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Recently, Broughton and Huff [l] showed that the union of a strictly 
increasing sequence of o-fields cannot be a u-field. It is most remarkable 
that this fact seems not to have been noted before. However, since the 
conditions for a class of subsets to be a field are weaker than those to be 
a u-field, the statement that the union of a strictly increasing sequence 
of fields cannot be a u-field is even more plausible. Unfortunately, the 
proof of Broughton and Huff makes (only at one place) essentially use 
of the fact that they consider a sequence of u-fields. 

In this note we shall give an even simpler proof of the theorem that 
the union of a strictly increasing sequence of rings cannot be a u-ring. 
This obviously implies that the union of a strictly increasing sequence 
of (a-)fields cannot be a u-field. 

Throughout, X will be a fixed set. A sequence (&,J of rings of subsets 
of X is said to be increasing if .zZn C .&,,+I for all n, and an increasing 
sequence of rings (&,J is said to be stationary if eventually we have 
dfl = dm+l. 

For any class JZ? of subsets of X and any P C X we define 

dlP= {A E dpl c F). 

If (&,,) is an increasing sequence of rings, then for every B C X the 
sequence (&,IP) is again an increasing sequence of rings. 
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LEMMA 1. Let (&,J be a non-stationary increasing sequence of rings, 
and put &= U,“_, d,,. Then for every N there exists a set P E z/\&N 
such that the sequence (&,JX\F) is non-stationary. 

PROOF. Choose N. Since the sequence (dn) is non-stationary, there 
exist an integer Ni > N, a set Gi E JzZN~\&N, an integer NZ > Ni and a 
set Gz E &N~\&N~. It is easily verified that at least two of the three 
disjoint sets Gi\Gz, Gi n GZ and Gs\Gi do not belong to &N. Therefore 
there exist two disjoint sets Pi and J’z in & not belonging to &N. 

For two rings Wi and 93~ we define 

~?~VB?~={AUB~AE~~ and BE&). 

Then for all n> NZ we have 

d?&=d,lX\F1 v dnlX\F,. 

Since the sequence (.J&‘~) is non-stationary, at least one of the sequences 
(~?blX\~l), WnIX\P ) 2 is non-stationary. Now we define F =$‘I if the 
sequence (,olnlX\F ) 1 is non-stationary, and P= FZ otherwise. 0 

LEMMA 2. Let (dn) be a non-stationary increasing sequence of rings, 
and put .M= U,“_, da. Then there exists a sequence of disjoint sets (17,) 
in J%’ such that C,, $ J$,, for every n. 

PROOF. By lemma 1 there exists a set Cl E .& such that Ci $ &i and 
the sequence (.MmlX\C ) I is non-stationary. Now suppose that the disjoint 
sets Cl, Cs, . . . . Gk in & have been found such that Cg 4 &g for 1 <i < k, 
and the sequence (dnlX\(C~ u . . . U Gk)) is non-stationary. Then again 
by lemma 1 there exists a set &+I E &IX\&‘1 U . . . U c&) with Gk+i $ 
+dk+llx\(cl u . . . U Gk) and the sequence (dnlX\(Ci U . . . U ck) jx\ck+l) 

is non-stationary. The &at condition implies that the sets Cl, . . ,, Gk+i 
are disjoint and Gk+i $ &k+l. Since we have 

dqJX\(Cl u . . . u ~k)~x\~k+l=~n~x\(~l u . . . u ck+l), 

the second condition implies that the sequence (~$~lx\(Cr U . . . U &+I)) 

is non-stationary as well. cl 

THEOREM. Let (d,,) be a non-stationary irmreasing sequence of rings, 
and put &= U,“-, &,,. Then & is not a u-ring. 

PROOF. Suppose that & is a b-ring. Let the sequence (C,) be as in 
lemma 2. Let (Nl, Ns, . . . } be a partition of the set of natural numbers 
into infinite sets, and put 
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By our assumption the sets X, belong to zz2 and therefore for every p 
there exists an integer nP such that XP E &+. Since (dn) is increasing, 
we may assume that the sequence (1~~) is strictly increasing. 

For every p we choose an integer nap E N, such that rnP > n,, and we put 

D= (j C,. 
v-1 

Then by assumption we have D E ~4, hence eventually the set D belongs 
to every &,,, and therefore there exists an integer q such that D E dna. 
Because of the construction of the sets X, we now have 

X,~D=C,,EJ&~. 

Since n, < m, this implies C, E cc9,. This is a contradiction, and therefore 
the assumption that JZ? were a u-ring is false. q 
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