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ABSTRACT 

We consider several questions on spaces of nilpotent matrices. We present 

sufficient conditions for triangularizability and give examples of irreducible spaces. 

We give a necessary and sufficient condition, in terms of the trace, for all linear 

combinations of a given set of operators to be nilpotent. We also consider the 

question of the dimension of a space _z? of nilpotents on 5”. In particular, we give a 

simple new proof of a theorem due to M. Gerstenhaber concerning the maximal 

dimension of such spaces. 

1. INTRODUCTION 

Collections of nilpotent matrices with various structures have been 
studied by many authors. For certain structures, e.g., a multiplicative semi- 

LINEAR ALGEBRA AND ITS APPLICATIONS 149:215-225 (1991) 

0 Elsevier Science Publishing Co., Inc., 1991 

215 

655 Avenue of the Americas, New York, NY 10010 0024-3795/91/$3.50 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81104571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


216 B. MATHES, M. OMLADIC, AND H. BADJAVI 

group or a Lie algebra, it is well known that the collection is (simultaneously) 
triangularizable. (See Levitzki’s theorem [2], Engel’s theorem, and its exten- 
sion by Jacobson [3].) If _/ is merely a linear space of nilpotent matrices, 
however, it can be very far from triangularizable; in fact Y may be 
irreducible, i.e., it may fail to have a common, nontrivial, invariant subspace. 

In this paper we consider several questions on spaces of nilpotent 
matrices. We present sufficient conditions for triangularizability and give 
examples of irreducible spaces. We give a necessary and sufficient condition, 
in terms of the trace, for all linear combinations of a given set of operators to 
be nilpotent. We also consider the question of the dimension of a space _/’ of 
nilpotents on ff”. In particular we give a simple new proof of the following 
result of Gerstenhaber [l]: the dimension of _Y cannot exceed n(n - 1)/2, 
the dimension of the strictly upper triangular matrices; furthermore, if the 
dimension of _/ is equal to n(n - 1)/2, then .Y is triangularizable (and 
thus coincides with the algebra of all triangular nilpotents relative to some 
basis). 

2. A SIMPLE PROOF 

The proof of Gerstenhaber’s result given in [I] needs the assumption that 
the field [F has at least n elements, and Gerstenhaber speculates that this 
assumption may be unnecessary. It is proved in [6] that this is indeed the 
case, and Gerstenhaber’s result is obtained with no conditions on the 
underlying field. Our proof is substantially different from, and we believe 
much simpler than, the proofs previously obtained. 

Let tr(A) denote the trace of a matrix A. 

LEMMA 1. If A, B, and A + B are nilpotent matrices over a field F, then 
tr(AB) = 0. 

Proof. Choose a basis relative to which B is in Jordan form; thus 
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where ai = 0 or 1 (i = 1,. . , n - 1). Let S,(M) he the sum of the 2 X2 
principal minors of a matrix M; thus if M is nilpotent then S,(M) = 0. If 
A = (uii) relative to our chosen basis, then a brief calculation verifies that 

S,(A) - S,(A + B) = c 6,a,+,, = tr(AB). 
i=l 

It follows that tr(AB) = 0, since both A and A + B are assumed to be 
nilpotent. n 

THEOREM 1. If -8 is a linear space of n X n nilpotent matrices ocer u 

field F, then the dimension of ._Y is no greater than n(n - I)/2. 

Proof. Let 7 be the space of all strictly upper triangular matrices, let 
_.Y1 = _Y n .Y, and fix a complementary subspace _/a of 2, in _.8 (so 
_~Y=-z@i-t_Y~ and lin_Yz={O), which will be denoted by _8 = _.Yi@ 
lz). For any set .P of n X n matrices over iF, define 

Y1 ={Altr(AB)=Oforall BE./}; 

thus we have dim .P + dim 9 I = n2. Note that F 1 is the set of all upper 
triangular matrices and, since the elements of da are nilpotent, Y 1 n 1, 
= {O). For any A E -Y,, B E -8__, and C E 7 1 we observe that tr(AC) = 0 
and, by Lemma 1, tr(AB) = 0; so we have 7 * @_./a c _8i’. It follows that 
dim _z$ + n(n + I)/2 < nz -dim Yi. n 

Our proof for the second half of Gerstenhaber’s result works as long as 
the underlying field [F is not the two-element field. The proof is based on the 
following lemma and a theorem of Jacobson. A brief and elementary proof of 
Jacobson’s theorem may be found in [5]. 

LEMMLIA 2. lf A und B are matrices or;er a field IF with more than tzLo 
elements, and if ecery linear combination of A and B is nilpotent, then 
tr(AB”) = 0. 

Proof. Write B in its Jordan form as in the proof of Lemma 1. Let 
S,(M) be the sum of the 3X3 principal minors of a matrix M; thus 
S&A + zB)= 0 for every z E 5, since A + zB is nilpotent for all .a E [F. 
Viewing S,(A + zB) as a quadratic polynomial in z, we must have that each 
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coefficient vanishes, since IF has at least three elements. A calculation reveals 

that the coefficient of z2 is tr(AB”). n 

JACOBSON’S THEOREM [3]. If A’ is a set of nilpotent matrices such that 

for every A, B l .k’ there exists c E IF with AB - CBA EN, then N is 

triangularizable 

THEOREM 2. If _.8 is a linear space of nilpotent matrices over a field iF 

with more than two elements, and if the dimension of 1 is n(n - 1)/2, then 

-8 is triangularizable. 

Proof. Adopting the notation of Theorem 1, we must have that Y 1 

@_z!~ = 1,‘. It follows that _./i = _Yz* f? %= -8 I n 97 Given B E J, 

choose a basis relative to which B E 5 This yields B” E _.5 1 by Lemma 2, 

and since we also have B” E 7, we conclude that B” E -/I c _z?. Therefore, 

_8 contains BC + CB = (B + C)” - B2 - C” for all B, C E _/, and the theo- 

rem follows from Jacobson’s theorem. W 

3. A TRACE CONDITION ON SETS OF NILPOTENTS 

This section provides a result that characterizes those sets of matrices 

that generate linear spaces of nilpotents. Let S, denote the group of 

permutations on the set {1,2,. . , k}. 

THEOREM 3. Suppose & is a set of n X n matrices over a field with 

characteristic zero. The following are equivalent: 

(i) The additive semigroup generated by G? consists of nilpotents. 

(ii) The linear space generated by B consists of nilpotents. 
(iii) For every finite sequence (E,):, 1 in &, 

c trb’&,&q. . . Et& = 0. 
CJ E s, 

Proof. The implication (ii) * (i) is trivial, and the converse is easy: if 

(Ai);= 1 is a sequence of scalars, then A E Ck= 1 Ai Ei is nilpotent if and only if 
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tr(A”‘) = 0 for all positive integers m (here we use the hypothesis that the 
underlying field has characteristic zero). Fixing m and viewing 

as a polynomial p in k indeterminates, we note that if 

PC m,,m,,...,mk) =0 

for all sequences <mi>k= I of positive integers, then p = 0. 
We now prove the equivalence of (i) and (iii). Assume (i) holds, and let 

( Ei)f= 1 be a finite sequence in ~5’. For every sequence of positive integers 
(m,>i(, ,, one has that 

Viewing this as a polynomial in k indeterminates, we see that the 
coefficient of m,m2 * . . mk is C, =sI; tr(E,C,,E,C,, . . . E,(,,), and (iii> follows. 
Assume now that (iii) holds, and let (Ej)kcl be a finite sequence in 8’. We 

must prove that C:= lEi is nilpotent, i.e. that tr( (X2=, E,),‘) = 0 for every 
positive integer m. If 0 < ri < m (i = 1,. . , k) and Ct=, ri = m, then define 

B(r,, ra>. . . , rk) to be the sum of all distinct products of m matrices in which 
ri of the factors are Ei (i = 1,. . , k). (W e mean that two products are distinct 
provided they are distinct as words, rather than distinct matrices.) Thus we 
have 

where (Ai&!=, is any sequence that maps exactly t-j integers to E, (i = 
1 , . . . , k). By our hypothesis we must have that tr(B(r,, r2,. . , rk)) = 0. It now 
follows that 

tr 

!( I 
i Ei 

i=l 
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Condition (iii) of the theorem above should be contrasted with the trace 

condition that & is simultaneously triangularizable (see Theorem 1 of [4]). If 

8 consists of nilpotents, then B is simultaneously triangularizable if and 

only if each summand of 

vanishes. 

We comment that Lemma 2 is false when iF is the two-element field. A 

counterexample is given by the following matrices: 

This example and the following corollary show that the equivalence of parts 

(ii) and (iii) of Theorem 3 is false in general if we impose no restriction on 

the underlying field. If 6 = IF[cr], where LY is a root of x2 + x + 1, and we 

view A and B as matrices over G, then we see that the additive semigroup 

generated by {A, B} consists of nilpotents whiIe the Iinear space generated by 

(A, B} does not. Thus the equivalence of(i) and (ii) is aIso false in general if 

we impose no restriction on the underlying field. 

C~ROLLAHY 1. Suppose 2 is a linear space of nilpotent matrices ocer a 
field with characteristic zero. If A, B E 1 and k > 1, then tr(AkB) = 0. 

Proof. Let (E,):f,’ be the sequence defined by Ei = A (i = 1,. _, k) and 

Ek+l = B. Then 0 = CaESk+,tr(EE,(,)E,(,, . . . EOo+,,)=(k +l)!tr(AkB). n 

4. TRIANGULARIZABLE SPACES 

It is sometimes the case that if a linear space of nilpotent matrices enjoys 

some additional property, then one may conclude that the space is triangular- 

izable. For example, in the proof of Gerstenhaber’s result presented in [l], 

the following statement is established: if -5 is a linear space of nilpotent 

matrices (over an arbitrary field) that contains all the powers of a matrix S 

with maximal index of nilpotence, then 2 is triangularizable. Another 

example is given in [6], which says if _.Y is a linear space of nilpotent 
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matrices (over an arbitrary field) that is generated by its rank-one matrices, 
then -z? is triangularizable; the following is our generalization. 

THEOREM 4. If 9 is an additive semigroup of nilpotent matrices (over 
an arbitrary field) and 9 is generated by its rank-one matrices, then 9 is 

triangularizable . 

Proof. Let B be the set of rank-one matrices in 9. To show that 9 is 
triangularizable it suffices to prove that the multiplicative semigroup gener- 
ated by G consists of nilpotents (by Levitzki’s theorem [2]). We proceed by 
induction on k, the length of a word E,E, . . . Ek_iEk with Ei E 8. If k = 1 

there is nothing to prove, so assume the induction hypothesis for i < k. 

Viewing the matrices as linear transformations of the vector space W, since 
each Ei has rank one there exist e, E ‘3’ and ‘pi E Y * (the dual space of 3’) 
such that Ei = e, 8 ‘pi (i = 1,. . , k), where 

e,Scpj(v) E ‘pj(v)ei. 

Assume, by way of contradiction, that E,E, * . . Ek_iEk is not nilpotent. It 
follows that cpj(ei) + 0 whenever i = j + 1 mod k. We assert that cpj(e,) = 0 
if i z j + 1 mod k. To see this, select i and j such that i f j + 1 mod k, and 
notethateither EiEi+,.*.EkE,.**Ej(ifj<i)or E,Ei+i*..Ejif(j>i) 
is a word of length less than k. Thus, 

is nilpotent by the induction hypothesis. Since cpj(ei> f 0 if i = j + 1 mod k, 

we must have cpj(ei) = 0, which establishes the assertion. Now observe that 
E,+ ... + E,(el) = cpk(e,)ek, and continue to find that 

(E,+ ... + -%lk(el> = cpk(e,)cpk-,(e,) .. . de2)e,, 

so E,+ ... + E, is not nilpotent, our contradiction. n 

The previous theorem is addressing the pathology that arises when the 
underlying field does not have characteristic zero: it says that Theorem 3 is 
true in full generality for sets B consisting of matrices of rank one. 
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LEMMA 3. Assume L and E are nilpotent n X n matrices over a field with 

characteristic zero, and E has rank one. Then {E, L) generates a linear space 
of nilpotents afand only af {E, L) is triangularizable. 

Proof. It is obvious that if {E, L} is triangularizable, then (E, L) gener- 

ates a linear space of nilpotents. Thus assume that {E, L} generates a linear 

space of nilpotents. We will prove that tr(E, E, . . . E,) = 0 for every finite 

sequence (E,)kzl in {E, L) (and th e 1 emma will be obtained by the trace 

condition for triangularizability given in [4]). Since tr(AB) = tr(BA) and 

E” = 0, we may assume without loss of generality that 

E,E, ‘. . E, zz L”EL’sE. . . L’,>E 

But for some scalar A E 5, tr(L’IELf2E . . . Lfj> E) = A tr(L’lE), and thus by 

Corollary 1, tr( E, E, * . . Ek) = A tr(L”lE) = 0. n 

THEOREM 5. Suppose _./ is a linear space of nilpotent n X n matrices 

over a field with characteristic zero. lf 1 is spanned by the set (F,, . . F,, S), 
with Fi rank-one matrices (i = 1,. . , p) and S a nilpotent of index n, then _5 

is triangularizable. 

Proof. By Lemma 3, F, and S are simultaneously triangularizable 

(i=l,...,p). S’ mce S has a unique maximal chain of invariant subspaces, it 

follows that {F,, . . . F,, S}, and hence 2, is triangularizable. n 

5. IRREDUCIBLE SPACES 

We now consider some examples of spaces of nilpotents that are as far 

from triangularizable as possible, those with no common, nontrivial, invariant 

subspace. We begin with the following question. 

QUESTION. What is the maximal dimension of an irreducible linear 

space of n X n nilpotents? 

EXAMPLE 1. If n = 3m, then there exists an irreducible (m” +l)- 

dimensional linear space of n X n nilpotents. 
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Let J(V) denote the algebra of operators on the n-dimensional vector 
space F’, and consider the linear space 

where 1 is the identity map on IF”‘. It is easy to see that T” = 0 for every 
T E 2. The invariant subspaces of 

are all of the form k@(O)@(O), iF”‘@k@(O), and lF”‘@[F”‘@J, where J is 
any subspace of [F”‘. Since only the trivial ones of these are invariant under 

I 0 0 1 -1 0 0 0 0, 0 1 
it follows that _.Y is irreducible. 

One interpretation of Theorem 1 is that every n(n - 1)/2-dimensional 
linear space of n X n nilpotents is a maximal element in the family of all 
linear spaces of n x n nilpotents (ordered by inclusion). 

EXAMPLE 2. If n > 3, there is an irreducible (n - D-dimensional linear 
space of n x n nilpotents which is a maximal element in the family of all 
linear spaces of n X n nilpotents. 

Suppose {e,,e,,..., e,) is some fixed basis of a vector space 7, and 
{e* 1 i = 1,. . , n) is the corresponding dual basis. Define S by 

and define R, for k = l,...,n-2 by 

R,(x) = el*(x)ek+l - et(r)ek+2. 
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If Lk = span{ e ], . , e,) for k = 1,. . . , ?a and A(, = IO}, then the only invariant 

subspaces of S are {.kk : k = 0,. . , n}. It is clear that none of the nontrivial 

ones of these are invariant under Rn_2, so {S, R,, . , R,_,} spans an 

irreducible linear space. We assert that this is a linear space of nilpotents. 

If ~,/3~,...,/3,_~~5, then thematrixof T=LYS+C~~:/~~R~ is 

;, ff 0 a0 0. . .o 

p2 -pl 0 a .., . 

T= P3 -p, 0 0 ‘.. 0 . 

. a 0 

A-2 -/& 0 0 ..: 0 a 

0 -p,,_2 0 0 ... 0 0 

which illustrates that the orbit of e,, under T is 

Since e, * Czzi j3k_lek, it follows that 

e, r-) ael - i Pk-eek * ~jj~aBk-,ek - 2 aPk_zek - 1 = 0. 
k=3 k=3 

Thus T”(e,) = 0, and since ek appears in the above chain for 2 < k < n - 1, 

it is clear that T”-‘(ek)=O for k=2,..., n - 1. Finally, T(e,) is a linear 

combination of these vectors, which implies T” = 0. 

Our proof that this space is maximal requires that the underlying field 

have characteristic zero. Let A be a matrix such that the set 

(A, S, R,, . , R, _2} generates a linear space of nilpotents; we will prove that 

&S, RI,..., R,_,} is dependent. Without loss of generality we may assume 

that the first column and the second entry of the first row of A are zero (by 

subtracting these entries away with appropriate multiples of S and the RL’s). 
It is easy to see that (R, + Rkj2 -(RI)” (k = l,..., n -2) has exactly one 

nonzero entry on the k + 2nd place of the first column. It follows from 

Corollary 1 that the whole first row of the matrix of A is zero. 

Fix now an index k, 1~ k < n -2, and compute the matrix of 

q = (S + R,)j - S’ 
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for all positive integers j. An induction argument shows that for 1 < j f k, Tj 
has a one entry at the k - j +2nd place of the first column, a minus one 
entry at the j + 1st place of the k + 2nd row, and zeros everywhere else. It 
follows that Tk + 1 has a one at the first place of the first row, two minus ones 
at the first and the k +2nd place of the k +2nd row, and zeros everywhere 
else. If k + 2 < n, the induction argument proceeds over j, k + 2 < j < n, to 
obtain that 2” has only one nonzero entry left (which equals minus one), at 
the j + 1st place of the k + 2nd row. It follows from Corollary 1 that A has 
all the columns from the third to the nth equal to zero. Use tr(SkA) = 0 to 
see that the second column has all entries under the main diagonal etlual to 

zero. Since A is nilpotent, the diagonal entry is also zero, which implies 
A = 0. 

One might ask what the minimal dimension of an irreducible linear space 
of nilpotents is. The next example answers this question. 

EXAMPLE 3. If n > 3, then there is an irreducible, two-dimensional 
linear space of n X n nilpotents. 

This example is obtained by considering the span of (S, R,, _2}, where S 
and R,_, are defined in the previous example. 
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