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Haplotype-based approaches may have greater power than single-locus analyses when the SNPs are in strong
linkage disequilibrium with the risk locus. To overcome potential complexities owing to large numbers of
haplotypes in genetic studies, we evaluated two data mining approaches, multifactor dimensionality
reduction (MDR) and classification and regression tree (CART), with the concept of haplotypes considering
their haplotype uncertainty to detect haplotype–haplotype (HH) interactions. In evaluation of performance
for detecting HH interactions, MDR had higher power than CART, but MDR gave a slightly higher type I error.
Additionally, we performed an HH interaction analysis with a publicly available dataset of Parkinson's disease
and confirmed previous findings that the RET proto-oncogene is associated with the disease. In this study, we
showed that using HH interaction analysis is possible to assist researchers in gaining more insight into
identifying genetic risk factors for complex diseases.
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1. Background

Many common diseases, such as coronary heart disease, hyper-
tension, diabetes, and Parkinson's disease, appear to arise from the
combined effects of multiple genes, environmental factors, and risk-
conferring behaviors [1]. A central goal in human genetics is to
understand the relationship between DNA sequence variations and
the susceptibility to diseases. Success in this effort will depend
critically on the degree of nonlinearity in the relationship between
genotypes and phenotypes. Nonlinearities can arise from phenomena
such as locus heterogeneity, phenocopy, dependence of genotypic
effects on environmental factors (i.e., gene–environment interac-
tions), and genotypes at other loci (i.e., gene–gene interactions or
epistasis).

Epistasis is a fundamental component of the genetic architecture of
complex traits. Although epistasis is believed to be key to common
disorders, traditional statistical methods are generally less practicable for
handlinghigh-dimensional data andarenot suitable todetect interactions
in the absence of independent main effects (i.e., effects that may be
detected by a single marker test). This limitation has led to the
development and application of different data mining approaches, such
as combinatorial-based and tree-based approaches, for handling high-
dimensional data.

Multifactor dimensionality reduction (MDR) [3] is one combinatorial-
based data mining approach. MDR uses an attribute construction
algorithm to create a new discrete attribute by pooling levels from
multiple discrete factors [4,5]. This process changes the representation
space of the data and thereforemakes nonlinear interactions easier to be
detected and characterized. The MDR approach has been successfully
applied to detect gene–gene interactions in a variety of human diseases
including Alzheimer's disease [6], bladder cancer [7], multiple sclerosis
[8], and schizophrenia [9]. The Classification and Regression Tree (CART)
method [10] is a tree-baseddatamining approach.Dependingonabinary
answer to a question, CART divides each node of the tree into two
offspring nodes, until the observations at the same node are homoge-
neous. The goal of CART is to produce an accurate set of data classifiers by
uncovering the predictive structure of the problems under consideration.

Both MDR and CART have been used to identify combinations of
multi-locus genotypes and discrete environmental factors associated
with diseases [11,12]. According to Niu et al. [2], although methods
based on single-nucleotide polymorphisms (SNPs)may yield important
insights, haplotype-based methods can provide additional statistical
power to detect genes involved in complex trait diseases and
information on factors that influence the dependency among genetic
markers. There are many methods that focus on single-locus or
haplotype or SNP–SNP interaction analyses; however, detection of
haplotype–haplotype (HH) interactions should be considered as one of
the important data mining approaches for genetic association studies.

http://dx.doi.org/10.1016/j.ygeno.2010.11.003
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To our knowledge, not many papers have discussed HH interactions
[32,34–36]. In one such study, Chen et al. [32,34–36] developed a
random forests-based approach, called “hapForest,” to identify disease-
related haplotypes. The authors used “variable importance” as the score
to identify significant patterns of haplotypes in associationwith disease
susceptibilities in the forests. In our study, haplotype datawere inferred
fromHaploview [19] andPHASEsoftware [20]. “Index scores”wereused
to adjust bias arising from haplotype uncertainty. These index scores
incorporate all available locus information and give different weights to
each individual's possible haplotypes. With haplotype data and index
scores, MDR and CART were then used to detect HH interactions.

Although haplotypes typically exist in all human chromosomes,
the number and size vary with chromosome and population [13,14].
We are therefore particularly interested in three factors that might
influence power and type I error of the two methods: (i) different
disease models; (ii) variations in haplotype block size (i.e., the
number of markers in each haplotype); and (iii) different haplotype
frequencies. By evaluating results from simulations, we address the
advantages and disadvantages of both methods as applied to HH
interactions. Finally, we perform an HH interaction analysis using the
two methods with a publicly available dataset of Parkinson's disease
[15], and we compare the results with some current knowledge of the
disease.

2. Methods

2.1. Partitioning haplotype blocks

Suppose there are N individuals. Let Gn=(Gn
1,Gn

2,...,Gn
q) denote q

diploid genotypes for individual n (n=1,2,…,N), where q is the
number of designated biallelic SNPs. In general, an individual's
haplotype information is not directly observed by using current
genotyping techniques. In this study, haplotype blocks are inferred
based on the definition of Gabriel et al. [14] for all diploid genotypes,
using the Haploview software [19], to compute the 95% confidence
bounds of the value of D’, which is a standard measurement of linkage
disequilibrium (LD), for all pairwise combinations of genotypes.
According to Gabriel et al. [14], a pair of genotypes is defined to be in
“strong LD” if the upper 95% confidence bound ofD’ is higher than 0.98
and the lower bound is higher than 0.7.

2.2. Inferring probabilities for all possible haplotype pairs

Suppose there are B blocks determined by Haploview v4.1
software. There are Mi possible haplotype pairs for block i, i=1,
2, …, B. Note that we consider biallelic SNPs in this study, so the
number of Mi is C2

2s

+2s, where s is the number of SNPs in block i.
Let Hi(j), j=1, 2, …, Mi, denote the jth possiblehaplotypepair inblock
i, let pnHi(j) denote the corresponding haplotype probabilities to Hi(j) for
individual n (n=1,2, N), let P(Hi(j))=(p1Hi(j),p2Hi(j),...,pNHi(j)) denote the
collection of corresponding haplotype probabilities to Hi(j) for
N individuals, and let Pn(Hi •)=(pnHi(1),pnHi(2),...,pnHi(Mi)) denote the collection
of corresponding haplotype probabilities to Mi possible haplotype pairs
in block i for individual n (n=1,2,…,N). Note that pnHi(j) is inferred by
using PHASE v2.1 software [20]. Furthermore, we consider that
heterogeneity may cause the bias of inferring haplotype probabilities.
Hence, we carry out the haplotype reconstruction process in PHASE
separately for the case and control groups in this study.

2.3. Calculating the “index scores” to consider haplotype uncertainty

Haplotype uncertainty is a consequence of inferring haplotype
probabilities. Therefore, we calculate index scores to account for the
uncertainty [37] of the haplotype reconstruction process in PHASE.
The following describes how “index scores” adjust for bias arising
from haplotype uncertainty.
A function S of Hi(j) is defined as the index score of Hi(j) as follows:

S Hi jð Þ
� �

= ∑
N

n=1
p
Hi jð Þ
n ;where

∑
n1

n=1
p
Hi jð Þ
n for cases

∑
N

n=n1 + 1
p
Hi jð Þ
n for controls

:

8>>>><
>>>>:

This is a summation over all corresponding probabilities of Hi(j) for
N (that is, n=1,2,...,n1 for cases and n=n1+1,n1+2,.....,N for
controls) individuals.

The basic idea of “index scores” is that different haplotype pairs of an
individual contribute differently to the disease phenotype. A haplotype
pair for an individual isweightedby theprobability inferred fromPHASE
software. Therefore, the index score evaluates the contribution that a
given haplotype pair makes to an individual's disease phenotype.

2.4. Reducing the amount of data in each haplotype block

Gabriel et al. [14] found that most blocks contained only three to
five haplotypes, i.e., most pnHi(j) are small (e.g., b0.1) or equal to zero.
Let Hi(j)

* , j=1, 2, …, Mi denote the haplotype pair with the jth largest
index score S(Hi(j)

* ). We rank all of the index scores of Hi(j) for N
individuals, i.e., S(Hi(1)), S(Hi(2)),…, S(Hi(Mi)), from the largest to the
smallest within each block i, i.e., S(Hi(1)

* )NS(Hi(2)
* )N ⋅ ⋅ ⋅NS(Hi(Mi)

* ).
Hence, a suitable number of groups of haplotype pairs for each block
can be determined by combining some haplotype pairs in a group in
block i if their corresponding index scores are small (e.g., b0.1).

Suppose the number of groups is g, where g≤Mi (Mi is the number of
possible haplotype pairs in block i. Let Ki(r)=(Hi(r)

* ), r=1, 2, …, g − 1
denote the rth group in block i, and there is Hi(r)* contained in this group.
Let Ki(g)=(Hi(g)

* ,Hi(g+1)
* ,...,Hi(Mi)

* ) denote the gth group in block i, and
there are Hi(g)

* ,Hi(g+1)
* ,… and Hi(Mi)

* contained in this group. After
determining g groups, the Mi possible haplotype probabilities in block i
for individual n can be denoted as Pn(Ki •)=(pnKi(1),pnKi(2),...,pnKi(g)).

Note that the number of groups (g) in block i is not restricted to a
certain number (e.g., 6); however, we assumed g≤Mi in this study
because most blocks contained only three to five haplotypes [14].
Therefore, it is not necessary to reduce the amount of data in each
haplotype block. However, doing so, can save time when calculating all
possible haplotype combinations as described next.

2.5. Constructing haplotype combinations

For all haplotype combinations, we calculate ∏
B

i=1
p
Ki j�ð Þ
n for any

j*=1,2,...,g. The value of ∏
B

i=1
p
Ki j�ð Þ
n is multiplied by 10 and round off to

the nearest integer. This integer can be regarded as the number of times
that individual n carries its corresponding haplotype combination. A
10N×B matrix is created by combining haplotype combinations for all
individuals. For example, supposeN=2,B=2andg=2.Thereare gB=22

combinations, i.e., K1(1)K2(1),K1(1)K2(2),K1(2)K2(1),K1(2)K2(2). The value of

∏
2

i=1
p
Ki j�ð Þ
n for these four combinations is (0.8,0,0.2,0) for individual 1 and

(0,1,0,0) for individual 2. Aftermultiplying the values by 10 and rounding
off to the nearest integer, the number is (8,0,2,0) for individual 1 and
(0,10,0,0) for individual 2. A 20×2 matrix can be created as follows:

i = 1 i = 2

n = 1f
n = 2f

K1 1ð Þ K2 1ð Þ
K1 1ð Þ K2 1ð Þ
⋮
K1 1ð Þ K2 1ð Þ
K1 2ð Þ K2 1ð Þ
K1 2ð Þ K2 1ð Þ
K1 1ð Þ K2 2ð Þ
⋮
K1 1ð Þ K2 2ð Þ

2
6666666666664

3
7777777777775
20x2
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As a result, one unphased dataset, i.e., a genotype dataset with
unknown haplotype information, will expand to a large dataset, i.e., a
genotype dataset with known haplotype information, reflecting the
uncertainties of the haplotypes.

2.6. HH interaction

2.6.1. MDR
MDR is a non-parametric method and it is free of any assumed

genetic model. This method reduces data dimensionality by pooling
genotypes into either high-risk or low-risk groups for a disease, thereby
circumventing theproblemof high-order genotype combinationswith a
low number of observations [3,17–18].

In the past, MDR has successfully identified combinations of multi-
locus genotypes and discrete environmental factors that are associated
with diseases [11,12]. In this study, we used Haploview and PHASE
software to infer haplotype data. We used “index scores” to adjust for
bias arising from haplotype uncertainties in haplotype estimation.With
above data, MDR was used to detect HH interactions.

Cross-validation (CV) consistency [21] is a measure of the number of
times an HH model (an HH interaction) is identified as the best model
across theCVsubsets. Taking a10-foldCV for example (i.e., CV consistency
ranges from1 to10), thephaseddataset is divided into a training set (9/10
of the data) and a testing set (1/10 of the data). For each CV subset, the
balance testing accuracy is calculated for the testing set and defined as
(Sensitivity+Specificity)/2. The average balance testing accuracy is the
mean of the 10 CV subsets and is a measure of how well the final HH
model predicts the risk status in testing sets. The HH model with the
highest CVconsistency is selectedas thefinalHHmodel.Once thefinalHH
model is chosen, permutation testing is used to test the significance of this
final HH model by evaluating the magnitude of the average balance
testing accuracy. The statistical significance of theMDR results is assessed
by comparing the averagebalance testing accuracy of theobserveddata to
the distribution of average balance testing accuracy under the null
hypothesis of no association, which is derived empirically from multiple
permuted datasets by randomizing the disease status labels. The null
hypothesis is rejected when the Monte Carlo p-value, derived from the
permutations, is less than 0.05. The measures as described above and the
procedures of the MDR method applied to the case-control haplotype
studydata ispresented schematically inSupplementaryFig. 1. Throughout
this study, we used a 10-fold CV and 1000-fold permutation testing, a
commonly accepted standard [3,4].

2.6.1.1. MDR procedure for detecting HH interactions. Below we
summarize the steps used to detect HH interactions from genotype
data via MDR. We have integrated these steps into a user-friendly
software.

Step 1: Perform block partitioning by inputting unphased data
(genotype data) using Haploview v4.1 software.

Step 2: Infer each individual's probabilities for all possible haplotype
pairs for each block identified in Step 1 using PHASE v2.1
software.

Step 3: Calculate the index score for Hi(j), S(Hi(j)), by using the
haplotype probabilities inferred from Step 2.

Step 4: Rank the results from Step 3 to determine g groups in each
block.

Step 5: Create a 10N×B matrix by calculating ∏
B

i=1
p
Ki j�ð Þ
n , i.e., create a

phased dataset.
Step 6: UseMDR software to select the final HHmodelwith the highest

CV consistency and significant average balance testing accuracy
by using the phased dataset created in Step 5.

2.6.2. CART
CART is a non-parametric method and can be used to select

predictors and their interactions that are important in determining an
outcome variable. In a case-control study, the CART method involves
two central steps in construction of classification trees [10]. The first
step is a recursive partitioning process that splits the root node (all
samples) into two offspring nodes by the value of a predictor variable.
The second step is a “pruning” process that removes unnecessary
splits from the bottom to the top. The CART method has been proven
capable of detecting combinations of multi-locus genotypes and
discrete environmental factors associated with some diseases [11,12].
By inferring haplotype data from genotype data as described above for
subsequent usage withMDR, these data can also be applied to CART to
identify HH interactions.

Since CART is a tree-based approach, some haplotype blocks are
prioritized to be used in constructing a classification tree. Haplotype
blocks with stronger main effects for the disease phenotype will be
closer to the root node [22]. Hence, CART is able to indicate which
haplotype block in a significant HH interaction that has a stronger
contribution to disease risk. For example, a significant HH interaction
H3 •×H2 • is selected by CART. The first-appearing haplotype block
H3 •=(H3(1),H3(2),H3(.3),H3(4),H3(5),H3(6)) is selected first to split the
tree, and the second split is according to the other haplotype block
H2 •=(H2(1),H2(2),H2(.3),H2(4),H2(5),H2(6)). Thus, H3 • has a stronger
contribution to disease risk than H2 •. Moreover, CART can provide
information regarding specific haplotype pairs in a haplotype block
that are associated with diseases. For example, an individual with the
haplotype pairs H3(2) in H3 • and the haplotype pairs H2(1) in H2 • is
categorized to the case group, indicating that the interactions
between these haplotype pairs contribute to disease risk.

In the recursive partitioning process of CART, the root node
comprises the total set of haplotype pairs for each individual, i.e.,
total Hi(j). In this study, the R (http://www.r-project.org) [24]
package ‘tree’ [23] was utilized with the following parameters: the
Gini index was used as a splitting criterion; a 10-fold CV was used to
evaluate overall model fit. The final classification tree was selected as
that with the highest CV consistency across each of the 10 CV subsets.
Permutations were used to test the significance of the final
classification tree by evaluating the magnitude of average balance
testing accuracy. The permutation testingwas similar to that used for
MDR. A 10-fold CV and a 1000-fold permutation testing were used in
this study.

2.6.2.1. CART procedure for detecting HH interactions. The CART
procedure consists of the following steps. These steps were integrated
into a user-friendly software.

Steps 1–5: Follow steps 1–5 for theMDRprocedure presented above.
Step 6: Use TREE (R package) to select the final classification tree
with the highest CV consistency and significant average balance
testing accuracy.

To summarize, for HH interactions we have integrated a series of
programs (i.e., R, PHASE, Haploview, MDR and CART) into a
convenient software that is available for both Linux and Windows
platforms. Software, example datasets, and a user guide are available
at the website http://www.csjfann.ibms.sinica.edu.tw/EAG/program/
programlist.htm.

2.7. Simulation studies

We divided our simulation studies into two parts. The first one
used simulated genotype data without LD, and the second used data
with LD. For both simulated data, we assessed the power for
identification of SNP–SNP interactions and HH interactions associated
with the disease by using MDR and CART. Furthermore, we evaluated
the performance of MDR, CART and hapForest [32] for identification of
HH interactions associated with the disease.

http://www.r-project.org
http://www.csjfann.ibms.sinica.edu.tw/EAG/program/programlist.htm
http://www.csjfann.ibms.sinica.edu.tw/EAG/program/programlist.htm
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2.7.1. Generating genotype data without LD
In the first part of the simulation study, we generated 36 SNPs in a

case-control association study with 1500 cases and 1501 controls by
using the simulation software SNaP [26]. We considered 12 two-locus
interactionmodels,Mi, (where i=01–12) (Table 1) described byKnapp
et al. [25]. For the analysis of power, the central loci (3rd and 17th)were
assumed to be the disease loci but not included in the power analysis
due to the deterministic relationship between these loci and disease
status. Instead of using the disease loci data, we assumed high LD
betweenmarker 3 andmarker 4 (D’=0.8) and betweenmarker 17 and
marker 18 (D’=0.85). The 4th and 18th loci were used as quasi-disease
markers. Except for these twomarkers (3rd and 17th loci), the other 34
SNPs used in this simulation study were independent of each other.
These 34 loci were used to evaluate type I error.

The following two criteria were used as the definition for
“interaction was detected”:

1) the HH interaction for the two quasi-disease markers within the
two haplotype blocks was identified byMDR or CART as in the final
HH model; and

2) the SNP–SNP interaction of the two quasi-disease markers was
identified by MDR or CART as in the final SNP–SNP model.

2.7.2. Generating genotype data with LD
A simulation study using 1500 cases and 1501 controls was

undertaken by using the simulation software SNaP. We considered
the three factors described below when generating genotype data
with LD.

1) Disease model: In total, 12 disease models, Mi, (where i=01–12)
were considered [25], including epistaticmodels withmain effects,
epistatic models without main effects, and heterogeneity models
(Table 1).
Table 1
Penetrance table for the two-locus disease models.

M01 (Prevalence=0.1) Epi_OUTMa M02 (Prevalence=0.1) Epi_OUT

P(A)b=0.21 P(B)c=0.21 P(A)b=0.6

BB Bb bb BB

AA 0.707d 0.707 0 AA 0.778d

Aa 0.707 0.707 0 Aa 0
aa 0 0 0 aa 0

M04 (Prevalence=0.1) Epi_Me M05 (Prevalence=0.1) Epi_OUT

P(A)b=0.372 P(B)c=0.243 P(A)b=0.349

BB Bb bb BB

AA 0.911d 0.911 0 AA 0.799d

Aa 0.911 0 0 Aa 0.799
aa 0.911 0 0 aa 0

M07 (Prevalence=0.1) Epi_OUTMa M08 (Prevalence=0.1) Hetf

P(A)b=0.194 P(B)c=0.194 P(A)b=0.053

BB Bb bb BB

AA 1d 1 0.512 AA 0.744975d

Aa 1 0.512 0 Aa 0.74498
aa 0.512 0 0 aa 0.495

M10 (Prevalence=0.074) Hetf M11 (Prevalence=0.1) Hetf

P(A)b=0.194 P(B)c=0.194 P(A)b=0.052

BB Bb bb BB

AA 1d 1 1 AA 0.522d

Aa 1 0 0 Aa 0.522
aa 1 0 0 aa 0.522

aEpistatic model without main effects. bFrequency of the disease allele at locus 1. cFrequency
the disease haplotype at locus 1 and 2, respectively. eEpistatic model with main effects. fHe
2) Block size: Gabriel et al. [14] observed that as few as two or three
markers were sufficient to identify regions as blocks. Based on this
information, we used three markers as the threshold for
determining a block and considered two levels of block size:
short (S), having at most three markers in a block, and long (L),
having more than three markers in a block.

3) Haplotype frequency: Gabriel et al. [14] also found that most blocks
contained only three to five haplotypes, and these major
haplotypes provided 90% of the information for a given block.
Based on this information, we considered two levels of haplotype
frequencies: extreme (E), where the frequency of one major
haplotype was ≥0.6, and average (A), where all possible
haplotypes had equal frequency. For the average frequency
pattern, we assumed five haplotypes in a block, with equal
frequency of 0.2. For the extreme frequency pattern, we assumed
three haplotypes—the major haplotype having a frequency of 0.6,
and each of the other two haplotypes having a frequency of 0.2.

We considered four unlinked haplotype blocks (Table 2): two
disease-related haplotype blocks (DR_B1 and DR_B2) and two disease-
unrelated haplotype blocks (DU_B1 and DU_B2). The assumptions of
block size and haplotype frequency of each haplotype block are shown
in Table 2. The central loci (i.e., the 2nd locus of DR_B1 andDR_B2)were
the assumed disease loci, but they were not included in the power
analysis due to their deterministic relationship with disease status. The
two disease-unrelated haplotype blocks (DU_B1 and DU_B2)were used
to evaluate type I error. These marker loci within the same block had a
high degree of LD (D’N0.8) with each other. Markers in different blocks
had low or no LD (D’b0.02).

The 48 different scenarios (i.e., MiSE, MiSA, MiLE, and MiLA where
i=01–12) were simulated using the varied combinations of disease
model, block size, and haplotype frequency as described above. For
Ma M03 (Prevalence=0.1) Epi_OUTMa

P(B)c=0.199 P(A)b=0.577 P(B)c=0.577

Bb bb BB Bb bb

0.778 0 AA 0.9d 0 0
0 0 Aa 0 0 0
0 0 aa 0 0 0

Ma M06 (Prevalence=0.07) Epi_Me

P(B)c=0.349 P(A)b=0.190 P(B)c=0.190

Bb bb BB Bb bb

0.799 0 AA 0d 1 1
0 0 Aa 1 0 0
0 0 aa 1 0 0

M09 (Prevalence=0.1) Hetf

P(B)c=0.053 P(A)b=0.279 P(B)c=0.04

Bb bb BB Bb bb

0.74498 0.495 AA 0.8844d 0.8844 0.66
0.74498 0.495 Aa 0.66 0.66 0
0.495 0 aa 0.66 0.66 0

M12 (Prevalence=0.1) Hetf

P(B)c=0.052 P(A)b=0.288 P(B)c=0.045

Bb bb BB Bb bb

0.522 0.522 AA 1d 1 1
0.522 0.522 Aa 0.574 0.574 0
0.522 0 aa 0.574 0.574 0

of the disease allele at locus 2. dPenetrance of the genotype carrying AA and BB copies of
terogeneity model.



Table 2
Assumptions for four unlinked haplotype blocks for simulations.

Two disease-unrelated haplotype blocks (DU_B1 and DU_B2) and one
disease-related haplotype block (DR_B2)

DU_B1 with 6 markers (La) and average frequency (Ac)
DU_B2 with 3 markers (Sb) and average frequency (A)
DR_B2 with 4 markers (L) and extreme frequency (Ed)

One disease-related haplotype block (DR_B1)

Block Size Haplotype Frequency

DR_B1 with 3 markers (S) DR_B1 with extreme frequency (E)
DR_B1 with 4 markers (L) DR_B1with average frequency (A)

aThe number of markers is greater than 3. bThe number of markers is less than or equal
to 3. cAll possible haplotypes with equal haplotype frequency. dOne major haplotype
with haplotype frequency greater than 0.6.
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example, M03SA denoted the M03 disease model of DR_B1 with short
block size (S) and average haplotype frequency (A).

The following three criteria were used as the definition for
“interaction was detected”:

1) the HH interaction for the two disease-related haplotype blocks
was identified by MDR or CART as in the final HH model.

2) the SNP–SNP interaction, i.e., the final SNP–SNP model, of the two
loci within the two disease-related haplotype blocks, respectively,
was identified by MDR or CART.

3) hapForest identified the two disease-related haplotype blocks
having a significant P-value.

To summarize, we simulated 12 different scenarios for genotype
data without LD and 48 different scenarios for genotype data with LD.
For each scenario, 1000 replicates were conducted to assess the power
and type I error on the basis of 1000 permutations.

3. Results

3.1. Performance of MDR and CART for detecting SNP–SNP interactions
and HH interactions

For the genotype data without LD, the power of MDR and CART for
detecting SNP–SNP interactions and HH interactions was the same in
all scenarios (86% and 78% for MDR and CART, respectively).

For the genotype data with LD, under the scenarios assuming short
block and average frequency, the power of detecting SNP–SNP
interactions and HH interactions was about the same for MDR (51%
vs 52%) and CART (32% vs 33%). For detecting SNP–SNP interactions in
the rest of the scenarios, MDR had much lower power (42%)
compared to 82% for detecting HH interactions. Similarly, CART had
28% power for detecting SNP–SNP interactions compared to 53% for
detecting HH interactions. The above results (Supplementary Fig. 2)
displayed that HH interactions performed better than SNP–SNP
interactions for both MDR and CART for the genotype data with LD.
We then evaluated the performance of MDR, CART and hapForest [32]
for identification of HH interactions associated with disease for the
genotype data with LD.

3.2. Simulation results for detecting HH interactions using genotype data
with LD

3.2.1. Power analysis of MDR and CART for detecting HH interactions
The impact of disease model (Fig. 1A), block size (Fig. 1B), and

haplotype frequency (Fig. 1C) on power was explored separately. For
example, the average power of each method under M01 was defined as
the sumof the power for the scenariosM01SE,M01SA,M01LE, andM01LA
divided by 4. The average power for the 12 disease models ranged
between 74% and 82% for MDR and between 32% and 60% for CART
(Fig. 1A). For CART, the average power for epistatic models with main
effects, i.e., M04 and M06, and a heterogeneity model with higher
penetrance, i.e., M10, was higher than the other disease models. MDR
appeared to outperform CART for detecting HH interactions when the
diseasemodelwas allowed to vary. For block size, the average power for
S and L blockswas 70–84% forMDR and 39–51% for CART (Fig. 1B). Both
methods gave a higher average power for long blocks. For haplotype
frequency, the average power range for A and E frequencieswas 70–83%
for MDR and 37–53% for CART (Fig. 1C). Both methods gave a higher
average power for haplotypes with extreme frequencies.

In addition, we assessed the power of MDR and CART to detect HH
interactions under each given scenario (Fig. 1D). For most of the
scenarios, MDR was robust to variation of the three factors based on
its power performance. However, for some of the scenarios, e.g., for
block size S and haplotype frequency A, MDR showed a 30% decrease
in power, down to 58%. This was likely due to a high misclassification
rate in these scenarios where many cells of a contingency table had a
case-control ratio of nearly 1.0 (see Step 7 of Supplementary Fig. 1).
That is, many individuals could be grouped as either high or low risk,
so the average balance testing accuracy was low. The power of CART
was greatly influenced by the choice of disease model and haplotype
frequencies. Because of the binary splits, CART was more likely to
detect HH interactions in the presence of a strongmain effect. With an
extreme haplotype frequency, epistaticmodels withmain effects (M04

and M06) and the heterogeneity model with higher penetrance (M10)
had higher power than all the other scenarios, regardless of the block
size. Because the power of CARTwas susceptible to the first split, if the
first haplotype block selected had no significant main effects then the
resulting tree could be interpreted as being less reliable. Thus, CART
was deemed better for detecting HH interactions in the presence of a
strong main effect.

3.2.2. Type I error analysis of MDR and CART for detecting HH
interactions

The change of type I error for disease model (Fig. 1A), block size
(Fig. 1B), and haplotype frequency (Fig. 1C) was explored. The average
type I error for the 12 disease models was 5.4–6.9% and 2.6–4.9% for
MDR and CART, respectively (Fig. 1A). For block size, the average type I
error for S and L blocks was 5.9–6.6% for MDR and 3.5–4.4% for CART
(Fig. 1B). The average type I error range for A and E haplotype
frequencies was 6.2–6.3% and 3.9–4.0% for MDR and CART, respectively
(Fig. 1C). These three factors did not substantially affect type I error for
either method.

In addition, the effect of varying all three factors on type I error for
MDR and CART for detecting HH interactions was also examined
(Fig. 1D). The range of type I error for the 48 scenarios for MDR was
4.9–7.5%, and most of the type I error for CART was less than 5% (2.4%
on average). The type I error forMDR and CARTwas robust to different
scenarios, but CART appeared to control it slightly better than MDR.

3.2.3. Evaluating performance of MDR, CART and hapForest for detecting
HH interactions

For the simulation study of power, hapForest was greatly
influenced by block size. HapForest tended to have higher power
(95%) for long blocks regardless of disease model and haplotype
frequency. When assuming a short block and extreme frequency,
epistatic models with main effects and heterogeneity models with
higher penetrance also attained satisfactory power (88%). Under the
remaining scenarios, the power of hapForest was not satisfactory
(16%). The type I error values of hapForest under the 48 scenarios
ranged from 3.1% to 7.6%, indicating that the three factors did not
substantially affect its type I error.

In summary, only MDR was robust to variation of the three factors
in terms of power, whereas the other two approaches were



Fig. 1. Results of MDR and CART for detecting HH interactions for simulation studies. The x-axis demonstrates 12 diseasemodels in (A), 2 block sizes in (B), 2 haplotype frequencies in
(C) and 48 scenarios in (D). The left y-axis shows the power given by MDR (red) and CART (blue), respectively. The right y-axis indicates the type I error given by MDR (green) and
CART (yellow), respectively. The z-axis represents the two methods.

82 A.-R. Hsieh et al. / Genomics 97 (2011) 77–85
considerably affected by these factors. The type I error for each of the
approaches was robust to the variations in the factors.

3.3. Application of MDR and CART to Parkinson's disease data

We applied our proposedMDR and CART procedures to test for HH
interactions using publicly available case-control data on Parkinson's
disease [15]. The genotype data on 408 K SNPs included a combination
of Illumina Infinium I and HumanHap 300 assays for 270 individuals
with idiopathic Parkinson's disease and 271 neurologically normal
controls.

With a large number of markers such as SNPs and haplotypes, it is not
easy to identifywhichhaplotypes should be considered forHH interaction
testing. Marchini et al. [27] suggested that a two-stage strategy be
implemented, inwhich all loci thatmet some lenient threshold in a single-
locus search should be subsequently assessed for possible multi-locus
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genotype associations. We followed the three procedures described
bellow and applied Marchini's strategy in our single-locus analysis to
determine important HH interactions in the Parkinson's disease dataset.
These procedures were:

1) Single-locus analysis: Single-locus tests were performed using
Armitage's trend test [28] with 1000 permutations using the PROC
CASECONTROL statistical procedure in the SAS/Genetics™ package
(SAS Institute, Inc. Cary, NC, USA). The SNPs included for further
study were selected based on a loose threshold (p-valueb10−3)
for a dataset with a large number of markers. The final determined
SNPs, including 10 kb of flanking sequence of the significant SNPs,
were used in subsequent analyses.

2) Haplotype analysis: Haplotype association tests were performed
with 1000 permutations using the PROC HAPLOTYPE statistical
procedure in the SAS/Genetics™ package. The haplotype with
main effect was defined based on a threshold with p-valueb10−4.

3) HH interaction analysis: We used our provided software to select
important HH interactions in the Parkinson's disease dataset and
compared our results with some knowledge of Parkinson's disease.

3.3.1. Results for Parkinson's disease data
A total of 11,655 SNPs were excluded according to the following

quality control criteria: minor allele frequencyb0.01, genotype call
ratesb0.95, and departure from Hardy-Weinberg equilibrium (i.e.,
p-valueb10−4). The dataset used for the final analysis contained
384,936 SNPs (i.e., 97% of the total) and 541 individuals (270 cases
and 271 controls).

In total, 422 significant SNPs were identified with a p-valueb10−3.
Expanding to cover 10 kb of flanking sequence of the 422 significant
SNPs, a total of 1429 SNPs were included in the subsequent analyses.
Using Haploview and these 1429 SNPs, 311 haplotype blocks were
identified, and each individual's haplotypes for each block were
reconstructed using PHASE software. Of the 311 haplotype blocks, 11
had main haplotype effects (i.e., p-valueb10−4).

All possible HH interactions (more than 48,000) were exhaustively
examined.Numerical results and gene information for the identified top
20HH interactions byMDRandCARTand the correspondinghaplotypes
are summarized in Supplementary Table 1 and Supplementary Table 2,
respectively. For MDR, 19 of the top 20 HH interactions had no main
haplotype effects (Supplementary Table 1). The most significant HH
interaction found by MDR was ZFAT1*RAC2. These genes have not been
reported to be related to Parkinson's disease, although they are involved
in brain neoplasms and nervous system dysfunction [30,31].

For CART, 4 of the top 20 HH interactions had main haplotype
effects, and all involved RET (Supplementary Table 2). RET plays a
crucial role in neural crest development and reportedly is linked to
Parkinson's disease [29]. The most significant HH interaction
identified by CART contained two haplotype blocks: (1) rs727048
and rs5756587 located in RAC2 and (2) rs7202238 and rs11648686
located in TOX3. RAC2 was identified to have more contributions to
Parkinson's disease than TOX3, as RAC2 was the first haplotype block
chosen and had main haplotype effects. Moreover, the most
significant HH interaction that made the greatest contribution to
Parkinson's disease risk in this analysis consisted of the haplotype pair
of (CT,CT), (TC,CT), (CC,CT), (CC,CC), (CC,TC), or (TC,TC) in the first
haplotype block and the haplotype pair of (TA,TA), (TA,CA) (TA,CG),
(CA,CA), (CA,CG), or (CG,CG) in the second haplotype block. Like
RAC2, TOX3 is associated with brain neoplasms and nervous system
dysfunction [31], and TOX3 has also been reported to regulate
calcium-dependent transcription in neurons [33].

To summarize the Parkinson's disease results, MDR appears to be
capable of detecting HH interactions associated with the disease even
without a main haplotype effect. CART is more useful for capturing HH
interactions with main haplotype effects than for those interactions
lacking a main haplotype effect.
4. Discussion

The goal of this study was to use MDR and CART with the “index
score” to identify disease-related HH interactions and to investigate
the influence of block size, haplotype frequency, and diseasemodel on
the performance of these two methods. Both methods used CV to
avoid over-fitting while permutation testing was used to assess
statistical significance. The combination of CV and permutation
testing could help to avoid inflated type I error due to multiple
testing [3,16,38–40].

In general, the results of both MDR and CART showed that HH
interactions had higher power than SNP–SNP interactions for all the
48 scenarios in simulated genotype data with LD. The results suggest
that haplotype-based analyses have greater power over single-locus
analyses when SNPs are in strong LD with the risk locus. We also
compared the detection of SNP–SNP interactions and the top 20 HH
interactions from MDR and CART using a Parkinson's disease dataset.
Thirteen of the top 20 HH interactions were detected by SNP–SNP
interactions. Eight of the top 20 SNP–SNP interactions were not
located in the haplotype blocks. The remaining 12 SNP–SNP
interactions located in the haplotype blocks were also detected by
HH interactions. These results showed that HH interactions can
provide more information than SNP–SNP interactions if disease-
related SNPs are located in haplotype blocks. In other words, SNP–SNP
interactions can better provide information if disease-associated SNPs
are outside haplotype blocks. SNP–SNP interactions or HH
interactions cannot completely replace each other. Therefore, we
suggest that SNP–SNP interactions and HH interactions should be
considered as complementary to each other and used in parallel to
thoroughly analyze datasets.

One conventional and still widely used approach for detecting HH
interactions is logistic regression. In our simulation studies, we also
assessed the results of MDR, CART, logistic regression, and hapForest
in the detection of HH interactions. The drawback of logistic
regression is that the usual maximum likelihood estimates of the
log-odds ratio parameters are biased for small samples. In such
situations, it is very likely that the maximum likelihood estimates will
not converge. This drawback is the major reason for the lower power
of logistic regression compared to other methods in our simulation
results. We also have used logistic regression to obtain the odds ratio
by recoding interactions based on the risk level in MDR. But the
maximum likelihood estimate still cannot converge in some simulat-
ed data. Using different codings cannot circumvent empty or sparse
samples in some combinations of HH interactions because this is the
inherent limitation of logistic regression. The drawback of hapForest is
that even though the approach can identify haplotypes with main
effects and/or interactions of disease-related haplotypes, it is difficult
to distinguish whether the disease-related haplotypes result from
single haplotype effects or from HH interactions. Because HH
interaction tests are not provided in hapForest, statistical tests are
needed to detect possible HH interactions. By contrast, MDR and CART
can detect HH interactions directly. Moreover, MDR and CART can
handle the sparseness of data in high dimensions, and can account for
nonlinear HH interactions, so that HH interactions missed by logistic
regression are more likely to be detected.

CART can differentiate the contributions that each haplotype block
makes to disease risk for detecting HH interactions. That is, the first
haplotype block chosen contributes more to the disease than the
second one in an HH interaction. Additionally, CART can explicitly
reveal disease-related haplotype pairs within each haplotype block in
an HH interaction, whereasMDR only provides information on finding
disease-associated HH interactions. A notable feature of CART is the
influence of the first split on the tree structure. If the first haplotype
block selected has no significant main effects, the resulting tree could
be less reliable. Because MDR does not rely on binary splits as it
performs a systematic search through all possible HH interactions, it
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can identify more interactions than CART. The computational time for
MDR, however, grows exponentially as the number of haplotype
blocks increases. This is a limitation for most combinatorial-based
data mining approaches. Because the MDR and CART approaches are
fundamentally different, the two methods should be considered
complementary to each other when studying HH interactions in
various disease models.

Fung et al. (2006) reported 26 significant SNPs using five tests of
single-locus association. Our single-locus analyses confirmed 21 of the
26 SNPs reported by Fung et al. when a threshold p-valueb10−3 was
used. Of the five SNPs not detected in our study, three were filtered
out by quality control criteria and two did not pass the Armitage trend
test criterion (i.e., p-valueN10−3). The results of HH interaction
detected from the Parkinson's disease dataset were consistent with
our simulation findings. For example, for CART, RET, which contained
two SNPs, rs3004212 and rs1480597, had main haplotype effects that
interacted with different partners. Four out of the top 20 HH
interactions had these two SNPs that composed of the haplotype
located in RET (Supplementary Table 2). For MDR, RET contained three
SNPs, rs2075914, rs3004214 and rs2505513, with no main haplotype
effects (Supplementary Table 1). MDR is useful to detect HH
interactions regardless of main haplotype effects, whereas CART
prefers those HH interactions with main haplotype effects. Thus,
combining the information of MDR and CART in detecting HH
interactions will help researchers analyze datasets thoroughly.

We also compared the difference between SNP data with and
without filtering for detecting HH interactions by using MDR and
CART.We selected SNPs on chromosome 22 in the Parkinson's disease
dataset with a p-valueb10−3 for filtered data (62 SNPs) and used all
7071 SNPs for unfiltered data. Most (87.5%) of the associated HH
interactions found by using the unfiltered SNP data were also detected
with the filtered SNP data. Only one significant HH interaction
(p-value=0.0001) detected using the unfiltered SNP data was not
found using the filtered data. Our results demonstrate that use of a
lenient threshold (e.g. p-valueb10−3) in a dataset with a large
number of markers to filter SNP data for subsequent HH analyses
seems to be satisfactory and computationally efficient compared with
using all SNP data. These results are consistent with what has been
suggested by Marchini et al. (2005). Therefore, we only reported the
computational burden of searching for all possible HH interactions in
chromosome 22 for filtered data. It took 3 min to analyze 541
individuals (271 controls and 270 cases) and 62 SNPs (13 haplotype
blocks). For filtered Genome-wide analysis on 1429 SNPs consisting of
311 haplotype blocks, it took about 1 h to detect HH interactions using
our windows-based workstation with 2.41 GHz CPU. Our reanalysis of
the Parkinson's disease dataset not only confirmed a landmark finding
in genetic association studies but also discovered some potentially
new candidate genes related to the disease.We caution, however, that
the sample size in the Parkinson's disease dataset is relatively small,
and hence these candidate genes require further investigation. Our
research illustrates the important role of HH interactions in
Parkinson's disease and shows that the two methods, MDR and
CART, are useful for analyzing real data.

5. Conclusions

When disease-related SNPs are outside haplotype blocks, SNP–SNP
interactions can better provide information. HH interactions can
provide more information than SNP–SNP interactions when disease-
associated SNP markers are located in haplotype blocks. Such
information is of considerable interest in genetic association studies.
Currently, there are many studies that use state-of-the-art genotyping
techniques, the human genomewill eventually be thoroughly studied.
In this HH interaction study, we used two data mining tools and to
adjust for haplotype uncertainties arising from inference. According to
our results, these two data mining tools, i.e., MDR and CART are very
useful in overcoming complexities due to large numbers of haplo-
types. Our findings have shown that SNP–SNP and HH interaction
analyses should complement each other in dissecting possible risk
factors in genetic studies.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ygeno.2010.11.003.
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