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We provide a newmethod for constructing equiangular tight frames

(ETFs). The construction is valid in both the real and complex set-

tings, and shows that many of the few previously-known examples

of ETFs are but the first representatives of infinite families of such

frames. It provides great freedom in terms of the frame’s size and

redundancy. This method also explicitly constructs the frame vec-

tors in their native domain, as opposed to implicitly defining them

via their Gram matrix. Moreover, in this domain, the frame vectors

are very sparse. The construction is extremely simple: a tensor-like

combination of a Steiner system and a regular simplex. This simplic-

ity permits us to resolve an open question regarding ETFs and the

restricted isometry property (RIP): we show that the RIP behavior of

some ETFs is unfortunately no better than their coherence indicates.

Published by Elsevier Inc.

1. Introduction

Let F = {fn}Nn=1 be a finite sequence of vectors in a real or complex M-dimensional Hilbert space

HM . The corresponding frame operator is FF∗ = ∑N
n=1 fnf

∗
n , where f ∗n denotes the linear functional that

maps a given f ∈ HM to the scalar 〈f , fn〉. The sequence F is said to be a tight frame if there exists A > 0

such that FF∗ = AI. Meanwhile, F is equiangular if ‖fn‖ = 1 for all n and if there existsα � 0 such that

|〈fn, fn′ 〉| = α for all n �= n′. This paper concerns equiangular tight frames (ETFs); writing F as anM×N

matrix, we need the rows of F to be orthogonal and have constant norm, the columns of F to be unit

norm, and the inner products of distinct columns of F to have constant modulus. As detailed below,

such frames are useful in applications, but up to this point, they have proven notoriously difficult to

construct.

∗ Corresponding author.

E-mail address:Matthew.Fickus@afit.edu (M. Fickus)

0024-3795/$ - see front matter Published by Elsevier Inc.

doi:10.1016/j.laa.2011.06.027

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81104568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2011.06.027
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.06.027


M. Fickus et al. / Linear Algebra and its Applications 436 (2012) 1014–1027 1015

In this article, we provide a newmethod for constructing ETFs. The construction is valid in both the

real and complex settings, and shows thatmany of the few previously-known examples of ETFs are but

the first representatives of infinite families of such frames. This construction technique also permits

great freedom in selectingM andN, just shy of letting one choose the exact size and redundancy of their

liking. This method also explicitly constructs the frame vectors in their native domainHM , as opposed

to the usual method of implicitly defining themwith their Grammatrix F∗F . Moreover, in this domain,

the frame vectors can be chosen to be very sparse. The construction is extremely simple: a tensor-like

combination of a Steiner system and a regular simplex. This simplicity permits us to resolve an open

question regarding ETFs and the restricted isometry property (RIP): we show that the RIP behavior of

some ETFs is unfortunately no better than their worst-case-coherence bounds indicate.

Equiangular lines have long been a subject of interest [21]. Recent work on the matter of ETFs was

spurred on by communications-theory-inspired results [5,18,30] that show that the linear encoders

provided by such frames are optimally robust against channel erasures. In the real setting, the exis-

tence of an ETF of a given size is equivalent to the existence of a strongly regular graph with certain

corresponding parameters [18,27]. Such graphs have a rich history and remain an active topic of re-

search [8]; the specific ETFs that arise from particular graphs are detailed in [33]. Some of this theory

generalizes to the complex-variable setting in the guise of complex Seidel matrices [4,6,16]. Many

approaches to constructing ETFs have focused on the special case in which every entry of F is a root

of unity [19,23,29,31,34]. Other approaches are given in [13,28,32]. In the complex setting, much

attention has focused on themaximal case of M2 vectors in HM [2,17,20,24,26].

A version of the ETF construction method we present here was previously employed by Seidel

in Theorem 12.1 of [27] to prove the existence of certain strongly regular graphs. In the context of

that result, our contributions are: (i) the realization that when Seidel’s block design arises from a

particular type of Steiner system, the resulting strongly regular graph indeed corresponds to a real

ETF; (ii) noting that in this case, the graph theory may be completely bypassed, as the idea itself

directly produces the requisite frame F; and (iii) having bypassed the graph theory, realizing that this

construction immediately generalizes to the complex-variable setting if Seidel’s requisite Hadamard

matrix is permitted to become complex. These realizations permit us to exploit the vast literature on

Steiner systems [14] to construct several new infinite families of ETFs, in both the real and complex

settings. Moreover, these ETFs are extremely sparse in their native space; sparse tight frames have

recently become a subject of interest in their own right [12].

In fact, these ETFs are simple enough so as to permit a rigorous investigation of their potential as

RIP matrices, which are currently in demand due to their applicability in compressed sensing [9,10].

As discussed below, ETFs are the optimal matrices with respect to a very coarse estimate—worst-case

coherence—onamatrix’sRIPbounds.Ourhopewas thatall ETFs, havingsuchhighdegreesof symmetry,

might possess other hidden properties that, when properly exploited, yield even better bounds than

those given by coherence-based estimates. Unfortunately, our newly-discovered ETF constructions

dash these hopes: for at least some ETFs, worst-case coherence, à la Gershgorin circles, does indeed

provide a very good estimate on RIP bounds. With respect to RIP, these ETFs perform no better than a

myriadof previouslydiscovereddeterministic constructions of RIPmatrices, suchas those given in [15].

In the next section, we provide our main result, namely Theorem 1, which shows how certain

Steiner systems may be combined with regular simplices to produce ETFs. In the third section, we

discuss each of the known infinite families of such Steiner systems, and compute the corresponding

infinite familiesof ETFs theygenerate.We furtherprovide somenecessaryandasymptotically sufficient

conditions, namely Theorem 2, to aid in the quest for discovering other examples of such frames that

lie outside of the known infinite families. In Section 4, we discuss the possible RIP behavior of ETFs in

general, and show that the performance of our Steiner ETFs is indeed no better than that guaranteed

by coherence-based estimates.

2. Steiner equiangular tight frames

In this section, we provide new constructions of infinite families of ETFs, namely M × N matrices

F = [f1 . . . fN]which have orthogonal rows of constant squared-normA and unit norm columnswhose
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inner products have constant modulus α: we want FF∗ = AI while the diagonal entries of F∗F are 1

and the off-diagonal entries are α in modulus. For a fixedM and N, there is no ambiguity [30] as to the

values of A and α. Indeed, noting that since N = ∑N
n=1 ‖fn‖2 = Tr(F∗F) = Tr(FF∗) = MA, we have

A = N
M
; moreover, since

N + N(N − 1)α2 =
N∑

n,n′=1

|〈fn, fn′ 〉|2 = Tr[(F∗F)2] = Tr[(FF∗)2] = MA2 = N2

M
,

then α2 = N−M
M(N−1)

. Conversely, if one can design an N × N self-adjoint, positive semidefinite Gram

matrix G of rank M whose diagonal entries are one and whose off-diagonal entries are all N−M
M(N−1)

in

squared-modulus, then one can then factor G as F∗F , where F is an M × N ETF [30]. This fact has led

many to attempt to construct ETFs, not by constructing F directly, but rather, by constructing G. This

Gram representation of an ETF has the additional benefit of being invariant with respect to rotations

of the frame elements themselves, and, in the real-variable case, is closely-related to the incidence

matrix of the corresponding strongly regular graph [18]. Moreover, whenever G = F∗F and FF∗ = AI,

then the columns of G are, in fact, a scalar multiple of an isometric embedding of the columns of F .

That is, the columns of the Grammatrix of a tight frame are but a high-dimensional representation of

the frame elements themselves.

There is a drawback, however, to working with Gram representations: one does not produce the

frame vectors in their native M-dimensional space, the domain in which they are usually needed for

communications applications. And though factoringG is straightforward—onemay, for instance, apply

theGram-Schmidt algorithm to the columns ofG—itwill produce the fn’swith respect to somearbitrar-

ily chosen basis for HM , one that may not be best for a given application. For example, such a process

ignores thequestionofwhether or not there is a basis forHM thatmakes the frameelements sparse. For

this reason, in this paper, we avoid the Gram representation and construct F directly. The key idea is to

design theETFs inblocks, specifically those arising fromaparticular typeof combinatorial blockdesign.

Steiner systems and block designs have been studied for over a century; the background facts

presented here on these topics are taken from [1,14]. In short, a (v, b, r, k, λ)-block design is a v-

element set V along with a collection B of b k-element subsets of V , dubbed blocks, that have the

property that any element of V lies in exactly r blocks and that any 2-element subset of V is contained

in exactlyλ blocks. The corresponding incidencematrix is a v×bmatrixA that has a one in a given entry

if that block contains the correspondingpoint, and is otherwise zero; in this paper, it ismore convenient

for us to work with the b× v transpose AT of this incidencematrix. Our particular construction of ETFs

involves a special class of block designs known as (2, k, v)-Steiner systems. These have the property

that any 2-element subset of V is contained in exactly one block, that is, λ = 1.

Our construction is best understood by considering a simple example, such as the ETF that arises

from a (2, 2, 4)-Steiner system whose transposed incidence matrix is:

AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ +
+ +
+ +

+ +
+ +

+ +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can immediately verify that AT corresponds to a block design: there is a set V of v = 4 elements,

each corresponding to a column of AT; there is also a collection B of b = 6 subsets of V , each corre-

sponding to a row of AT; every row contains k = 2 elements; every column contains r = 3 elements;

any given pair of elements is contained in exactly one row, that is, λ = 1, a fact which is equivalent to

having the dot product of any two distinct columns of AT being one. Next, for each of the four columns



M. Fickus et al. / Linear Algebra and its Applications 436 (2012) 1014–1027 1017

of AT we choose a 4×4matrixH with unimodular entries and orthogonal rows; the size ofH is chosen

to be onemore than the number r of ones in a given column of AT. Though in principle onemay choose

a different H for each column, we choose them all to be the same, namely the Hadamard matrix:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+ + + +
+ − + −
+ + − −
+ − − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

To form the ETF, for each column of AT we replace each of its 1-valued entries with a distinct row of

H. Again, though in principle one may choose a different sequence of rows of H for each column, we

simply decide to use the second, third and fourth rows, in that order. The result is a real ETF of N = 16

elements of dimension M = 6:

F = 1√
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − + − + − + −
+ + − − + − + −
+ − − + + − + −

+ + − − + + − −
+ − − + + + − −

+ − − + + − − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can immediately verify that the rows of F are orthogonal and have constant norm, implying F is

indeed a tight frame. One can also easily see that the inner products of two columns from the same

block are − 1
3
, while the inner products of columns from distinct blocks are ± 1

3
.

In essence, the idea behind this construction is that the columns in each block form a regular

simplex in r-dimensional space; these vectors are automatically equiangular amongst themselves; by

requiring the entries of these simplices to be unimodular, and requiring that distinct blocks have only

one entry ofmutual support, one can further control the inner products of vectors arising fromdistinct

blocks. Our main result is that this behavior holds in general for any appropriate choice of AT and H;

in what follows, the density of a matrix is the ratio of the number of nonzero entries of that matrix to

the entire number of its entries:

Theorem 1. Every (2, k, v)-Steiner system generates an equiangular tight frame consisting of N = v
(
1+

v−1
k−1

)
vectors in M = v(v−1)

k(k−1)
-dimensional space with redundancy N

M
= k

(
1 + k−1

v−1

)
and

density k
v

=
(

N−1
M(N−M)

) 1
2
.

Moreover, if there exists a real Hadamard matrix of size 1 + v−1
k−1

, then such frames are real.

Specifically, a
v(v−1)
k(k−1)

× v(1 + v−1
k−1

) ETF matrix F may be constructed as follows:

1. Let AT be the
v(v−1)
k(k−1)

× v transpose of the adjacency matrix of a (2, k, v)-Steiner system.

2. For each j = 1, . . . , v, let Hj be any
(
1 + v−1

k−1

)
×

(
1 + v−1

k−1

)
matrix that has orthogonal rows and

unimodular entries, such as a possibly complex Hadamard matrix.

3. For each j = 1, . . . , v, let Fj be the
v(v−1)
k(k−1)

×
(
1 + v−1

k−1

)
matrix obtained from the jth column of AT

by replacing each of the one-valued entries with a distinct row of Hj, and every zero-valued entry

with a row of zeros.

4. Concatenate and rescale the Fj’s to form F =
(
k−1
v−1

) 1
2 [F1 · · · Fv].
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The following key facts will be used in the proof of Theorem 1 and throughout the paper. The

transpose AT of the {0, 1}-incidence matrix A of a (2, k, v)-Steiner system:

(i) is of size
v(v−1)
k(k−1)

× v,

(ii) has k ones in each row,

(iii) has v−1
k−1

ones in each column, and

(iv) has the property that any two of its columns have a dot product of one.

The first three facts follow immediately from solving for b = v(v−1)
k(k−1)

and r = v−1
k−1

, using the well-

known relations vr = bk and r(k − 1) = λ(v − 1). Meanwhile, (iv) comes from the fact that λ = 1:

each column of AT corresponds to an element of the set, and the dot product of any two columns

computes the number of blocks that contains the corresponding pair of points.

Proof of Theorem 1. To verify F is a tight frame, note that the inner product of any two distinct rows

of F is zero, as they are the sum of the inner products of the corresponding rows of the Fj ’s over all

j = 1, . . . , v; for any j, these shorter inner products are necessarily zero, as they either correspond to

inner products of distinct rowsofHj or to inner productswith zero vectors.Moreover, the rowsof F have

constant norm: as noted in (ii) above, each row of AT contains k ones; since each Hj has unimodular

entries, the squared-norm of any row of F is the squared-scaling factor k−1
v−1

times a sum of k(1 + v−1
k−1

)

ones, which, as is necessary for any unit norm tight frame, equals the redundancy N
M

= k(1 + k−1
v−1

).
Having that F is tight, we show F is also equiangular. We first note that the columns of F have unit

norm: the squared-norm of any column of F is k−1
v−1

times the squared-norm of a column of one of

the Fj ’s; since the entries of Hj are unimodular and (iii) above gives that each column of AT contains
v−1
k−1

ones, the squared-norm of any column of F is ( k−1
v−1

)( v−1
k−1

)1 = 1, as claimed. Moreover, the inner

products of any two distinct columns of F has constant modulus. Indeed, the fact (iv) that any two

distinct columns of AT have but a single entry of mutual support implies the same is true for columns

of F that arise from distinct Fj blocks, implying the inner product of such columns is k−1
v−1

times the

product of two unimodular numbers. That is, the squared-magnitude of the inner products of two

columns that arise from distinct blocks is N−M
M(N−1)

=
(
k−1
v−1

)2
, as needed. Meanwhile, the same holds

true for columns that arise from the same block Fj . To see this, note that since Hj is a scalar multiple of

a unitarymatrix, its columns are orthogonal. Moreover, Fj contains all but one of theHj ’s rows, namely

one for each of the 1-valued entries of AT, à la (iii). Thus, the inner products of the portions of Hj that

lie in Fj are their entire inner product of zero, less the contribution from the left-over entries. Overall,

the inner product of two columns of F that arise from the same Fj block is k−1
v−1

times the negated

product of one entry of Hj and the conjugate of another; since Hj is unimodular, we have that the

squared-magnitude of such inner products is N−M
M(N−1)

= ( k−1
v−1

)2, as needed.

Thus F is an ETF. Moreover, as noted above, its redundancy is N
M

= k(1 + k−1
v−1

). All that remains to

verify is its density: as the entries of each Hj are all nonzero, the proportion of F ’s nonzero entries is

the same as that of the incidence matrix A, which is clearly k
v
, having k ones in each v-dimensional

row. Moreover, substituting N = v(1 + v−1
k−1

) and M = v(v−1)
k(k−1)

into the quantity N−1
M(N−M)

reveals it to

be k2

v2
, and so the density can be alternatively expressed as ( N−1

M(N−M)
)
1
2 , as claimed. �

We refer to the ETFs produced by Theorem 1 as (2, k, v)-Steiner ETFs, and in the next section, we

apply Theorem 1 to produce several infinite families of Steiner ETFs. Before doing so, however, we

pause to remark on the redundancy and sparsity of such frames. In particular, note that since the

parameters k and v of the requisite Steiner system always satisfy 2 � k � v, then the redundancy

k(1 + k−1
v−1

) of Steiner ETFs is always between k and 2k; the redundancy is therefore on the order of

k, and is always strictly greater than 2. If a low-redundancy ETF is desired, one can always take the

Naimark complement [11] of an ETF of N elements inM-dimensional space to produce a new ETF of N

elements in (N −M)-dimensional space; though the complement process does not preserve sparsity,

it nevertheless transforms any Steiner ETF into a new ETF whose redundancy is strictly less than 2.
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However, such a loss of sparsity should not to be taken lightly. Indeed, the low density of Steiner ETFs

gives them a large computational advantage over their non-sparse brethren.

To clarify, the most common operation in frame-theoretic applications is the evaluation of the

analysis operator F∗ on a given f ∈ HM . For a non-sparse F , this act of computing F∗f requires O(MN)
operations; for a frame F of density D, this cost is reduced to O(DMN). Indeed, using the explicit value

of D = ( N−1
M(N−M)

)
1
2 given in Theorem 1 as well as the aforementioned fact that the redundancy of

such frames necessarily satisfies N
M

> 2, we see that the cost of evaluating F∗f when F is a Steiner

ETF is on the order of (M(N−1)
N−M

)
1
2 N < (2M)

1
2 N operations, a dramatic cost savings when M is large.

Further efficiency is gained when F is real, as its nonzero elements are but a fixed scaling factor

times the entries of a real Hadamard matrix, implying F∗f can be evaluated using only additions and

subtractions. The fact that every entry of F is either 0 or±1 furthermakes real Steiner ETFs potentially

useful for applications that require binary measurements, such as design of experiments.

3. Examples of Steiner equiangular tight frames

In this section, we apply Theorem 1 to produce several infinite families of Steiner ETFs. When de-

signing frames for real-world applications, three considerations reign supreme: size, redundancy and

sparsity. As noted above, every Steiner ETF is very sparse, a serious computational advantage in high-

dimensional signal processing. Moreover, some of these infinite families, such as those arising from

finite affine and projective geometries, provide one great flexibility in choosing the ETF’s size and re-

dundancy. Indeed, these constructions provide the first known guarantee that for a given application,

one is always able to find ETFswhose frame elements lie in a spacewhose dimensionmatches, up to an

order of magnitude, that of one’s desired class of signals, while simultaneously permitting one to have

an almost arbitrary fixed level of redundancy, a handy weapon in the fight against noise. To be clear,

recall that the redundancy of a Steiner ETF is always strictly greater than2.Moreover, as general bounds

on themaximalnumberof equiangular lines [21] require that anyETF satisfyN � M(M+1)
2

in real spaces

and N � M2 in complex ones, the redundancy of an ETF is never truly arbitrary. Nevertheless, if one

doesprescribe agivendesired level of redundancy in advance, the Steinermethodcanproduce arbitrar-

ily large ETFs whose redundancy is approximately the prime power nearest to the sought-after level.

3.1. Infinite families of Steiner equiangular tight frames

We now detail eight infinite families of ETFs, each generated by applying Theorem 1 to one of the

eight completelyunderstood infinite families of (2, k, v)-Steiner systems. Table1 summarizes themost

important features of each family, while Table 2 gives the first few examples of each type, summarizing

those that lie in 100 dimensions or less.

Table 1

Eight infinite families of Steiner ETFs, each arising from a corresponding known infinite family of (2, k, v)-Steiner designs. Each

family permits bothM and N to grow very large, but only a few families—affine, projective and Denniston—give one the freedom

to simultaneously control the proportion between M and N, namely the redundancy N
M

of the ETF. The column denoted “Real?"

indicates the size for which a real Hadamardmatrix must exist in order for the resulting ETF to be real; it suffices to have this size

be a power of 2; if the Hadamard conjecture is true, it would suffice for this number to be divisible by 4.

Name M N Redundancy Real? Restrictions

2-Blocks
v(v−1)

2
v2 2 v

v−1
v None

3-Blocks
v(v−1)

6

v(v+1)
2

3 v+1
v−1

v+1
2

v ≡ 1, 3 mod 6

4-Blocks
v(v−1)

12

v(v+2)
3

4 v+2
v−1

Never v ≡ 1, 4 mod 12

5-Blocks
v(v−1)

20

v(v+3)
4

5 v+3
v−1

v+3
4

v ≡ 1, 5 mod 20

Affine qn−1( qn−1

q−1
) qn(1 + qn−1

q−1
) q(1 + q−1

qn−1
) 1 + qn−1

q−1
q a prime power, n � 2

Projective
(qn−1)(qn+1−1)

(q+1)(q−1)2
qn+1−1

q−1
(1 + qn−1

q−1
) (q + 1)(1 + q−1

qn−1
) 1 + qn−1

q−1
q a prime power, n � 2

Unitals
q2(q3+1)

q+1
(q2 + 1)(q3 + 1) (q + 1)(1 + 1

q2
) Never q a prime power

Denniston
(2s+1)(2r+s+2r−2s)

2r
(2s + 2)(2r+s + 2r − 2s) 2r 2s+2

2s+1
Never 2 � r < s
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Table 2

The ETFs of dimension 100 or less that can be constructed by applying Theorem 1 to the eight infinite families of Steiner systems

detailed in Section 3. That is, these ETFs represent the first few examples of the general constructions summarized in Table 1. For

each ETF, we give the dimension M of the underlying space, the number of frame vectors N, as well as the number k of elements

that lie in any block of a v-element set in the corresponding (2, k, v)-Steiner system. We further give the value r of the number

of blocks that contain a given point; by Theorem 2, |〈fn, fn′ 〉| = 1
r
measures the angle between any two frame elements. We also

indicate whether the given frame is real or complex, and the method(s) of constructing the corresponding Steiner system.

M N k v r R/C Construction of the Steiner system

6 16 2 4 3 R 2-blocks of v = 4; affine with q = 2, n = 2

7 28 3 7 3 R 3-blocks of v = 7; projective with q = 2, n = 2

28 64 2 8 7 R 2-blocks of v = 8; affine with q = 2, n = 3

35 120 3 15 7 R 3-blocks of v = 15; projective with q = 2, n = 3

66 144 2 12 11 R 2-blocks of v = 12

99 540 5 45 11 R 5-blocks of v = 45

3 9 2 3 2 C 2-blocks of v = 3

10 25 2 5 4 C 2-blocks of v = 5

12 45 3 9 4 C 3-blocks of v = 9; affine with q = 3, n = 2

13 65 4 13 4 C 4-blocks of v = 13; projective with q = 3, n = 2

15 36 2 6 5 C 2-blocks of v = 6

20 96 4 16 5 C 4-blocks of v = 16; affine with q = 4, n = 2

21 49 2 7 6 C 2-blocks of v = 7

21 126 5 21 5 C 5-blocks of v = 21; projective with q = 4, n = 2

26 91 3 13 6 C 3-blocks of v = 13

30 175 5 25 6 C 5-blocks of v = 25; affine with q = 5, n = 2

31 217 6 31 6 C Projective with q = 5, n = 2

36 81 2 9 8 C 2-blocks of v = 9

45 100 2 10 9 C 2-blocks of v = 10

50 225 4 25 8 C 4-blocks of v = 25

55 121 2 11 10 C 2-blocks of v = 11

56 441 7 49 8 C Affine with q = 7, n = 2

57 190 3 19 9 C 3-blocks of v = 19

57 513 8 57 8 C Projective with q = 7, n = 2

63 280 4 28 9 C Unital with q = 3; Denniston with r = 2, s = 3

70 231 3 21 10 C 3-blocks of v = 21

72 640 8 64 9 C Affine with q = 8, n = 2

73 730 9 73 9 C Projective with q = 8, n = 2

78 169 2 13 12 C 2-blocks of v = 13

82 451 5 41 19 C 5-blocks of v = 41

90 891 9 81 10 C Affine with q = 9, n = 2

91 196 2 14 13 C 2-blocks of v = 14

91 1001 10 91 10 C Projective with q = 9, n = 2

100 325 3 25 12 C 3-blocks of v = 25

3.1.1. All two-element blocks: (2, 2, v)-Steiner ETFs for any v � 2

The first infinite family of Steiner systems is so simple that it is usually not discussed in the design-

theory literature. For any v � 2, let V be a v-element set, and let B be the collection of all 2-element

subsets of V . Clearly, we have b = v(v−1)
2

blocks, each of which contains k = 2 elements; each point

is contained in r = v− 1 blocks, and each pair of points is indeed contained in but a single block, that

is, λ = 1.

By Theorem1, the ETFs arising from these (2, 2, v)-Steiner systems consist ofN = v(1+ v−1
k−1

) = v2

vectors inM = v(v−1)
k(k−1)

= v(v−1)
2

-dimensional space. Though these frames canbecomearbitrarily large,

they do not provide any freedomwith respect to redundancy: N
M

= 2 v
v−1

is essentially 2. These frames

have density k
v

= 2
v
. Moreover, these ETFs can be real-valued if there exists a real Hadamardmatrix of

size 1 + v−1
k−1

= v. In particular, it suffices to have v to be a power of 2; should theHadamard conjecture

prove true, it would suffice to have v divisible by 4.

One example of such an ETF with v = 4 was given in the previous section. For another, consider

v = 3. The b × v transposed incidence matrix AT is 3 × 3, with each row corresponding to a given

2-element subset of {0, 1, 2}:
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AT =

⎡
⎢⎢⎢⎣

+ +
+ +

+ +

⎤
⎥⎥⎥⎦ .

To form the corresponding 3 × 9 ETF F , we need a 3 × 3 unimodular matrix with orthogonal rows,

such as a DFT; letting ω = e2π i/3, we can take

H =

⎡
⎢⎢⎢⎣

1 1 1

1 ω2 ω

1 ω ω2

⎤
⎥⎥⎥⎦ .

To form F , in each column of AT, we replace each 1-valued entry with a distinct row of H. Always

choosing the second and third rows yields an ETF of 9 elements in C
3:

F = 1√
2

⎡
⎢⎢⎢⎣

1 ω2 ω 1 ω2 ω

1 ω ω2 1 ω2 ω

1 ω ω2 1 ω ω2

⎤
⎥⎥⎥⎦ .

This is the only known instance of when the Steiner-based construction of Theorem 1 produces a

maximal ETF, namely one that has N = M2.

3.1.2. Steiner triple systems: (2, 3, v)-Steiner ETFs for any v ≡ 1, 3 mod 6

Steiner triple systems, namely (2, 3, v)-Steiner systems, have been a subject of interest for over a

century, and are known to exist precisely when v ≡ 1, 3 mod 6 [14]. Each of the b = v(v−1)
6

blocks

contains k = 3 points, while each point is contained in r = v−1
2

blocks. The corresponding ETFs

produced by Theorem 1 consist of
v(v+1)

2
vectors in

v(v−1)
6

-dimensional space. The density of such

frames is 3
v
. As with ETFs stemming from 2-element blocks, Steiner triple systems offer little freedom

in terms of redundancy: N
M

= 3 v+1
v−1

is always approximately 3. Such ETFs can be real if there exists a

real Hadamard matrix of size v+1
2

.

The Fano plane is a famous example of such a design. The simplest example of a finite projective

geometry, it consists of v = 7 points and b = 7 lines, any two of which intersect in exactly one point.

Each line consists of k = 3 points, and each point is contained in r = 3 lines:

AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + +
+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Choosing H to be the standard 4 × 4 Hadamard matrix used in the previous section results in a real

ETF of 28 elements in 7-dimensional space; F is the scaling factor 1√
3
times:

⎡
⎢⎢⎢⎢⎢⎢⎣

+ − + − + − + − + − + −
+ + − − + − + − + − + −
+ − − + + − + − + − + −

+ + − − + + − − + + − −
+ − − + + + − − + + − −

+ + − − + − − + + − − +
+ − − + + − − + + − − +

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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3.1.3. Four element blocks: (2, 4, v)-Steiner ETFs for any v ≡ 1, 4 mod 12

It is known that (2, 4, v)-Steiner systems exist precisely when v ≡ 1, 4 mod 12 [1]. Continuing

the trend of the previous two families, these ETFs can vary in size but not in redundancy: they consist

of
v(v+2)

3
vectors in

v(v−1)
12

-dimensional space, having redundancy 4 v+2
v−1

and density 4
v
. Interestingly,

such frames can never be real: with the exception of the trivial 1 × 1 and 2 × 2 cases, the dimensions

of all real Hadamardmatrices are divisible by 4; since v ≡ 1, 4 mod 12, the requisitematricesH here

are of size v+2
3

≡ 1, 2 mod 4.

3.1.4. Five element blocks: (2, 5, v)-Steiner ETFs for any v ≡ 1, 5 mod 20

It is known that (2, 5, v)-Steiner systems exist precisely when v ≡ 1, 5 mod 20 [1]. The corre-

sponding ETFs consist of
v(v+3)

4
vectors in

v(v−1)
20

-dimensional space, having redundancy 5 v+3
v−1

and

density 5
v
. Such frames can be real whenever there exists a real Hadamard matrix of size v+3

4
. In

particular, letting v = 45, we see that there exists a real Steiner ETF of 540 vectors in 99-dimensional

space, a fact not obtained from any other known infinite family.

3.1.5. Affine geometries: (2, q, qn)-Steiner ETFs for any prime power q, n � 2

At this point, the constructions depart from those previously considered, allowing both k and v to

vary. In particular, using techniques fromfinite geometry, one can show that for any prime power q and

any n � 2, there exists a (2, k, v)-Steiner systemwith k = q and v = qn [14]. The corresponding ETFs

consist of qn(1 + qn−1

q−1
) vectors in qn−1( qn−1

q−1
)-dimensional space. Like the preceding four classes of

Steiner ETFs, these frames can grow arbitrarily large: fixing any prime power q, one may manipulate

n to produce ETFs of varying orders of magnitude. However, unlike the four preceding classes, these

affine Steiner ETFs also provide great flexibility in choosing one’s redundancy. That is, they provide the

ability to pickM andN somewhat independently. Indeed, the redundancy of such frames q(1+ q−1

qn−1
) is

essentially q, which may be an arbitrary prime power. Moreover, as these frames grow large, they also

become increasingly sparse: their density is 1

qn−1 . Because of their high sparsity and flexibility with

regards to size and redundancy, these frames, along with their projective geometry-based cousins

detailed below, are perhaps the best known candidates for use in ETF-based applications. Such ETFs

can be real if there exists a real Hadamard matrix of size 1 + qn−1

q−1
, such as whenever q = 2, or when

q = 5 and n = 3.

3.1.6. Projective geometries: (2, q + 1, qn+1−1

q−1
)-Steiner ETFs for any prime power q, n � 2

Withfinitegeometry, onecanshowthat foranyprimepowerqandanyn � 2, thereexists a (2, k, v)-

Steiner system with k = q + 1 and v = qn+1−1

q−1
[14]. Qualitatively speaking, the ETFs these projective

geometries generate share much in common with their affinely-generated cousins, possessing very

high sparsity and great flexibility with respect to size and redundancy. The technical details are as

follows: they consist of
qn+1−1

q−1
(1 + qn−1

q−1
) vectors in

(qn−1)(qn+1−1)
(q+1)(q−1)2

-dimensional space, with density
q2−1

qn+1−1
and redundancy (q + 1)(1 + q−1

qn−1
). These frames can be real if there exists a real Hadamard

matrix of size 1+ qn−1

q−1
; note this restriction is identical to that for ETFs generated by affine geometries

for the same q and n, implying that real Steiner ETFs generated by finite geometries always come in

pairs, such as the 6× 16 and 7× 28 ETFs generated when q = 2, n = 2, and the 28× 64 and 35× 120

ETFs generated when q = 2, n = 3.

3.1.7. Unitals: (2, q + 1, q3 + 1)-Steiner ETFs for any prime power q

For any prime power q, one can show that there exists a (2, k, v)-Steiner system with k = q + 1

and v = q3 + 1 [14]. Though one may pick a redundancy of one’s liking, such a choice confines one

to ETFs of a given size: they consist of (q2 + 1)(q3 + 1) vectors in q2(q3+1)
q+1

-dimensional space, having

redundancy (q + 1)(1 + 1

q2
) and density

q+1

q3+1
. These ETFs can never be real: the requisite Hadamard

matrices are of size q2 + 1 which is never divisible by 4 since 0 and 1 are the only squares in Z4.



M. Fickus et al. / Linear Algebra and its Applications 436 (2012) 1014–1027 1023

3.1.8. Denniston designs: (2, 2r, 2r+s + 2r − 2s)-Steiner ETFs for any 2 � r < s

For any 2 � r < s, one can show that there exists a (2, k, v)-Steiner system with k = 2r and v =
2r+s +2r −2s [14]. Bymanipulating r and s, one can independently determine the order of magnitude

of one’s redundancy and size, respectively: the corresponding ETFs consist of (2s + 2)(2r+s + 2r − 2s)

vectors in
(2s+1)(2r+s+2r−2s)

2r
-dimensional space, having redundancy 2r 2

s+2
2s+1

and density 2r

2r+s+2r−2s
.

As such, this family has some qualitative similarities to the families of ETFs produced by affine and

projective geometries. However, unlike those families, the ETFs produced by Denniston designs can

never be real: the requisite Hadamard matrices are of size 2s + 2, which is never divisible by 4.

3.2. Necessary and sufficient conditions on the existence of Steiner ETFs.

(2, k, v)-Steiner systemshavebeenactively studied foroveracentury,withmanycelebrated results.

Nevertheless, much about these systems is still unknown. In this subsection, we discuss some known

partial characterizations of the Steiner systems which lie outside of the eight families we have already

discussed, as well as what these results tell us about the existence of certain ETFs. To begin, recall

that, for a given k and v, if a (2, k, v)-Steiner system exists, then the number r of blocks that contain

a given point is necessarily v−1
k−1

, while the total number of blocks b is
v(v−1)
k(k−1)

. As such, in order for a

(2, k, v)-Steiner system to exist, it is necessary for (k, v) to be admissible, that is, to have the property

that v−1
k−1

and
v(v−1)
k(k−1)

are integers.

However, this property is not sufficient for existence: it is known that a (2, 6, 16)-Steiner system
does not exist [1] despite the fact that v−1

k−1
= 3 and

v(v−1)
k(k−1)

= 8. In fact, letting v be either 16, 21, 36,

or 46 results in an admissible pair with k = 6, despite the fact that none of the corresponding Steiner

systems exist; there are twenty-nine additional values of v which form an admissible pair with k = 6

and for which the existence of a corresponding Steiner system remains an open problem [1]. Similar

nastiness arises with k � 7. The good news is that admissibility, though not sufficient for existence, is,

in fact, asymptotically sufficient: for any fixed k, there exists a corresponding admissible index v0(k)
for which for all v > v0(k) such that v−1

k−1
and

v(v−1)
k(k−1)

are integers, a (2, k, v)-Steiner system indeed

exists [1]. Moreover, explicit values of v0(k) are known for small k: v0(6) = 801, v0(7) = 2605,

v0(8) = 3753, v0(9) = 16, 497. We now detail the ramifications of these design-theoretic results on

frame theory:

Theorem 2. If an N-element Steiner equiangular tight frame exists for an M-dimensional space, then

letting α = ( N−M
M(N−1)

)
1
2 , the corresponding block design has parameters:

v = Nα
1+α

, b = M, r = 1
α
, k = N

M(1+α)
.

In particular, if such a frame exists, then these expressions for v, k and r are necessarily integers.

Conversely, for any fixed k � 2, there exists an index v0(k) for which for all v > v0(k) such that v−1
k−1

and
v(v−1)
k(k−1)

are integers, there exists a Steiner equiangular tight frame of v(1 + v−1
k−1

) vectors for a space of

dimension
v(v−1)
k(k−1)

.

In particular, for any fixed k � 2, letting v be either jk(k − 1) + 1 or jk(k − 1) + k for increasingly large

values of j results in a sequence of Steiner equiangular tight frames whose redundancy is asymptotically k;

these frames can be real if there exist real Hadamard matrices of sizes jk + 1 or jk + 2, respectively.

Proof. To prove the necessary conditions on M and N, recall that Steiner ETFs, namely those ETFs

produced by Theorem 1, have N = v(1 + v−1
k−1

) andM = v(v−1)
k(k−1)

. Together, these two equations imply

N = v + kM. Solving for k, and substituting the resulting expression into N = v(1 + v−1
k−1

) yields the

quadratic equation 0 = (M − 1)v2 + 2(N − M)v − N(N − M). With some algebra, the only positive

root of this equation can be found to be v = Nα
1+α

, as claimed. Substituting this expression for v into

N = v + kM yields k = N
M(1+α)

. Having v and k, the previously-mentioned relations bk = vr and

v − 1 = r(k − 1) imply r = v−1
k−1

= 1
α
and b = v

k
r = M, as claimed.
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The second set of conclusions is the result of applying Theorem 1 to the aforementioned (2, k, v)-

Steiner ETFs that are guaranteed to exist for all sufficiently large v, provided v−1
k−1

and
v(v−1)
k(k−1)

are integers

[1]. The final set of conclusions are then obtained by applying this fact in the special cases where v

is either jk(k − 1) + 1 or jk(k − 1) + k. In particular, if v = jk(k − 1) + 1 then v−1
k−1

= jk and

M = v(v−1)
k(k−1)

= j[jk(k − 1) + 1] are integers, and the resulting ETF of (jk + 1)[jk(k − 1) + 1] vectors
has a redundancy of k + 1

j
that tends to k for large j; such an ETF can be real if there exists a real

Hadamard matrix of size jk + 1. Meanwhile, if v = jk(k − 1) + k then v−1
k−1

= jk + 1 and M =
v(v−1)
k(k−1)

= (jk + 1)[j(k − 1) + 1] are integers, and the resulting ETF of k(jk + 2)[j(k − 1) + 1] vectors
has a redundancy of k

jk+2

jk+1
that tends to k for large j; such an ETF can be real if there exists a real

Hadamard matrix of size jk + 2. �

We conclude this section with a few thoughts on Theorems 1 and 2. First, we emphasize that the

method of Theorem 1 is a method for constructing some ETFs, and by no means constructs them all.

Indeed, as noted above, the redundancy of Steiner ETFs is always strictly greater than 2; while some

of those ETFs with N
M

< 2 will be the Naimark complements of Steiner ETFs, one must admit that the

Steiner method contributes little towards the understanding of those ETFs with N
M

= 2, such as those

arising from Paley graphs [33]. Moreover, Theorem 2 implies that not even every ETF with N
M

> 2

arises from a Steiner system: though there exists an ETF of 76-elements inR
19 [33], the corresponding

parameters of the design would be v = 38
3
, r = 5 and k = 10

3
, not all of which are integers.

That said, the method of Theorem 1 is truly significant: comparing Table 2 with a comprehensive

list of all real ETFs of dimension 50 or less [33], we see the Steiner method produces 4 of the 17 ETFs

that have redundancy greater than 2, namely 6× 16, 7× 28, 28× 64 and 35× 120 ETFs. Interestingly,

an additional 4 of these 17 ETFs can also be produced by the Steinermethod, but only in complex form,

namely those of 15×36, 20×96, 21×126 and 45×100 dimensions; it is unknownwhether this is the

result of a deficit in our analysis or the true non-existence of real-valued Steiner-based constructions

of these sizes. The plot further thickens when one realizes that an additional 2 of these 17 real ETFs

satisfy the necessary conditions of Theorem2, but that the corresponding (2, k, v)-Steiner systems are

known to not exist: if a 28 × 288 ETF was to arise as a result of Theorem 1, the corresponding Steiner

system would have k = 6 and v = 36, while the 43 × 344 ETF would have k = 7 and v = 43; in

fact, (2, 6, 36)- and (2, 7, 43)-Steiner systems cannot exist [1].With our limited knowledge of the rich

literature on Steiner systems, we were unable to resolve the existence of two remaining candidates:

23× 276 and 46× 736 ETFs could potentially arise from (2, 10, 46)- and (2, 14, 92)-Steiner systems,

respectively, provided they exist.

4. Equiangular tight frames and the restricted isometry property

In the previous section, we used Theorem 1 to construct many examples of Steiner ETFs. In this

section, we investigate the feasibility of using such frames for compressed sensing applications. Here,

we identify a frame F = {fn}Nn=1 in HM with its synthesis operator F : C
N → HM , Fg := ∑N

n=1 g(n)fn.
That is, F is anM ×N matrix whose columns are the fn’s. For a given δ and K , such an operator F is said

to have the (K, δ)-restricted isometry property ((K, δ)-RIP) if:

(1 − δ)‖g‖2
2 � ‖Fg‖2

2 � (1 + δ)‖g‖2
2 (1)

for all g ∈ C
N that are K-sparse, that is, for which g(n) �= 0 for at most K values of n. The central

problem of compressed sensing is to efficiently solve the underdetermined linear system Fg = f for

g, given that f itself arises as f = Fg0 where g0 is K-sparse. Here, the true challenge is that, despite the

fact that f is a linear combination of at most K of the fn’s, one does not know a priori which particular

K vectors were employed. Moreover, since the values for N and K encountered in applications are

typically very large, it is not computationally feasible to check every K-subset of {fn}Nn=1. It is therefore



M. Fickus et al. / Linear Algebra and its Applications 436 (2012) 1014–1027 1025

a remarkable fact [9] that g = g0 can indeed be efficiently recovered from the system Fg = f using

linear programming, provided the operator F is (2K, δ)-RIP for some δ <
√

2 − 1.

Since RIP is such an exceedingly nice property, it is natural to askwhether suchmatrices even exist—

theydo. In fact, [3]usedconcentration-of-measurearguments to showthat for everyδ > 0, thereexists

a constant C such thatM × N matrices of Gaussian or Bernoulli (±1) entries are (K, δ)-RIP with high

probability providedM � CK log(N/K). Similarly,matrices formed by taking random rows of a Fourier

matrix satisfy RIP with high probability when M � CK log4(N) [25]. These existence results have

spurred a great deal of interest in deterministic RIP matrix constructions that have M = O(K logβ N)
for some β � 1, but no such constructions are known to date. Instead, the best known deterministic

constructions, such as the one given in [15], haveM = O(K2). Despite the fact that all ETFs do indeed

match this state-of-the-art level of performance, sadly some ETFs—Steiner ETFs in particular—fail to

do any better.

To clarify, let K be any K-element subsequence of {1, . . . ,N}, and let FK := {fn}n∈K be the corre-

spondingM × K submatrix of F . Using a standard argument, one may show that the (K, δ)-RIP condi-

tion (1) is equivalent to having the spectrumof each sub-Gramian F∗
KFK lie in the interval [1−δ, 1+δ];

in frame parlance, this implies that each FK is a good Riesz basis. Lettingρ(A) denote the spectral radius
of a given K × K matrix A, the (K, δ)-RIP condition is equivalent to having ρ(F∗

KFK − I) � δ for all

K. The problem of constructing RIP matrices thus reduces to one of spectral estimation. At this point,

most research on constructing RIPmatrices falls back on a simple, but effective tool: Gershgorin circles,

namely the fact that every eigenvalue of A lies in one of the disks in the complex plane centered at

ak,k and having radius
∑

k′ �=k |ak,k′ |. When the fn’s have unit norm, as in the case of ETFs, the diag-

onal entries of the sub-Gramian F∗
KFK are all one, and so the application of Gershgorin’s estimate to

A = F∗
KFK − I reduces to the following:

max
K

ρ(F∗
KFK − I) � max

K
max
n∈K

∑

n′∈K
n′ �=n

|〈fn, fn′ 〉| � (K − 1)max
n �=n′ |〈fn, fn′ 〉|.

In particular, in order for F = {fn}Nn=1 to be (K, δ)-RIP, it suffices to have:

(K − 1)max
n �=n′ |〈fn, fn′ 〉| � δ. (2)

Further note that when using (2) to demonstrate RIP for any fixed δ < 1, the largest possible values

of K occur when the worst-case coherence maxn �=n′ |〈fn, fn′ 〉| is as small as possible, such as when it

achieves theWelch bound:

max
n �=n′ |〈fn, fn′ 〉| �

(
N−M

M(N−1)

) 1
2
. (3)

The Welch bound is achieved precisely when F is an ETF [30], and so combining (2) and (3) gives the

following result:

Theorem 3. For any fixed δ < 1, an equiangular tight frame F = {fn}Nn=1 in HM has the (K, δ)-restricted

isometry property (1) for all K � 1 + δ
(
M(N−1)
N−M

) 1
2
.

Moreover, for any unit norm fn’s, no argument that relies on the Gershgorin-circles-based bound (2) can

provide a better range for such K.

Note that when N � 2M, we have 1 � N−1
N−M

� 2, and so the maximum permissible value of K in

Theorem 3 is on the order ofM
1
2 , which is consistent with other known deterministic constructions of

RIPmatrices [15]. See [22] for other bounds on theworst-case coherence that are alternative to (3) and

a discussion of their relevance to the RIP problem. In [7], slightly larger permissible values of K were

obtained for another deterministic construction, but they used various number-theoretic techniques

as opposed to the Gershgorin-circles-based bound (2).
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In fact, Theorem 3 does not say that ETFs, in general, cannot be RIP withM = O(K logβ N) for some

β � 1, but rather, that such a fact cannot be obtained using the Gershgorin-circles-based bound (2).

This hope notwithstanding, one of the sad consequences of the Steiner construction method of

Theorem 1 is that we, for the first time, know that there is a large class of ETFs for which the seemingly

coarse estimate (2) is, in fact, accurate. In particular, recall from Theorem 1 that every Steiner ETF is

built from carefully overlapping v regular simplices, each consisting of r+1 vectors in a r-dimensional

subspace of b-dimensional space. In particular, letting K = r + 1, the corresponding subcollection of

all K vectors that lie in a given block are linearly dependent, which, in accordance with (1), forces the

corresponding δ to be at least 1. Recalling the value of r given in Theorem 2, we see that Steiner ETFs

cannot be (K, δ)-RIP for any δ < 1 so long as K is at least 1+
(
M(N−1)
N−M

) 1
2
. That is, for Steiner ETFs, the

best one can truly do is, in fact, given by Theorem 3. This begs the open question: Are there any ETFs

which are RIP withM = O(K logβ N)?
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