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ABSTRACT 

We give a simple framework for computing relative convergence rates for relaxation 
methods with discrete Laplace operators (five point or nine point). This gives relations 
between the convergence rate for Jacobi, point Gauss Seidel, and various block relaxation 
strategies, essentially by inspection. The framework is a random walk interpretation of 
Jacobi relaxation that extends to these other relaxation methods. 

1. INTRODUCTION 

The purpose of this paper is to give simple probabilistic interpretations of 
classical Jacobi and Gauss-Seidel iteration methods for the discrete Laplacian. 
This leads to a quick and intuitive way to calculate the relative convergence rates 
of many point and block relaxation methods. All of these rates could also, in 
principle, be computed directly using Fourier analysis, but such computations can 
be very tedious and may not greatly aid one’s intuition. 

The simplest example is as follows. Corresponding to Jacobi iteration for 
the discrete Laplacian on a square domain there is a random walk process. The 
walker takes a random step for each Jacobi iteration. For Gauss-Seidel there 
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is another random walk. Each Gauss-Seidel iteration corresponds to a random 
number of random steps, the average number of which is 2. This will provide 
an intuitive explanation for the fact that Gauss-Seidel is twice as fact as Jacobi. 
The probabilistic reasoning will also explain why red-black Gauss-Seidel has the 
same convergence rate as ordinary Gauss-Seidel: the expected number of steps 
per sweep is two in both cases. (Adams and Jordan [l] have given another, very 
elegant explanation of this fact.) Several other examples are given in the text. 
We emphasize that many of the comparisons between convergence rates are not 
exactly true for a finite-size problem. Rather, they are asymptotically true as the 
size of the problem grows. 

All of the convergence-rate calculations here fit into a general framework. A 
(block) relaxation method relaxes the grid points (or clusters of grid points) in 
some order. For a two-dimensional grid point (i,j), we define S(i,j) to be the set 
of points which are relaxed simultaneously with or prior to (i,j). For example, 
for ordinary Gauss-Seidel, S(i,j) contains all points that are lexicographically less 
than S(i,j) [in particular, it includes the neighbors (i - 1,j) and (i,j - l)]. For 
block Jacobi, S(i, j) contains all points in the same block as (i, j). And for red-black 
Gauss-Seidel, S(i, j) is empty if i + j is odd (a red point), and it contains only red 
points if i + j is even (a black point). 

Now consider a directed graph that has a directed edge from each point to each 
of its neighbors. The directed edge from (i, j) to a neighbor (k, e) will be called 
an end if (k, t) $ S(i, j), that is, if (k, fi) is relaxed after (i, j). This definition is 
motivated by the probabilistic interpretation that is the subject of this paper. The 
general convergence-rate principle for the five-point Laplacian is essentially as 
follows. If the fraction of edges that are ends is (T, then the convergence rate of the 
iterative method is l/g times as fast as Jacobi. For example, in block line Jacobi, 
the horizontal edges are not ends, while the vertical edges are; so c = 4, and 
block line Jacobi is twice as fast as point Jacobi. For red-black Jacobi, any edge 
originating from a black point is an end, while those coming from red points are 
not, so again u = i. Also, u = k for point Gauss-Seidel (with any ordering), since 
the edge from (i, j) to its neighbor (k, e) is an end if and only if the reverse edge 
from (k, C) to (i, j) is not. This confirms the fact that the convergence rate for Gauss- 
Seidel does not depend on the ordering [7]. (A simple variation is necessary in 
the case of the nine-point Laplacian, when diagonal edges have different weights; 
see Section 4.) 

The main ideas of this paper require only some elementary probability theory 
to understand, although the technicalities of the proofs rely on some deeper results 
(see Appendices). To make the paper self-contained for linear algebraists who 
are not probabilists, we have included an outline of the probability theory that we 
require (more details and examples may be found in texts such as [6]). The proba- 
bilistic background and basic probabilistic interpretation of the Jacobi method are 
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given in Section 2. Section 3 discusses the main result for the five-point Lapla- 
cian, as outlined above, and has several examples. Some extensions-nine-point 
Laplacian, underrelaxation-appear in Section 4. 

2. 

we 

PROBABILITY BACKGROUND. BASIC EXAMPLES 

We begin with a description of a random walk on the lattice Z2. For now 
say that two lattice points rt = (it, jl) and r-2 = (iz,j2) are neighbors if 

Ii, - z-21 + p, -j,l = 1. c onsider a ball that is sitting at some lattice point r E 2’ 
at time t = 0. At time t = 1 the ball jumps to one of the neighbors of r, with each 
of the four neighbors equally likely to be chosen (see Figure 1). At each integer 
time this process is repeated. If the ball is at position s at time t = n, then it 
randomly selects one of the four neighbors of s and jumps there at time t = n + 1. 
The iterates a;’ produced by iterative methods will later be expressed as expected 
values where the random variable is a function of a random walk. 

We now review some facts about expected values. If Y is some random quantity 
whose possible values are at, u2 . . . , then the expected value of Y is the weighted 
average 

E(Y) = c ai Pr( Y = aJ 

[writing Pr(B) to denote the probability of the even B]. The law of totalprobability 
often allows us to calculate E( Y) without explicitly summing the above series. This 
is frequently true when Y = f (X) and X is a random sequence or walk-e.g., f (X) 

FIG. 1. A part of a grid with arrows indicating possible jumps between grid points. 
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is related to the first time something happens in X. This is how we will show 
that expected values related to random walks satisfy the recurrence relations of 
classical iterative methods. The simplest example of this method is: 

EXAMPLE 1. Toss a fair coin until a head appears. Let Y be the number of 
tosses required. More formally, let X = (Xl, X2, . . .), where Xi = T or H, be the 
random sequence of tails and heads produced. Then Y = f(X) = min{ i : Xi = H}. 
We wish to calculate E(Y). If the first toss is a head, then Y = 1; this occurs 
with probability i. If the first toss is a tail, then we start over again, with one toss 
already counted, and we expect that we will have to wait E(Y) additional tosses. 
so 

that is, E(Y) = 2. 

E(Y) = $ . 1 + ; . [l +E(Y)], 

In this example we used the important principle (the Murkov property) that the 
future is completely independent of the past (viz., a tail on the first toss doesn’t 
affect the probabilities of future outcomes). We set up an equation by considering 
the first toss. In the next example we set up a system of equations by looking at 
the first step of a random walk. 

EXAMPLE 2. Let D be a finite subset of Z2 (such as a rectangle). Consider 
a random walk that starts at some r E D, and let R, be the (random) position of 
the ball at time n. Let T be thejlrst exit time from D: 

T=min{n>O:R,$!D}. 

The expected value of T will depend on the starting position Ro = r, so we write 
E,.(T) to denote the expected exit time of a random walk starting at r. If r = (i,j), 
we write uo = E,(T). Of course, T = 0 if r # D, so 

q = E,(T) = 0 if r#D, 

andT> lifrED,so 

uij = E,(T) 2 1 if r E D. 

The first step of the random walk, RI, could be any of the four neighbors of 
(i,j). If RI $ D then T = 1. If RI E D, then the amount of time we still have to 
wait has expected value ER, (T). Since each of the neighbors of r has probability 
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i of being jumped to, we get 

uij = Er(T) = $ [l + E(i+lj)(T>] + + [l + E(i-IJ](T)] 

+ f [’ + E(ij+l)(T)] + f [l + E(ij-l)(T)] ; 

that is, 
uij = l + $(Ui+i j + R-1 j + Uij+] + Uij-I), 

with the convention that uu = 0 if (i,j) # D. If A is the matrix of the five-point 
Laplace operator on D with Dirichlet boundary conditions and i is the vector 
whose entries are all 1, then the above may be rewritten as 

Au = i. 

EXAMPLE 3. Suppose we wish to solve a general discrete Poisson equation 
with Dirichlet boundary conditions: 

Au=g, (2.1) 

where g = {gv : (i, j) E D} is given. We can interpret u using a random-walk 
construction that is a slight extension of Example 2. First observe that 

T-l 

T=Cl. 
k=O 

Writing analogously 
T-l 

u = CdRk), 

k=O 

we shall show that ug = EC,(U) is the desired solution. We think of U as a 
cumulative reward. At each site (i,j) that it visits, the random walk collects a 
reward gu, until the walk first leaves D. A ball that starts at r = (i,j) in D at 
time t = 0 first collects gg. If its first jump is to (i + 1, j), say, then it expects to 
collect E(i+l n( U) for the rest of the walk. Reasoning as in Example 2 shows that 
uu = E(in(U) satisfies (2.1). 

A closer look at the last example provides a ranodm-walk interpretation of the 
Jacobi method. Let n A T = min{n, T}. Then 

Ur’ = Ecij) [ ‘ngplg(Rk)] (2.2) 
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satisfies u;’ = 0, and we can show that 

,F+l) 
r/ = gij + i 

( 
UZlj + qlj + U$+r + l@_, 

> (2.3) 

if (i,j) E D, with the usual convention that u!’ = 0 for (i, j) @ D. Let Rk = Rk(i, j) 
(for k 2 0) be a random walk starting from (i, j), and let 

@AT)--I 

~(“)G,j> = c g(R&j)). 
k=O 

Then, for r = (i, j) E D, 

E(l.P+“(i, j)) = gij + $E(U(“)(i + 1, j)) 

+ $E(t.P(i - 1,j)) + $E(U(“)(i,j + 1)) 

+ iE(U(“)(1’, j - 1)) 

as claimed. 
We will now show how to discuss the convergence rate of the Jacobi method 

using the ranodm-walk interpretation. The key is that the difference between 
U(“)(i, j) and U(i, j) is related to the number of additional steps beyond n needed 
to get to the boundary of D: 

T-l 

U(i, j) - U’“‘(i, j) = c g(&). 
k=TAn 

Averaging over walk yields 

where llglloo = max{ Igul : (i, j) E D} and a+ = max{a, 0). NOW, 

&,,)((T - n)+> = c Pr(i,>{T > n and R, = r}&(T) 
rED 

I C fi(i,{T > n and fL = r} * llE.(~>ll~ 
03 > 

= %j)V > n>. lI~%T)llm, 
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where 11K(3)11, = max{Ecij,(7’) : (i, j) E D}. It can be shown that llE.(T)lloo = 
0(m2), where m is the diameter of D, and that Pr(ij)(T > n) decreases expo- 
nentially in II. In fact, the decay rate is precisely the first eigenvalue of D with 
respect to the Laplace operator A. Also, E(iJ>((T - n)+) 2 Pr(ij,(T > n), so the 
exponential-decay rates of lu(i, j) - u(“)(i, j)l and Pr(ij)(Z’ > n) are the same. Thus 
the convergence rate of the iteration scheme depends on how quickly the random 
walk tends to escape from D. 

3. RELATIVE CONVERGENCE RATES 

In this section, we will show how random-walk interpretations allow us to com- 
pare convergence rates of different iteration methods for the five-point Laplacian. 
The nine-point Laplacian and underrelaxation are only slightly more complicated 
and will be treated in the next section. 

We begin by formalizing the relation between the sets S(r), defined in Section 
1, and iterative methods. Recall that for each grid point r = (i, j), the set S(r) 
is the set of simultaneously or previously relaxed points. Thus S(r) = {r} for 
point Jacobi, while for point Gauss-Seidel we have S(r) = {r’ : r’ 5 r}. Thus the 
iterative procedure can be written 

Jn+l) = g.. + 1 
rl ‘/ 4 c c&,ti) + t c Uf , (3.1) 

(i’j’)ES(ij) (i’ j’)@(ij) 

where the sums include only those points (i’, j’) which are neighbors of (i, j). For 
Gauss-Seidel, this gives the familiar formulas 

(3.2) 

These formulas can be understood as follows. Suppose that D is a square N x N 
grid. Start at the (1,l) grid point, and traverse the grid points in the “lexicographic” 
order (1,1),(1,2), . . . , (1, N), (2, I), . . . , (N, N). At each grid point (i, j), update 
the variable according to its equation; i.e., average over the current values of the 
four neighboring variables and add go. 

Before we discuss the general random-walk interpretation, we will look at the 
Gauss-Seidel example in some detail. Suppose that a ball starts at some grid point 
(i, j), and we scan the grid points in reverse order (N, N), (N, N - l), . . . , (1,l) The 
ball moves according to the rule: whenever we scan a grid point occupied by the 
ball, the ball jumps to one of the four neighboring grid points at random. If the ball 
jumps to a grid point that has already been scanned [either (i + 1, j) or (i, j + l)], 
then the ball will not move again; but if the ball jumps to a grid point that has not 
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FIG. 2. An example of a random walk. The walk starts at a with coordinates (3,3), goes up to b, 
and continues hopping until it finally exists at n. 

yet been scanned [either (i - 1, j) or (i, j - l)], then the ball will make another jump 
when the scanner reaches that grid point. Of course, the ball stops jumping when 
it hits the boundary of D. If (i, j) is not close to the boundary, then the expected 
number of jumps of the ball in one complete scanning sweep is (approximately) 
two. This is an instance of Example 1: each time the ball jumps it is as likely to 
go ahead of the scanner as behind it. 

Suppose we take repeated scanning sweeps, each sweep causing the ball to 
jump some random number of times. We will use the term “multijump” to refer 
to the sequence of jumps made during a single sweep. (See Figure 2 and the 
top of Table 1 for an example.) Let T,, be the number of jumps that the ball has 
taken after n sweeps (or equivalently, the number of jumps comprising the first n 
multijumps). If (i, j) is not near the boundary of D, then E(Tl) E 2, E(T2) g 4, 
etc: Gauss-Seidel differs from Jacobi in that we consider the reward accumulated 
after n sweeps, not after n jumps. That is, Equation (2.2) is replaced by 

(3.3) 
!_ k=O _I 

To show that u(“) as given by (3.3) satisfies (3.2), consider the first jump away 
from the starting point (i,j) during the first of n sweeps. If the ball jumps ahead of 
the scanner [say, to (i - 1, j)], then it will subsequently receive the same treatment 
as a ball starting at (i - 1 ,j). On the other hand, if the ball jumps behind the scanner 
[say, to (i + l,j)], then it will receive n - 1 sweeps instead of n. This gives (3.2) 
(with n replaced by n - 1). 
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TABLE 1. 
Multijumps for the random walk in figure 2 

Gauss-Seidel, 
Standard 
ordering 

Gauss-Seidel, 
red-black 
ordering 

2 x 2 Block 
Jacobi 

2 x 2 block 
Gauss-Seidel, 
Standard 
ordering 

a-b 
b-+c+d 
d-+e-+f 
f+fi+h 
h-+i-+j 
j-+k+l 
l-+l?l-+ll 

7 multijumps 

8 multijumps 

o-+b+c 6 multijumps 
c-+d-+e-+f+g+h-+i 
i-j 
j-+k+l+m+n 
k+l+m+n 
/-+m-+n 

For any other iterative method, the sets S(r) lead to a rule for multijumps: 
continue jumping as long as R,+l E (R,) but stop as soon as R (~1 $ S(RA. Again, 
let r,, be the time of completion of the nth multijump, and let U: be given by (3.3). 
Then reasoning as in the Gauss-Seidel example, we find that (3.1) holds. 

Here is the intuition behind the convergence-rate comparison with Jacobi. The 
important fact is that the sequence of jumps in a random walk induced by another 
method is indistinguishable from that of the Jacobi method; the only difference 
appears in grouping some jumps together as multijumps. Let p be the expected 
number of jumps in a multijump (for starting points far from the boundary of 0). 
For instance, p = I for point Jacobi and p = 2 for point Gauss-Seidel. So, if time 
is measured by the number of sweeps or multijumps, we expect the walker to reach 
the boundary “p times as fast” as in the single-step (Jacobi) case. We thus expect the 
convergence to be p times as fast as in the Jacobi case. In fact, as we saw in Section 
2, the behavior of I@) - ~1 for Jacobi is governed by Pr(T > n) [which decays like 
e -cn for some C = C(Jucobi) > 0, depending on D], whereas for other methods 
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FIG. 3. The jumps that are ends for ordinary Gauss-Seidel. A jump is an end if it goes from a 
later to an earlier point in the sweep order. 

it is governed by Pr(T > T,), which approximately equals Pr(T > pn) = e--PC”. 
Thus for example we should have C(Gauss-Seidel) = 2C(Jacobi). 

The following theorem makes the above precise and gives a rule for calculating 
p for more general iteration schemes. Given a region D, we consider a sequence 
of discretized domains D(m). Here D(m) is the set of points of Z* inside the scaled 
region mD (i.e., D magnified by a factor of m). [Equivalently, we could consider a 
grid of mesh 1 /m, and think of D(m) as the set of grid points inside D.] Let pm be 
the convergence rate of the given scheme relative to point Jacobi on D(m). Then 
this theorem says that as m 4 00, pm converges to a number p, which we call the 
(limiting) relative convergence rate of the given scheme to point Jacobi. 

We define an edge to be a directed segment from a grid point r to a neighbor r’. 
The edge is said to be an end if a jump from r to r’ would terminate a multijump 
[i.e., if r’ $ s(r)]. (See Figure 3.) Since we are considering a sequence of sets 
D(m) which increases to Z*, this definition extends naturally to all edges of the 
infinite grid Z* by saying that the edge from r to r’ is an end if and only if the 
following holds: a jump from r to r’ terminates a multijump whenever r and r’ are 
both in D(m). Observe that this definition of “end” depends only on the iteration 
scheme and not on the set D or D(m). 

THEOREM. Consider an iteration scheme for the Jive-point Laplacian in 
which the ends form a periodic pattern on Z*. L.et u be a density of ends, i.e., the 
fraction of all edges that are ends. (Precise defkitions of “periodic pattern” and 
“density’ are given at the beginning of Appendix B.) Then for any plane region D, 
the limit p = limm+oo p(m) exists and equals a-‘. 
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We restrict ourselves here to explaining the basic idea of the proof; for more 
details, see Appendix B. As explained above, the relative convergence rate is given 
by p, the number of jumps in a “typical” multijump. Using standard methods of 
probability theory, it can be proven that p can be defined (on an infinite grid) by 
lim,,, E(T,,/n), and that p = limn+cx, E(T,,+i - r,,) = limn-,m T,,/n. (The last 
limit exists with probability one.) After n multijumps (or T,, jumps), n/Tn is the 
fraction of jumps that have terminated some multijump. Since n/Tn converges to 
a limit as YZ + 00, the limit must be g, the fraction of possible steps in the lattice 
that would terminate a multijump. Therefore p = 0-l. 

EXAMPLES. 

(i) Point Gauss-Seidel. Here, half of all edges are ends, so c = i and 
p = 2. In fact, this should work for any ordering: suppose that the points of D 
areorderedri,r2,rs ,... andS(ri)= {rl,rz,. . . , ri} for each i. Then for any pair 
of neighbors r and r’ in D, either r E S(r’) or r’ E S(r), but not both: therefore 
0 = i, and p = 2. (Of course, the above theorem as stated only covers “periodic” 
orderings.) 

(ii) Block line Jacobi. Each S(r) is a horizontal line: S(i, j) = {(i’, j) : i’ = 
1 7”‘) N}. Then 

Thus the ends are the vertical edges, so CJ = $ and p = 2. (Alternatively, observe 
that a multijump ends when the vertical jump is made; the probability of a vertical 
jump at any given step is i, so the expected number of jumps in a multijump is 2.) 

(iii) Block line Gauss-Seidel. S(i,j) = {(i’,j’): j’ 5 j}. An end is a bond 
from (i, j) to (i, j + l), so g = i and p = 4. 

(iv) k x k block Jacobi (Figure 4). Here, the grid is partitioned into an array 
of squares, each containing k* grid points, and S(r) is the square that contains r. 
The reader can easily check that p = 1 /k, and so p = k. 

(v) Red-black Gauss-Seidel (Figure 5). Here 

+ & for i + j odd, 

1 + gij for i + j even. 

If we refer to the points (i, j) for which i + j is odd as “red,” and the other 
points as “black,” then one sweep updates all the red values, using the black values 
from the previous round, and then updates the black values, using the new red 
values. Using the observation that a random walk on a black point must jump to a 
red point (and vice versa), it is not hard to see that one sweep corresponds to two 
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~~~~~~~~~~~~~_______ I_________, 
I I I , 

I I 

I I 

L___&&~ 
I I I I 

FIG. 4. In 2 x 2 block Jacobi, the jumps from one block to another are ends. 

random-walk jumps: black to red and then red to black. In particular, 

u!“) = I L?(ij) ( “n$JM’ g(Rk)) if (i, j) is black, 

Y 

E(ij) 
( 

[(2n-l)AT]-I 

c g(&) if (i, j) is red. 
k=O 

Thus C(red-black Gauss-Seidel) = 2C(Jucobi). (This also follows from the theo- 
rem, since (i) above is applicable.) 

4. VARIATIONS: NINE-POINT LAPLACIAN AND UNDERRELAXATION 

Let X be the matrix of the nine-point Laplace operator on D: 

(“)ij = 4j - f(Ui-l,j + Uij-1 + Uij+l + Ui+lj) 

-$i(“i-* j-1 + ui-l j+l + Ui+l j-1 + Ui+l j+*). 

We can define a corresponding random walk &,, 81, . on the lattice Z*. We now 
say that two distinct lattice points (il, ji) and (i2, j2) are neighbors of Ii1 - i21.5 1 
and 1, - j2l < 1. If a ball is at point (il ,jl) at time t = n, then it jumps to 
one of its eight neighbors at time t = n + 1, but the eight neighbors are not all 
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FIG. 5. For red-black Gauss-Seidel, the ends are the jumps that go from black sites to red ones 
(drawn here as hollow circles). 

equally likely to be chosen. It chooses a neighbor (iz, j,) with probability 3 if 
Iii - izl + Ii - j,l = 1, an wi d th probability & if Iii - iz[ = 1 = bi -j,l. 

Much of the preceding discussion of methods for the five-point Laplace oper- 
ator is easy to extend to the nine-point case. As before, the nth iterate in the Jacobi 
scheme is the expected accumulated reward up thenth jump, E(ij~(C~~~‘-’ g(&)). 
Also unchanged are the definitions of multijumps and the interpretation of p as 
the relative convergence rate with respect to point Jacobi iteration. The only mod- 
ification occurs in the definition of u: when we compute the density of the ends, 
each edge must be weighted according to the Laplacian weights (i.e., with the cor- 
responding jump probabilities in the random walk). Also, the theorem of Section 
3 and its proof still hold. 

EXAMPLES. 
(i) Gauss-Seidel. As in Section 3, we have u = 4 and p = 2 for any ordering 

(since the weight of the edge from r to r’ equals the weight of the edge from r’ to r). 
(ii) Red-black Jacobi. We have 

if (i, j) is red, 

if (i, j) is black. 
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Here, S(r) is empty if r is red, and S(r) is the set of all red points if r is black. The 
ends include all edges emanating from black points (density $) and all diagonal 
edges with two red endpoints (density $ x 4 x &), so (T = i + 6 = 3 and p = :. 

(iii) Red-black Gauss-Seidel:’ 

+gij if (i,j) is red, 

if (i,j) is black. 

Here, p = 2, since this is an example of Gauss-Seidel in which all of the red points 
are listed first, in lexicographic order, and then all of the black points. 

(iv) Block line Jacobi. Here, the end are all the diagonal and vertical edges, 
so p = 2. $ + 4. & = $. Similarly, for block line Gauss-Seidel, ~7 = &. Note that 
block line Jacobi does less well for the nine-point than for the five-point operator. 
This is because the random walk is more likely to leave a line in a step of the 
nine-point walk than in a step of the five-point walk. 

Now we will discuss the technique of underrelaxation. Fix a number w, 0 < 
w < 1: 

(1) Jacobi: 

p+l’ 
q = w ; Qlj 0 + ug_, + UI”:, j + u!“? rJ+l 

1 > 
+ gij + (1 - w)#) 

(with an analogous expression for the nine-point operator). Here, our random 
walker either sits still and does nothing (with probability 1 - w), or else takes a 
single random-walk jump (with probability w). Let Z,, = [time lapsed from (n - 1)th 
to nth jump]-1 = amount of time spent sitting still. Let TJ = number of jumps 
required to exit D; and let T, = number of time units (iterations) required. So we 
expect Tw/T~ % l/w. Observe that T, = TJ + CFf, Z,. Now, as in Example 1, 
it is easy to see that E(Zr) = w . 0 + (1 - w)[l + E(Zt)], so E(Zr) = (1 - w)/w. 
By the strong law of large numbers, cr=:=, Z,,/m converges to E(Z1) as m + ca, 

‘For the five-point stencil, red-black Jacobi and red-black Gauss-Seidel are the same and are called 
red-black Gauss-Seidel. 
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so in particular C:=, Z,,/TJ is probably close to (1 - w)/w. In fact, in the limit 
as the mesh size -+ 0, it can be shown that Tw/TJ + 1 + (1 - w)/w = l/w, and 
hence Pr(TJ > n) 2 Pr(T, > n/w), so C(w-Jacobi) = wC(Jacobi). 

(2) Gauss-Seidel. 

UP+‘) = w 
r/ 0 t ui_lj @+I) + Jy+1, 

[J-l + Uf;‘,j + $\, tgij 
1 > 

+ (1 - w)u$! 

The process here is very similar to the usual Gauss-Seidel setup, except that when 
the scanner moves to a point occupied by the walker, then the walker jumps with 
probability w and sits still with probability 1 - w. Therefore if NJ = number 
of jumps in one sweep, we find that E(NJ) = (1 - w)O + w[l + @(NJ)], so 
E(NJ) = 2w/(2 - w). Therefore 

C(w-Gauss-Seidel) = & C(Jacobi). 

REMARK. The results for underrelaxation can also be obtained by the meth- 
ods of the main theorem. The key is to add to the graph an edge from each point 
to itself, having weight 1 - w, which is an end for underrelaxation but not for the 
usual Jacobi. 

Finally, we show how to compare the convergence rates of methods for the 
nine-point operator with methods for the five-point operator. It suffices to treat the 
respective point Jacobi methods. 

Here we must compare the rates at which two different random walks escape 
from a region D. We consider a large problem in which the distance between 
nearest neighbors is X-i, for some large X. As discussed in Appendix A, the 
convergence rate for point Jacobi iterations is Xia/X2, where Xi depends only 
on D, and a is the expected squared length of a single random-walk step on the 
unscaled grid: 

a= c (i2 +j2)Pr(RI - Ra = (i,j)). 
(ijEZ* 

Then a = 1 for the five-point scheme and a = 2 for the nine-point scheme. We 
conclude that the convergence rate for nine-point Jacobi iteration in g times the 
rate for five-point Jacobi. 

APPENDIX A. THE CONTINUUM LIMIT 

Consider a random walk (Ro, RI, Rz, . . .) on a d-dimensional grid, where 
E(Ri+I - Ri) = 0 and E(I(Ri+I - Ri112) = a. Since the steps {Ri+l - Ri : 2 0) are 
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all independent, it follows from basic probability that E( I]& - R,-112) = na. Thus, 
for-any t 2 0, E((IR [r/a] - Ro 11 2, = t. If we reduce the mesh of the grid by a factor 
of X, then the random walk Ra’, RIX’, . . . satisfies E(IIR$ - Rf”l12) = Xe2a, so 

w$2z,a] - Ra’lj2) = t. Thus if we rescale space so that the distance between 

neighboring grid points is X times smaller than originally, and if we take X2 times 
more jumps per unit time, then we expect about the same overall displacement 
in the same total time by the resealed random walk as by the original. In fact, in 
the limit X --+ 00 (infinitely fine grid), we get an “infinitesimal random walk”: a 
random process indexed by continuous time, {Wr : t > 0}, with very wiggly but 
continuous paths, and still satisfying E(]]W, - ~‘a]]~) = t. For t > s 2 0, the 
coordinates of the displacement vector IV, - IV, are independent random variables 
having normal (Gaussian) distributions with expected value 0 and expceted square 
equal to (t - s)/d. This limiting process is called a Brownian motion or a Wiener 
process (whence the notation IV,). It is a special case of a “diffusion process.” A 
good introduction to the relations between Brownian motion and the equations of 
potential theory is [4]. 

For our purposes, consider a bounded open connected subset D c IWd and let 
g be a (nice) function on D. To obtain a discrete approximation to the solution u 
of -Au = g, we look at a discrete Poisson equation Au = g on a fine grid. In 
the body of the paper, we show that different iterative methods (and different A’s) 
correspond to different random walks. Consider a scheme that corresponds to a 
random walk Ro, RI,. . . with E(IIR, - Rol12) = a. Let T (respectively Tw) be the 
first exit time from D for the random walk. (respectively for the Wiener process). 
The convergence rate of this scheme on a grid scaled down by X is 

- ,llmm a log Pr(T > n) 2 - lim i log Pr (y>+ 

= X,u/X2, 

where Xi is the first eigenvalue for D [5, p. 1261. (Note that in the context of the 
present paper, the above approximate equality has not been rigorously proven.) 
Thus, to compare convergence rates of different schemes, we need only compare 
the expected squared length of each jump (see Section 4). 

APPENDIX B. PROOF OF THE THEOREM 

In this appendix, we give the details of the proof of the main theorem, as stated 
in Section 3, for iteration schemes based on periodic patterns. 

First we define Periodic pattern and density. We say that the set of ends forms 
a periodic pattern on Z2 if there is a finite set of edges of iZ2, B = {bl , . . . , b,}, 
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and a pair of vectors VI and vz such that (1) every edge e in Z2 is a translate of 
a unique edge b(e) in B, in the form e = ktvt + k2v2 + b(e) for a unique pair of 
integers kr and k2, and (2) if b(e) = b(e’) for two edges e and e’, then e is an end 
if and only if e’ is an end. Then the density (T is precisely the fraction of edges in 
B which are ends. Note that the ends are determined by the iteration scheme only, 
not by D or D(m). 

For example, let el , e2, es, and e4 be the edges from the origin to (1, 0), (- 1, 0), 
(0, l), and (0, - 1) respectively. Then ordinary Gauss-Seidel corresponds to B = 
{el, e2, e3, e4}, VI = (l,O), 19 = (0, l), with el and esends. Block line Jacobi 
corresponds to the same B, VI, and ~2, but now es and e4 are ends. Fork x k block 
Jacobi, we can choose VI = (k, 0), v2 = (0, k), and B consisting of 4k2 edges (k2 
parallel to each ei). 

Let &RI,... be the associated random walk on all of Z2. Define Y,, = 
b((K, &+I)). Then Yo, YI, . . . is a finite Markov chain with state space B. Let 
I,, = 1 if Y, is an end, 0 otherwise. Observe that T,,+r = min{k > T, : Zk = 1). 

We shall first show that given E > 0, there exists as M > 0 such that 

Pr{]Tn-:] >nc}~e-““forallsufficientlylargen. (B.l) 

Let Qi = cjkzl Zk, Then the theory of large deviations [3,2] tells us that for every 
E > 0 there exists an L > 0 such that 

!Im_[pr{]$!--E(6)l >.5}]li’=eeL, 

where E(I1) is the expectation with respect to the equilibrium measure of the 
Markov chain, which is uniform on B; and so E(Z1) = B. [For the nine-point 
Laplacian of Section 4, the equilibrium distribution is no longer uniform on B, but 
it is not hard to check that E(It) = CY still holds.] 

Since T,, 2 n and Qr, = n, we have 

Pr{]Tn-:] >n,) 5 Pr{forsomejzn, I-$] >QjE} 

00 

I c {I Pr 
j=n 

00 

5 Pr 
c {I j=n 

e,_(y >!a& I > j 
;.I 1 J fs2.E 
---a>-. 
j 1 fcrE 
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By the discussion of the preceding paragraph, there exists an M’ > 0 such that 

for all sufficiently largej. The result (B.l) follows. 
We shall now prove that lim,,, p,,, = a-‘. Given E > 0, chosen m large 

enough so that &(a-’ + E) < M, where M is given by (B.l), and X, is the first 
eigenvalue of D(m) [recall X, = 0(m-*)I. Then 

Therefore 

limsupPr{T > T,}“” I max{exp[-X,(0-’ - E)], exp(-M)} 
n-too 

= exp[-X,(o-’ - E)]. 03.2) 

Also 

Pr{T > T,,} 2 Pr T > If. + ne { o }-,(.-ii>ne} 

also so 

l\tnkfPr{T > T,}l/” 2 exp[-X&o-’ + E)]. (B.3) 

Since X, is the convergence rate of point Jacobi on D(m), we find from (B.2) and 
(B.3) that 

CY-’ - E 5 Pm I 0-l + E. 

The desired result now follows. 
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