved for 
the two unknowns, ωs(μ) and 〈P⊥(μ)〉. Note that eq. (52) has been obtained by dividing both 
sides of the first equality in (51) by 〈P⊥〉, and so it is a necessary condition for the existence of a 
nontrivial solution 〈P⊥〉 �= 0.

Eqs. (52) and (53) coincide with eq. (17) of [8] (notice that our definition of the sign of c20
is opposite to theirs). However, we did not use the ‘sudden approximation’ and the assumption 
that at the onset of the asymptotic regime the flavour spin vectors of the individual modes �Pω

have the same directions as they have at t = 0, which were employed in [8]. As was pointed out 
in Section 4.1, these assumptions are in general not well justified. Our consideration was instead 
based on the averaging procedure performed at the level of EoMs and the assumption that at 
asymptotically large times P⊥ = | �P⊥| undergoes only relatively small oscillations (though it is 
not constant). The latter is confirmed by our numerical calculations.

After a little algebra one can obtain from eqs. (52) and (53) a simpler pair of equations [8]:

s20

μ
= P0

∫
dωgω

κ

(ω − ωr)2 + κ2
, (54)

−c20

μ
= P0

∫
dωgω

(ω − ωr)

(ω − ωr)2 + κ2
. (55)

Here the notation κ ≡ 〈μP⊥〉 has been introduced. Noting that at the limit μ → μ0 one has 
κ → 0 and the integrand of (54) goes to gωπδ[ω − ωr(μ0)], one finds that in this limit eqs. (54)
and (55) become

s20

μ0
= P0πgωr(μ0), −c20

μ0
=P

∫
dωgω

P0

ω − ωr(μ0)
, (56)

where P stands for the Cauchy principal value. These equations can be solved to find the thresh-
old value μ0 and ωr(μ0) [8].

As was mentioned above, given the neutrino spectrum gω, eqs. (52) and (53) (or equivalently 
(54) and (55)) can be solved numerically for ωs and κ = 〈μP⊥〉. We will, however, consider now 
the simple box-type spectrum

gω = 1

2σ
·
{

1, |ω − ω0| ≤ σ,

0, |ω − ω0| > σ,
(57)

for which the explicit analytical solution of the problem can be found. Note that the parameter σ
here is related to the variance σ 2

ω ≡ 〈ω2〉 − 〈ω〉2 as σ 2
ω = 1

3σ 2. As the ω-spectrum (57) is flat, the 
threshold value μ0 can be immediately found from the first equation in (56):

μ0P0 = 2

π
s20 σ. (58)

For μ ≥ μ0 eqs. (54) and (55) yield

s20
2σ

μP0
= arctan

(ω0 − ωr + σ

κ

)
− arctan

(ω0 − ωr − σ

κ

)
, (59)

−c20
4σ = ln

(ω0 − ωr + σ)2 + κ2

2 2
. (60)
μP0 (ω0 − ωr − σ) + κ
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Fig. 3. Left panel: Order parameter RA ≡ 〈P⊥〉/(P0 sin 2θ0). Dash-dotted (blue) curve: numerical integration of EoMs 
for Gaussian spectrum, solid (black) curve: same for box-type spectrum. Dashed (red) curves: results of the analytical 
approach for these spectra (see the text). For both spectra P0 = 1, ω0 = 1, θ0 = 0.5. For Gaussian spectrum we use 
σω = 0.2, for box-type spectrum σ = 0.2, which corresponds to σω = σ/

√
3 � 0.115. Note that near coincidence of RA

curves corresponding to the two considered spectra is an accident of our choice of θ0. Right panel: same as left one, but 
for ωs . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

For the consistency of the last relation it is necessary that (ω0 − ωr) be negative. The pair of 
transcendental equations (59) and (60) admits analytical solution for the two unknowns, κ and 
ω0 − ωr . Noting that 〈P⊥〉 = κ/μ, we obtain

〈P⊥〉 = 2σ

μ
· sin(s20

2σ
μP0

)

exp (c20
2σ
μP0

) + exp(−c20
2σ
μP0

) − 2 cos(s20
2σ
μP0

)
, (61)

ω0 − ωr = −σ · exp (c20
2σ
μP0

) − exp(−c20
2σ
μP0

)

exp (c20
2σ
μP0

) + exp(−c20
2σ
μP0

) − 2 cos(s20
2σ
μP0

)
. (62)

The asymptotic precession frequency ωs(μ) can then be found from eqs. (62) and (50).
In Fig. 3 we compare the results of direct numerical integration of EoMs of the flavour spin 

vectors with the results of the approximate analytical approach described here. In the left panel 
we plot the order parameter RA = 〈P⊥〉/P⊥(0) = 〈P⊥〉/(s20P0), which describes decoherence 
effects, as a function of μ. The results are presented for two neutrino spectra: the Gaussian 
spectrum (9) and the box-type spectrum of eq. (57). The right panel of Fig. 3 presents a similar 
comparison for the asymptotic precession frequency ωs .

For the Gaussian spectrum the numerical solution of EoMs was obtained considering Nω =
3000 modes uniformly distributed in the interval (ω0 − 4σω, ω0 + 4σω). The same number of 
modes was used for the box-type spectrum. We considered the flavour evolution in the time 
range t ∈ [0, 10 000]. The error due to the discretization of the neutrino spectrum was estimated 
by doubling the number of the modes and is completely negligible (∼10−5). For the average 
value of P⊥ at late times we took the arithmetic mean of the last maximum and last minimum of 
the oscillating curve before t = 10 000 (see Fig. 2). The quantity ωs was found numerically from 
eq. (45).

For the approach based on the averaging procedure, in the case of the Gaussian spectrum 
we solve eqs. (54) and (55) numerically, whereas for the box-type spectrum the fully analytical 
solution in eqs. (61) and (62) is used. Note that near coincidence of the RA curves corresponding 
to the two spectra that we used is a curious accident of our choice of the value of θ0: we have 
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checked that for other choices the curves are clearly distinguishable, though similar in shape. 
It can be seen from the figure that the analytical approach reproduces the results of numerical 
integration of the exact EoMs extremely well. This is in accord with the conclusions of Ref. [8], 
where eqs. (54) and (55) were first obtained.

5. Decoherence by wave packet separation: adiabaticity and adiabaticity violation

Let us try to understand the obtained above results on coherence and decoherence of the os-
cillations in a dense neutrino gas from the viewpoint of wave packet separation. The split-up of 
wave packets in configuration space occurs as a consequence of the difference of group veloc-
ities of the wave packets of different neutrino states composing the initially produced neutrino 
flavour eigenstate. Since only the states that diagonalize the Hamiltonian of the neutrino system 
(propagation eigenstates) have well-defined group velocities, our discussion will be in terms of 
these eigenstates.7

Why doesn’t decoherence by wave packet separation occur in very dense neutrino gases, when 
the values of the neutrino self-interaction parameter μ are far above the threshold μ0? One might 
suspect that in this case the dynamics of neutrino evolution is such that the difference of the group 
velocities of different propagation eigenstates �vg vanishes and they all propagate with the same 
speed. It is, however, easy to make sure that this is not the case, and �vg does not vanish. As 
we shall see, it is nevertheless possible to qualitatively understand the absence of decoherence in 
the large μ limit as well as partial decoherence for μ only slightly exceeding μ0 in terms of the 
behaviour of the neutrino propagation eigenstates.

For neutrino systems with time-dependent Hamiltonians, such as the one described by the 
Hamiltonian vector (6), the propagation eigenstates cannot be defined universally, i.e. in a time-
independent way. However, at any instant of time t they can be defined as the states diagonalizing 
the Hamiltonian at this particular time. These are the so-called instantaneous eigenstates of the 
Hamiltonian. At a given time t the neutrino flavour eigenstates can be written as linear superpo-
sitions of the instantaneous propagation eigenstates. As in ordinary matter, these superpositions 
are determined in the 2-flavour case by the mixing angle in matter θ = θ(t).

The propagation eigenstates evolve independently in the adiabatic limit, i.e. when the neu-
trino Hamiltonian changes relatively slowly, so that the system has enough time to ‘adjust’ itself 
to the changing conditions. In terms of the flavour spin vectors, adiabaticity means that the rate 
of evolution of �Hω is small compared to the frequency Hω of precession of the individual �Pω

around their �Hω. In this case, in the course of their precession around �Hω, the vectors �Pω ‘track’ 
the movements of �Hω. If the adiabaticity is violated, the propagation eigenstates do not evolve 
independently; instead, they can go into each other during the evolution of the neutrino system. 
As a measure of adiabaticity violation one can choose the ratio γ of the off-diagonal element of 
the Hamiltonian of the system in the propagation eigenstate basis to the difference of its diag-
onal elements. Adiabatic regime corresponds to γ � 1, whereas γ � 1 would mean maximal 
violation of adiabaticity. It should be noted that, while for the oscillations in ordinary matter adi-
abaticity may only be violated in the case of non-uniform matter, in dense neutrino environments 
adiabaticity violation may occur even in the case of constant neutrino density. This happens be-
cause in the latter case the Hamiltonian of the system depends not only on the overall density of 
the neutrino gas, but also on its flavour composition, which changes with time.

7 Collective neutrino oscillations have been previously considered from the viewpoint of the propagation eigenstate 
basis in [37,38], but the issue of wave packets and their separation has not been addressed there.
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Consider now several regimes of the evolution of the system, depending on the values of the 
parameter μ.

I. μP0 � ω0. In this case the Hamiltonian vector �Hω = ω �B + μ �P nearly coincides with μ �P . 
Since at t = 0 all the individual flavour spin vectors �Pω as well as their sum �P point in the 
z-direction, all �Pω are practically collinear with their �Hω. From EoM (2) it then follows that 
there is essentially no flavour evolution in this case.
As the Hamiltonian of the system remains practically constant, the adiabaticity condition is 
very well satisfied. The propagation eigenstates are well defined and evolve independently. 
The condition μP0 � ω0 means that the mixing is strongly suppressed in the neutrino gas, 
so that the initially produced flavour state practically coincides with one of the propagation 
eigenstates rather than being a nontrivial superposition of different eigenstates. Therefore, 
no wave packet separation occurs (a propagation eigenstate cannot ‘separate with itself’), 
and hence there is no decoherence.

II. σω � μP0 � ω0. This case is most simply considered in the corotating frame, in which one 
has to replace ω → ω′ = (ω − ωs). Since |ω − ωs | � σω, the condition σω � μP0 implies 
μP0 � |ω′|. This case then reduces to the previous one. In the corotating frame one has good 
adiabaticity and suppressed mixing, which means no wave packet separation and therefore 
no decoherence. Since decoherence is a physical process, it does not depend on the frame 
in which the evolution of the system is considered; therefore no decoherence occurs in the 
original flavour frame either. The individual flavour spin vectors �Pω as well as the global 
flavour spin �P are practically constant in the corotating frame, which means that in the 
original frame they all precess around �B with the same frequency ωs , that is, synchronized 
oscillations occur.
It is interesting to interpret this case also directly in the original flavour frame, without any 
reference to the corotating one. The condition σω � μP0 � ω0 means that γ � 1, that is 
adiabaticity is either moderately or strongly violated in the original frame.8 Strong violation 
of adiabaticity would mean that the propagation eigenstates are not a physically meaningful 
notion; even though they are mathematically well defined, they are strongly mixed and go 
into each other in the course of the evolution of the system. Group velocities are then not 
well defined either, and no wave packet separation can occur. To put it slightly differently, 
the initially produced propagation eigenstates with larger and smaller group velocities will 
fully (or almost fully) interchange on a time scale τ that is short compared to the naively 
expected coherence length Lcoh. The slow state becomes the fast one and vice versa; as 
a result, a small wave packet separation over the period τ is compensated during the next 
period τ . As a consequence of frequent shuffling of the fast and slow propagation eigenstates, 
no noticeable wave packet separation occurs.

III. μ is slightly above μ0 ∼ σω. This case can be understood similarly to the previous one; the 
difference is that now γ � 1, i.e. adiabaticity is only slightly violated. The shuffling of the 
fast and slow propagation eigenstate still occurs, but with an amplitude that is less than one: 
only a fraction of the fast propagation eigenstate goes into the slow one and vice versa. As 
a result, at late enough times a split-up of the wave packets occurs, but the strengths of the 
separated wave packets are uneven: the probability of finding a neutrino in one of them is 

8 Note that the degree of adiabaticity is frame-dependent because it is not a physically observable quantity. Only the 
probabilities of flavour transitions have direct physical meaning.
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smaller than in the other. The wave packet separation is then only partial, which means that 
only partial decoherence has occurred.

IV. μ < μ0. In this case γ = 0 (perfect adiabaticity), so that the propagation eigenstates are well 
defined and evolve independently. The mixing angle at production is of order of vacuum 
mixing angle θ0, which means that the produced neutrino state is a nontrivial superposition 
of the two propagation eigenstates. At late times the complete wave packet separation occurs, 
leading to complete decoherence.

More detailed discussion of the impact of adiabaticity and adiabaticity violation on decoher-
ence of synchronized neutrino oscillations will be given in [24].

6. Summary and discussion

We have revisited synchronized neutrino oscillations in dense uniform and homogeneous 
neutrino gases. Our goal was twofold: (i) to give an approximate analytical description of the 
synchronized neutrino oscillations and of the de-synchronization phenomenon, and (ii) to inter-
pret de-synchronization in terms of late-time decoherence. To this end, we first developed an 
exact formalism of spectral moments of the flavour spin vectors, and then applied it to find ap-
proximate analytical descriptions of decoherence effects in the system. Our spectral moments 
formalism also allowed us to find a previously unknown conservation law satisfied by the quan-
tities characterizing a homogeneous and isotropic neutrino gas.

In our first analytical approach, we assumed that at asymptotically large times the global 
flavour spin vector �P undergoes a simple precession around the vector �B that describes the 
vacuum contribution to the neutrino Hamiltonian, with the length of �P remaining constant 
but possibly being smaller than its initial value P0. The shrinkage of �P signifies a partial or 
complete decoherence. We have found that this regime can only be nontrivially realized if the 
transverse (with respect to �B) components of �P and of the vector �S defined in eq. (12) satisfy 
�S⊥ = ωs

�P⊥, where ωs is the precession frequency. We have additionally assumed that the longi-
tudinal components of �P and �S satisfy a similar relation, i.e. �S‖ = ωs

�P‖. This allowed us to find 
(in Section 4.3.1) simple analytical expressions for the asymptotic value of P⊥ and the precession 
frequency ωs as functions of the neutrino self-interaction parameter μ. In particular, we found 
a simple and direct mathematical explanation of the existence of the threshold value μ0, below 
which the complete decoherence occurs: for μ < μ0 the quadratic equation from which P = | �P |
is determined has no real solutions. We thus confirmed the conclusions of Ref. [8], where the 
existence of the threshold μ0 and the threshold behaviour of the asymptotic value of P⊥ were 
previously found.

The described approach, in addition to explaining the existence of the threshold μ0 and pro-
viding the correct order-of-magnitude estimate of its value (μ0 ∼ σω, where σω is the effective 
width of the neutrino spectrum in the variable ω = �m2/(2p)), predicted the correct behaviour 
of asymptotic P⊥ at μ � μ0. It, however, failed to reproduce the correct values of P⊥ near the 
threshold μ0. One possible reason for this can be traced back to the fact that our additional as-
sumption �S‖ = ωs

�P‖ is actually satisfied with a good accuracy far above the threshold but breaks 
down close to it. We therefore attempted to find an analytic approach based solely on the con-
dition �S⊥ = ωs

�P⊥, which directly follows from the assumption of constant asymptotic P . By 
making use of our spectral moments formalism, we then found that this assumption cannot be 
exact as it leads to controversial results, at least for μ only slightly above the threshold μ0. This 
has been confirmed by our numerical calculations, which showed that for these values of μ both 



400 E. Akhmedov, A. Mirizzi / Nuclear Physics B 908 (2016) 382–407
P and P⊥ do not become constant even at extremely late times, far above the naively expected 
coherence time tcoh � Lcoh. Instead, they continue oscillating around their mean values, though 
with relatively small amplitudes (see Fig. 2).

The smallness of the late-time oscillations of P and P⊥ suggests that they may be replaced 
at asymptotic times by their average values. However, as our analysis shows, this cannot be 
done by simply assuming them to be constant; instead, a consistent averaging procedure must 
be employed. We performed such a procedure in Section 4.3.2 by averaging the EoMs of the 
flavour spin vectors �Pω over a very large time interval. The averaging is most simply done in 
the corotating frame, i.e. in the frame rotating around �B with the angular velocity ωs (see the 
Appendix). Our analysis in Section 4.3.2 was based on two simple observations:

• Large-interval time averages are dominated by the late-time behaviour of the system, so that 
by studying such averages one gains information about the asymptotic regime of evolution 
of the system.

• The smallness of the amplitude of the late-time oscillations of P⊥(t) means that in certain 
time integrals related to the averaging procedure P⊥(t) can be replaced by its asymptotic 
average value and pulled out of the integral.

No further assumptions or approximations were used.
The developed approach led to very simple analytical expressions for the averaged transverse 

and longitudinal components of the vector �Pω in terms of the asymptotic value of P⊥ and ωs , 
which can then be found from consistency conditions. Our numerical calculations demonstrate 
that the asymptotic P⊥ and ωs thus obtained reproduce very well the results of direct numerical 
integration of exact EoMs for �Pω (see Fig. 3).

The analytic expressions obtained in Section 4.3.2 coincide with those found in Ref. [8] basing 
on different approximations and assumptions. Those assumptions are in general not realistic and, 
as was pointed out by the authors of [8] themselves, may actually be badly violated. How can then 
one understand the success of the analytical approach of [8] for describing the asymptotic values 
of P⊥ and ωs? As follows from our analysis, this is a consequence of cancellation of two large 
errors. The authors of [8] used the ‘sudden approximation’ and the assumption that the values of 
the vectors �Pω at the onset of the asymptotic regime coincide with their initial values at t = 0
(see the discussion in our Section 4.1). This allowed them to make the following replacements at 
asymptotic times (in our notation):

Pω‖(t) → Pω‖(0), �P⊥(t) · �Pω⊥(t) → P⊥(t)Pω⊥(0), (63)

and as a result to replace

(ω − ωr)Pω‖(t) + μ �P⊥(t) · �Pω⊥(t) → P0gω

[ − c20(ω − ωr) + s20μP⊥(t)
]

(64)

(cf. the numerators of the integrands in eqs. (16) and (17) of [8]). As follows from the calculations 
presented in the Appendix of our paper, although each of the two replacements in eq. (63) is 
unjustified, the errors introduced by these replacements in the expression on the left hand side 
of eq. (64) nearly cancel each other by virtue of the relation in eq. (A.6), which is a direct 
consequence of the EoM for �Pω in the corotating frame. Thus, our results provide a justification 
of the analytical approach of Ref. [8].

As was pointed out in Section 4.1, the analytical expressions first obtained in [8] and rederived 
in a different approach in our Section 4.3.2 reproduce very well the results of numerical calcula-
tions of the asymptotic values of P⊥, but they fail to satisfy the conservation laws (17) and (25)
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(except in the limit μ � μ0). It is actually easy to understand why this happens. The derivations 
of these expressions involved replacing the vectors �Pω by their averages 〈 �Pω〉. This allows an ac-
curate determination of the averaged values of the longitudinal and transverse components of the 
global flavour spin vector �P , which are connected to the corresponding components of 〈 �Pω〉 by 
linear relationships, see eq. (51). At the same time, the conservation laws (17) and (25) contain, 
along with linear members, terms that are quadratic or bilinear in the components of �P and �S; 
their averages are not connected to the components of 〈 �Pω〉 by linear relationships and therefore 
cannot be reliably found from the latter. The reason for this is essentially that the average of a 
square is not in general equal to the square of an average. On the other hand, in the limit μ → ∞
the condition P⊥ = const. is very well satisfied at all times; in this case it is not necessary to 
invoke any averaging procedure, and the formulas derived for the averaged individual-mode and 
global flavour spin vectors are actually valid for the un-averaged quantities as well. The conser-
vation laws (17) and (25) are then satisfied. Indeed, using eqs. (48) and (49) one can readily make 
sure that for general μ ≥ μ0 the differences of the left-hand and right-hand sides of eqs. (17) and 
(25) are proportional to P⊥ − s20P0 = P⊥ − P⊥(0). In the limit μ → ∞ this quantity vanishes, 
and the conservation laws (17) and (25) are fulfilled.

In our analysis we had in mind a system of identical neutrino wave packets, with the function 
gω characterizing the energy distribution within each individual wave packet. Such a system 
is known to be equivalent to a system consisting of neutrinos with well-defined energy and gω

characterizing the energy spectrum of the neutrino ensemble [34]. Our treatment therefore applies 
to such a system as well.

Decoherence in a system of wave packets can be considered both in the momentum space and 
in the configuration space. In the latter case it is a consequence of separation of wave packets 
moving with different group velocities. In Section 5 we presented a qualitative interpretation of 
our results in terms of the possible wave packet separation. We have shown that all the regimes 
that we studied (perfect coherence and partial or full decoherence) can be understood from this 
standpoint. Our qualitative analysis there, however, did not provide a simple explanation of the 
existence of the threshold μ0, though it explained the complete decoherence for μ < μ0 as being 
due to perfect adiabaticity.

A dense uniform and isotropic neutrino gas that we considered in the present paper is the 
simplest possible system in which collective neutrino oscillations can occur. It can probably 
only very approximately represent the phenomena occurring in dense neutrino gases in the early 
Universe and to some extent in supernovae. Despite its simplicity, neutrino flavour evolution 
in this system exhibits a rich variety of possible patterns, the reason being that the equations 
of motion governing its evolution are highly nonlinear. We have addressed a number of is-
sues pertaining to decoherence effects in this system. Some topics were, however, left out of 
our discussion. Those include e.g. the questions of what determines the relaxation time (i.e. 
the time necessary for the asymptotic regime to set in) and the amplitude of the residual os-
cillations of P at late times. Hopefully, future studies will address these issues as well as 
will shed light on decoherence effects in collective neutrino oscillations in more realistic set-
tings.
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Appendix A. Formalism in the corotating frame and the evolution at asymptotically large 
times

Consider the evolution of the flavour spin vectors in the corotating frame (i.e. in the frame 
rotating around �B with the angular velocity ωs). We will mark the flavour spins and related 
quantities in this frame with a prime. Note that going to the corotating frame does not change the 
longitudinal (with respect to �B) components of the flavour spin vectors and spectral moments 
as well as the lengths of their transverse components. We shall be assuming that at t = 0 the 
corotating frame coincides with the original one, so that the initial conditions for all the primed 
quantities are the same as for the corresponding unprimed ones.

The EoM of the flavour spin vectors of the individual modes in the corotating frame is

�̇P ′
ω = �H ′

ω × �P ′
ω, (A.1)

where

�H ′
ω = (ω − ωs) �B + μ �P ′ = (ω − ωr) �B + μ �P ′⊥. (A.2)

Here the quantity ωr was defined in eq. (50), and in the last equality we have taken into account 
that the longitudinal component of �P ′ is conserved and coincides with �P‖ = −c20P0 �B . The 
evolution equations for the longitudinal and transverse components of �P ′

ω read

Ṗ ′
ω‖ = �B · (μ �P ′⊥ × �P ′

ω⊥), (A.3)

�̇P ′
ω⊥ = �B × [(ω − ωr) �P ′

ω⊥ − μP ′
ω‖ �P ′⊥]. (A.4)

In eq. (A.4) the first term in the square brackets describes the precession of �P ′
ω⊥ around �B , 

whereas the second term is responsible for the variations of the length of �P ′
ω⊥. Integrating 

eq. (A.1) over ω, we obtain the EoM of �P ′:

�̇P ′ = �B × (�S′⊥ − ωs
�P ′⊥). (A.5)

The EoMs of the spectral moments �K ′
n can be found by multiplying (A.1) by ωn and integrating 

over ω.
A useful relation is obtained by noting that eq. (A.1) implies �H ′

ω · �̇P ′
ω = 0, that is

(ω − ωr)Ṗ
′
ω‖ + μ �P ′⊥ · �̇P ′

ω⊥ = 0. (A.6)

Multiplying this by ωn and integrating over ω, one can find a scalar relation between the deriva-
tives of �K ′

n and �K ′
n+1, analogous to eq. (21).

Consider now the asymptotic regime. If not indicated otherwise, in what follows we will 
be considering all the relevant quantities at asymptotically large times, without specifying this 
explicitly and keeping the same notation for these quantities as before.

Let us first assume that the evolution of the flavour spin vector �P at late times is the simple 
precession around �B with a constant frequency ωs . This means that in the corotating frame the 
flavour spin vector �P ′ remains constant at asymptotic times. Eq. (A.5) then yields
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�S′⊥ = ωs
�P ′⊥, (A.7)

which, in particular, means that �S′⊥ is also constant at asymptotic times. At the same time, eq. (15)
together with the asymptotic constancy of P = P ′ implies S′‖ = const. Thus, we conclude that 

the vector �S′ is constant at late times.
Acting by induction, it is then easy to show that all the spectral moments �K ′

n satisfy similar 
relations, that is, at asymptotically large times they all remain constant, with their transverse 
components collinear with �P ′⊥. (Note that such a behaviour in the corotating frame means that 
in the original flavour frame they all precess around �B with the same constant frequency ωs , 
remaining in the same plane.) From the definition of the spectral moments �K ′

n, it then follows 
that the flavour spin vectors �P ′

ω of the individual ω-modes also satisfy similar relations, that is

�P ′
ω = const., �P ′

ω⊥ = aω
�P ′⊥, (A.8)

with constant aω. By making use of eqs. (A.8) and (A.4), one can find the ratio of the longitudinal 
and transverse components of the asymptotic vector �P ′

ω. The same relation will also hold for the 
corresponding unprimed quantities in the original flavour frame. Once the ratio of Pω‖ and Pω⊥
is known, one can then find these quantities from the normalization condition P 2

ω‖+P 2
ω⊥ = P 2

ω =
P 2

0 g2
ω.

With the expressions for Pω‖ and Pω⊥ at hand, the longitudinal and transverse components 
of �P can be found by integrating over the ω-modes. However, the direct calculation shows that, 
except in the limit μ → ∞, the values of P⊥ obtained in this way do not reproduce correctly the 
results of numerical integration of the exact EoMs. This means that the assumption that P ≡ | �P |
becomes constant at asymptotically large times, on which our consideration here was thus far 
based, is actually incorrect.

Indeed, it was demonstrated in Section 4.3 that for μ exceeding the critical value μ0 (but not 
far above it), the quantities P⊥ and P do not become constant even at very late times; instead, 
they keep oscillating around their mean values. The amplitude of the late-time oscillations of 
P⊥ = P ′⊥ is relatively small, and therefore it seems to be a reasonable approximation to replace 
it at asymptotic times by its mean value, found by averaging over these oscillations. However, 
this should be done through a consistent averaging procedure rather than by simply assuming 
that at large times P ′⊥ = const.

To carry out the averaging procedure systematically, let us average the EoMs of the flavour 
spin vectors over a very large (formally infinite) time interval. Since the infinite-interval average 
of the derivative of any bounded function vanishes,9 eqs. (A.3)–(A.5) yield

〈 �P ′⊥ × �P ′
ω⊥〉 = 0, (A.9)

(ω − ωr)〈 �P ′
ω⊥〉 = μ〈P ′

ω‖ �P ′⊥〉, (A.10)

〈 �S′⊥〉 = ωs〈 �P ′⊥〉. (A.11)

Note that eq. (A.11) is simply the averaged version of eq. (A.7).
To draw useful information from eq. (A.10), let us note that, while at late times the transverse 

component of the global flavour spin in the corotating frame �P ′⊥ is essentially a fixed-direction 
vector with its length exhibiting only small oscillations, this is in general not the case for the 

9 Indeed, for a bounded function f (t) one has 〈ḟ (t)〉 ≡ lim 1
T

∫ T
0 ḟ (t)dt = lim 1

T
[f (T ) − f (0)] = 0.
T →∞ T →∞
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components of the flavour spin vectors �P ′
ω of the individual ω-modes, which undergo large-scale 

variations.10 Because infinite-time averages are dominated by the late-time contributions to the 
averaging integral, it is then a good approximation to replace the nearly constant vector �P ′⊥(t)

by its mean value and pull it out of the integral when calculating the average of P ′
ω‖ �P ′⊥. This 

gives

〈P ′
ω‖ �P ′⊥〉 � 〈P ′

ω‖〉〈 �P ′⊥〉. (A.12)

We will be using the same factorization approximation whenever calculating the averages of the 
products of �P ′⊥ and any components of �P ′

ω.
Substituting eq. (A.12) into (A.10) yields

〈 �P ′
ω⊥〉

〈P ′
ω‖〉

= μ〈 �P ′⊥〉
(ω − ωr)

. (A.13)

Note that in the factorization approximation eq. (A.9) becomes 〈 �P ′⊥〉 × 〈 �P ′
ω⊥〉 = 0. This relation 

does not bring in any new information, as it follows also from (A.13).
Eq. (A.13) equips us with the ratio of 〈 �P ′

ω⊥〉 and 〈P ′
ω‖〉. However, one cannot combine it 

with the normalization condition for P ′2
ω in order to find 〈 �P ′

ω⊥〉 and 〈P ′
ω‖〉 separately, since these 

averages do not satisfy the same normalization condition as the un-averaged quantities �P ′
ω⊥

and P ′
ω‖. Therefore, in order to determine 〈P ′

ω‖〉 and 〈 �P ′
ω⊥〉, one needs one more relation between 

them. To find it, we first rewrite eq. (A.13) as

〈 �P ′
ω⊥〉 = f (ω,μ)〈μ �P⊥〉,

〈P ′
ω‖〉 = f (ω,μ)

[
ω − ωr(μ)

]
, (A.14)

with as yet unknown function f (ω, μ). Next, consider the time average of the quantity �P ′
ω · �H ′

ω . 
Using eq. (A.14) and the definition of �H ′

ω given in eq. (A.2), one can express this average through 
f (ω, μ):

〈 �P ′
ω · �H ′

ω〉 = f (ω,μ)
[
(ω − ωr)

2 + 〈μP⊥〉2]. (A.15)

In obtaining this relation we have used the factorization approximation for 〈 �P ′
ω⊥ · �P ′⊥〉. On the 

other hand, at a given time t1, for the un-averaged quantity �P ′
ω(t1) · �H ′

ω(t1) one can write

�P ′
ω(t1) · �H ′

ω(t1) = (ω − ωr)P
′
ω‖(t1) + μ �P ′⊥(t1) · �P ′

ω⊥(t1)

= (ω − ωr)P
′
ω‖(0) + μ �P ′⊥(t1) · �P ′

ω⊥(0)

+ {
(ω − ωr)[P ′

ω‖(t1) − P ′
ω‖(0)] + μ �P ′⊥(t1) · [ �P ′

ω⊥(t1) − �P ′
ω⊥(0)

]}
.

(A.16)

Let us now consider the expression in the curly brackets in (A.16). We have

10 This can be seen from eq. (A.4). For instance, in the limit μ → μ0 we have P ′⊥ → 0, and the second term in the 
square brackets in this equation vanishes, whereas the first term describes the undamped precession of �P ′⊥ around �B in 
the plane perpendicular to �B with the frequency ω − ωr . For μ > μ0 also the length of �P ′

ω⊥ varies, and therefore so 
does P ′ .
ω‖
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{
(ω − ωr)[P ′

ω‖(t1) − P ′
ω‖(0)] + μ �P ′⊥(t1) · [ �P ′

ω⊥(t1) − �P ′
ω⊥(0)

]}

=
t1∫

0

dt
[
(ω − ωr)Ṗ

′
ω‖(t) + μ �P ′⊥(t) · �̇P ′

ω⊥(t) − μ �P ′⊥(t) · �̇P ′
ω⊥(t)

]

+ μ �P ′⊥(t1) · [ �P ′
ω⊥(t1) − �P ′

ω⊥(0)
]

= −μ

t1∫
0

dt �P ′⊥(t) · �̇P ′
ω⊥(t) + μ �P ′⊥(t1) · [ �P ′

ω⊥(t1) − �P ′
ω⊥(0)

]
. (A.17)

Here in going from lines 2, 3 to line 4 we have used relation (A.6). We will eventually be inter-
ested in the time average of eq. (A.17). Since the integrals related to infinite-interval averages 
are dominated by the contributions of late times in the integration intervals, we can concentrate 
on the large t1 limit of (A.17). The integral in the last line of this equation is also dominated by 
the late-time contributions, as its integrand is not suppressed at large t . Since �P ′⊥(t) is nearly 
constant at asymptotic times, one can approximately replace it by its value at t = t1 and pull it 
out of the integral. The two terms in last line in eq. (A.17) then cancel each other, which means 
that the average of the expression in the curly brackets in (A.16) can be neglected. Thus, the 
averaging of eq. (A.16) yields

〈 �P ′
ω · �H ′

ω〉 � (ω − ωr)P
′
ω‖(0) + �P ′

ω⊥(0) · 〈μ �P ′⊥〉. (A.18)

The quantities �P ′
ω⊥(0) are constant vectors in the corotating frame which lie in the x′z′ plane 

and all point in the same direction, irrespectively of the value of ω. This follows from the fact 
that at t = 0 they coincide with the corresponding �Pω⊥, and the initial conditions for �Pω in 
eq. (10) mean that all �Pω⊥(0) point in the same direction. The averaged global flavour spin 
〈 �P ′⊥〉 is also a constant vector in the corotating frame. Its direction can only depend on the 
vectors characterizing the neutrino system under consideration and should be given by their 
linear superposition. Those are the vector �n′

z(0) = �nz, which specifies the initial conditions for 
the flavour spin vectors, and �B. The latter, as well as the longitudinal component of the former, 
cannot enter in the definition of a transverse vector, whereas the transverse component of �n′

z(0)

defines the direction of �P ′
ω⊥(0). We therefore conclude that 〈 �P ′⊥〉 and �P ′

ω⊥(0) must be collinear. 
Thus, one can rewrite eq. (A.18) as

〈 �P ′
ω · �H ′

ω〉 � (ω − ωr)P
′
ω‖(0) + μ〈P ′⊥〉P ′

ω⊥(0)

= [ − c20(ω − ωr) + s20μ〈P⊥〉]P0gω. (A.19)

Here we have taken into account that the initial conditions for the primed and the corresponding 
unprimed components of the flavour spin vectors are the same and that P ′⊥ = P⊥. Combining 
eqs. (A.19) and (A.15), one arrives at the expression for f (ω, μ) given in eq. (49).
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