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of the flag-major index on some parabolic quotients of wreath
products and other related groups. All these distributions turn out
to have very simple factorization formulas.
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1. Introduction

Let W be a finite reflection group of rank n and S be a set of simple reflections for W as a Coxeter
group. If � denotes the length function on W with respect to S , the distribution of � on W is called
the Poincaré polynomial and it is a classical result of Chevalley [7] and Solomon [12] in different level
of generalizations that∑

u∈W

q�(u) = [d1]q[d2]q · · · [dn]q, (1)

where d1, . . . ,dn are the fundamental degrees of W . The main problems faced in this work are varia-
tions of this identity (with statistics other than the length function) to parabolic quotients of W and
labellings of trees in the sense of [5].

If J ⊂ S we denote by W J and J W the corresponding parabolic subgroup and (left) parabolic
quotient. It is well known that given u ∈ W there exists a unique decomposition u = u J · J u, where
u J ∈ W J and J u ∈ J W ; it is also well known that in this decomposition we have

�(u) = �(u J ) + �
( J u

)
. (2)
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It follows from Eq. (2) that the distribution of the length function on the parabolic quotient J W is
given by

∑
u∈ J W

q�(u) =
∑

u∈W q�(u)∑
u∈W J

q�(u)
. (3)

In particular, if W = Sn is the symmetric group on n letters, S is identified with the set of positive
integers {1,2, . . . ,n − 1} and J = {n − k + 1, . . . ,n − 1}, then W J is clearly isomorphic as a Coxeter
group to Sk and therefore∑

u∈Sn,k

q�(u) = [k + 1]q[k + 2]q · · · [n]q,

where Sn,k
def= J W , since the fundamental degrees of Sn are 2,3, . . . ,n.

It is a classical result of MacMahon [10] that the major index is equidistributed with the length
function on Sn , i.e.

∑
σ∈Sn

qmaj(σ ) = ∑
σ∈Sn

q�(σ ) . As one can easily verify, Eq. (2) is no longer sat-
isfied with maj in the place of �. Nevertheless, as an immediate consequence of classical results of
Stanley [13] and Foata and Schützenberger [8] the statistics maj and inv remain equidistributed on all
parabolic quotients J W , and in particular∑

u∈Sn,k

qmaj(u) = [k + 1]q[k + 2]q · · · [n]q. (4)

Major index and inversion number can also be defined for labellings w ∈ W (F ) of a forest F (see [5]).
In particular, one can consider a particular tree Rn,k , that we call a rake, and the set of equivalence
classes of labellings Rn,k , by the action of the automorphism group of Rn,k (see Section 4 for more
details), such that the distribution of the major index is still∑

w∈Rn,k

qmaj(w) = [k + 1]q[k + 2]q · · · [n]q. (5)

We observe that Eqs. (4) and (5) are trivially equivalent for k = 1 only, while there is no bijective
explanation for this equidistribution for k > 1. The main target of this work is to study the signed
versions of the distribution of maj on Sn,k and on Rn,k , i.e. we study the polynomials

sn,k(q)
def=

∑
σ∈Sn,k

(−1)inv(σ )qmaj(σ ) and rn,k(q)
def=

∑
w∈Rn,k

(−1)inv(w)qmaj(w).

If k = 1 these polynomials are computed by a well-known formula of Gessel and Simion (see [15]
for an elegant bijective proof based on its unsigned version (1)):

sn,1(q) = rn,1(q) =
∑
σ∈Sn

(−1)inv(σ )qmaj(σ ) = [2]−q[3]q · · · [n](−1)n−1q,

which is a sort of an alternating version of Eq. (1), and the first main result here is the following
alternating version of Eq. (4) that include the Gessel–Simion formula as a special case

sn,k(q) = [k + 1](−1)nk+n+kq[k + 2](−1)k+1q[k + 3](−1)k+2q · · · [n](−1)n−1q. (6)

As for the polynomial rn,k(q), we show that rn,k(q) = sn,k(q) unless n is odd and k is even (in which
case sn,k(q) does not seem to factorize nicely at all) strengthening the fact that these two families
of combinatorial objects are strictly related. The nice combinatorial and bijective methods used in
[8,13,15] for the corresponding unrestricted results cannot be easily generalized to the present context
in the computation of sn,k(q) whilst an idea appearing in [1] will be of some help. We also mention
here that the present proof of Eq. (6) is rather involved and full of technicalities (many of which
will be omitted), so that one could say that it proves the result without really explaining it; and it
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would be really desirable to find an algebraic explanation for it, or at least a simple combinatorial
proof.

Another possible generalization of Eq. (4) considers special classes of “parabolic” subgroups for
complex reflection groups. In fact, if W is a complex reflection group, although one can define a
“length function” with respect to some generating set of pseudo-reflections, this concept lacks alge-
braic significance and in particular Eq. (1) is no longer valid. Nevertheless, for wreath products G(r,n)

of the cyclic group Cr with Sn , and in particular for Weyl groups of type B , there is a natural coun-
terpart of the major index called the flag-major index. This index has been introduced in [2] and has
the following distribution∑

g∈G(r,n)

qfmaj(g) = [d1]q[d2]q · · · [dn]q,

where di = ri, i = 1,2, . . . ,n are the fundamental degrees of G(r,n); it is therefore natural to ask
whether one can extend Eq. (4) to wreath products G(r,n). This problem is solved in this paper as a
particular case of a more general result involving a wider class of groups and using some machinery
developed by the author in [6] in the study of some aspects of the invariant theory of complex
reflection groups.

2. Notation and preliminaries

In this section we collect the notations that are used in this paper. If r,n ∈ N we let [n] def=
{1,2, . . . ,n} and Zr

def= Z/rZ. We let Pn
def= {λ = (λ1, . . . , λn) ∈ N

n: λ1 � λ2 � · · · � λn} be the set

of partitions of length at most n. If q is an indeterminate and n ∈ N we let [n]q
def= 1−qn

1−q = 1 + q +
q2 + · · · + qn−1 be the q-analogue of n and [n]q! def= [1]q[2]q · · · [n]q . A permutation σ ∈ Sn will be de-

noted by σ = [σ(1), . . . , σ (n)]. We denote by inv(σ )
def= |{(i, j): i < j and σ(i) > σ( j)}| the number

of inversions of σ and by maj(σ )
def= ∑

i: σ(i)>σ(i+1) i the major index of σ .
According to [5] we say that a poset P is a forest if every element of P is covered by at most one

element. If P is a finite forest with n elements we let W (P )
def= {w : P → {1,2, . . . ,n} such that w is

a bijection} be the set of labellings of P . If w is a labelling of a forest P we say that a pair (x, y) of
elements of P is an inversion of w if x < y and w(x) > w(y) and we let inv(w) be the number of
inversions of w; we say that x ∈ P is a descent of w if x is covered by an element y and w(x) > w(y),
and we denote by Des(w) the set of descents of w; if x ∈ P we let hx = |{a ∈ P : a � x}| be the hook
length of x and

maj(w) =
∑

x∈Des(w)

hx

be the major index of w . Finally, if w is a labelling of a forest P we let

L (w) = {
σ ∈ Sn: if x < y then σ−1(w(x)

)
< σ−1(w(y)

)}
be the set of linear extensions of w . The main results in [5] we are interested in are summarized in
the following result.

Theorem 2.1. If P is a forest then∑
w∈W (P )

qmaj(w) = n!∏
x∈P hx

∏
x∈P

[hx]q (7)

and if w ∈ W (P ) then∑
σ∈L (w)

qmaj(σ ) = qmaj(w) [n]q!∏
x∈P [hx]q

. (8)
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If r > 0, an r-colored integer is a pair (i, z), denoted also iz , where i ∈ N and z ∈ Zr , and we let

|iz| def= i. The wreath product G(r,n)
def= Zr � Sn is the group of permutations g of the set of r-colored

integers iz , where i ∈ [n] and z ∈ Zr such that, if g(i0) = jz then g(iz′
) = jz+z′

. An element g ∈ G(r,n)

is therefore uniquely determined by the r-colored integers g(10), . . . , g(n0) and we usually write

g = [σ z1
1 , . . . , σ zn

n ], where g(i0) = σ
zi
i . Note that in this case we have that |g| def= [σ1, . . . , σn] ∈ Sn .

When it is not clear from the context, we will denote zi by zi(g).
For p|r the complex reflection group G(r, p,n) is the normal subgroup of G(r,n) defined by

G(r, p,n) := {[
σ

z1
1 , . . . , σ zn

n
] ∈ G(r,n)

∣∣ z1 + · · · + zn ≡ 0 mod p
}
, (9)

and its dual group

G(r, p,n)∗ = G(r,n)/C p, (10)

where C p is the cyclic subgroup of G(r,n) of order p generated by [1r/p,2r/p, . . . ,nr/p].
The study of permutation statistics has found a new interest in the more general setting of com-

plex reflection groups after the work of Adin and Roichman [2]. Some of these results have been
generalized in [6, §5] in the following way.

For g = [σ z1
1 , . . . , σ zn

n ] ∈ G(r, p,n)∗ we let

HDes(g)
def= {

i ∈ [n − 1]: zi = zi+1, and σ(i) > σ(i + 1)
}
,

hi(g)
def= #

{
j � i: j ∈ HDes(g)

}
.

We also let (k1(g), . . . ,kn(g)) be the smallest element in Pn (with respect to the entrywise or-
der) such that g = [σ k1(g)

1 , . . . , σ
kn(g)
n ], where we make slight abuse of notation identifying an in-

teger with its residue class in Zr . In other words, (k1(g), . . . ,kn(g)) is a partition characterized
by the following property: if (β1, . . . , βn) ∈ Pn is such that g = [σβ1

1 , . . . , σ
βn
n ], then βi � ki(g),

for all i ∈ [n]. For example, let g = [22,73,63,45,81,11,53,32] ∈ G(6,3,8)∗ . Then HDes(g) = {2,5},
(h1, . . . ,h8) = (2,2,1,1,1,0,0,0) and (k1, . . . ,k8) = (18,13,13,9,5,5,1,0).

We note that if we let λi(g)
def= r · hi(g) + ki(g), then the sequence λ(g)

def= (λ1(g), . . . , λn(g)) is
a partition such that g = [σλ1(g)

1 , . . . , σ
λn(g)
n ]. The flag-major index of an element g ∈ G(r, p,n)∗ is

defined by fmaj(g)
def= |λ(g)|. All these definitions are valid for wreath products G(r,n) just by letting

p = 1 and one can easily verify that for r = p = 1 fmaj(σ ) = maj(σ ) for all σ ∈ Sn .

3. Signed mahonians in parabolic quotients of symmetric groups

For n > 0 and k = 0, . . . ,n we let J = {n − k + 1, . . . ,n − 1} and, following [4, §2.4], we let

Sn,k
def= J Sn = {

σ ∈ Sn: σ−1(n − k + 1) < σ−1(n − k + 2) < · · · < σ−1(n)
}
,

be the corresponding left parabolic quotient. We observe that if k = 0,1 then J = ∅ and so Sn,k = Sn;
moreover, if σ ∈ Sn,k then σ(n) ∈ {1,2, . . . ,n − k,n} and we set

s(σ )
def=

{
σ(n) − 1 if σ(n) ∈ [n − k];
n − k otherwise.

We consider the following generating function

sn,k(q, z)
def=

∑
σ∈Sn,k

(−1)inv(σ )qmaj(σ )zs(σ ).

We will be mainly interested in the special evaluation sn,k(q)
def= sn,k(q,1) but we will eventually find

an explicit formula for the whole bivariate generating function sn,k(q, z). Observe that, by definition,
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sn,0(q, z) = sn,1(q, z) and we recall that this generating function has already been computed by Adin,
Gessel and Roichman [1]. We also extend an idea appearing in [1] to prove the following result, where

we let ε
def= −1.

Theorem 3.1. Let n > 1 and k ∈ [n − 1]. Then

sn,k(q, z) = 1

1 + z

((
εkzn−k + (−q)n−1)sn−1,k(q,1) + εnz

(
1 − qn−1)sn−1,k(q,−z)

)
+ zn−ksn−1,k−1(q,1).

Proof. We need to construct the set Sn,k from analogous sets in Sn−1. For this it will be helpful the
following notation: if σ ∈ Sn we let σ0 ∈ Sn−1 given by

σ0(i)
def=

{
σ(i) if σ(i) < σ(n);
σ(i) − 1 if σ(i) > σ(n),

for all i ∈ [n − 1]. In other words σ0 is obtained from σ by deleting the last entry and rescaling the
others. Now it is clear that the map σ 
→ σ0 establishes a bijection between {σ ∈ Sn,k: σ(n) = n} and
Sn−1,k−1, and also between the sets {σ ∈ Sn,k: σ(n) = i < n} and Sn−1,k , for all i ∈ [n − k]. So, the
map σ 
→ (σ0, σ (n)) establishes an explicit bijection

Sn,k ↔ (
Sn−1,k × [n − k]) � (

Sn−1,k−1 × {n}),
where � denotes disjoint union. In this bijection, if σ ↔ (σ0, i), with σ0 ∈ Sn−1,k and i ∈ [n −k], then⎧⎪⎪⎨

⎪⎪⎩
inv(σ ) = inv(σ0) + n − i,

maj(σ ) =
{

maj(σ0) + n − 1 if i � σ0(n − 1),

maj(σ0) if i > σ0(n − 1),

s(σ ) = i − 1,

and if σ ↔ (σ0,n) with σ0 ∈ Sn−1,k−1 then⎧⎨
⎩

inv(σ ) = inv(σ0),

maj(σ ) = maj(σ0),

s(σ ) = n − k.

We use the bijection above and these equations to compute recursively the polynomial sn,k(q, z): we
easily obtain

sn,k(q, z) =
∑

σ0∈Sn−1,k

εinv(σ0)+n−1qmaj(σ0)

(
qn−1

s(σ0)∑
j=0

(εz) j +
n−k−1∑

j=s(σ0)+1

(εz) j

)

+ zn−ksn−1,k−1(q,1).

Computing the geometric sums on the right-hand side we then conclude that

sn,k(q, z) =
∑

σ∈Sn−1,k

εinv(σ )+n−1qmaj(σ )

(
qn−1 1 − (εz)s(σ )+1

1 − εz
+ (εz)s(σ )+1 − (εz)n−k

1 − εz

)

+ zn−ksn−1,k−1(q,1)

= 1

1 + z

((
εkzn−k + (−q)n−1)sn−1,k(q,1) + εnz

(
1 − qn−1)sn−1,k(q, εz)

)
+ zn−ksn−1,k−1(q,1). �
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Theorem 3.1 can be used to compute the polynomials sn,k(q, z) taking as initial condition
sn,n(q, z) = 1 for all n > 0 and recalling that sn,0(q, z) = sn,1(q, z). As mentioned in the introduction,
the special evaluation of the polynomials sn,k(q, z) at z = 1 will have the following nice factorization

sn,k(q) = [k + 1]εk+n+nkq[k + 2]εk+1q[k + 3]εk+2q · · · [n]εn−1q.

In particular, for k = 1, we find the Gessel–Simion formula sn,1(q) = [2]−q[3]q · · · [n]εn−1q .
Unfortunately, the polynomials sn,k(q, z) do not factorize in general as nicely as their specializa-

tions at z = 1 (at least if k is even). Nevertheless, Theorem 3.1 allows us to prove explicit formulas for
these polynomials. We start with a simple example.

Lemma 3.2. For all n > 0 we have sn,n−1(q, z) = z[n−1]−q +(−q)n−1 and in particular sn,n−1(q,1) = [n]−q.

Proof. This can be proved by induction using Theorem 3.1 but it is simpler to provide a direct proof.
In fact we clearly have Sn,n−1 = {[1 2 · · ·n], [2 1 3 · · ·n], . . . , [2 3 · · ·n −1 1n], [2 3 · · ·n 1]} and the result
follows immediately from the definition. �

In the following result we have a completely explicit description of the polynomials sn,k(q, z).

Theorem 3.3. If k < n is odd we have

sn,k(q, z) = [k + 1]−q[k + 2]q · · · [n − 1]εnq

(
n−k−1∑

i=0

ε(n+1)(n−i−1)ziqn−i−1 + zn−k[k]εn−1q

)
.

If k < n − 1 is even we have

sn,k(q, z) = [k + 2]−q · · · [n − 1]εnq ·
(

[k + 1]εnq[n]εn−1q + (z − 1)

·
(

n−k−1∑
i=0

[k + 1]εnq[n − i − 1]εn+1qzi +
n−k−1∑

i=0
i even

qn−i−1zi([k]−q − [k]q
)))

,

where the last sum runs through all nonnegative even integers smaller than n − k.

Proof. The result is readily verified for n = 1,2. We may also easily verify that the claimed expression
for k = 1 agrees with the one for k = 0. These initial conditions together with the recurrence given by
Theorem 3.1 uniquely determine the polynomials sn,k(q, z), and hence we only have to verify that the
claimed expressions actually satisfy this recurrence.

We provide some sketches of the proof only if k 
= n − 2 is even. If k is odd or k = n − 2 the proof
is similar (and simpler) and is left to the reader.

So let 2 � k � n − 3, with k even. If we substitute the claimed expressions in the right-hand side
of the recursion in Theorem 3.1, and we delete the factor let [k + 2]−q · · · [n − 1]εnq for notational
convenience, we obtain the polynomial

gn,k(q, z)
def= 1

1 + z

(
zn−k − εnqn−1 + εnz − εnzqn−1)[k + 1]εn−1q − εnz

(
1 − εnq

)

·
(

n−k−2∑
i=0

[k + 1]εn−1q[n − i − 2]εnq(−z)i +
n−k−2∑

i=0
i even

qn−i−2zi([k]−q − [k]q
))

+ zn−k[k]−q[k + 1]q,
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where we have also used that 1−qn−1 = (1−εnq)[n −1]εnq . So the proof will be achieved if we show
that

gn,k(q, z) = [k + 1]εnq[n]εn−1q + (z − 1)

·
(

n−k−1∑
i=0

[k + 1]εnq[n − i − 1]εn+1qzi +
n−k−1∑

i=0
i even

qn−i−1zi([k]−q − [k]q
))

. (11)

By means of the identity (1 − εnq)([k]−q − [k]q) = −2q[k]εn−1q we can deduce that

gn,k(q, z) = (
εnz + εn−1z2 + · · · + zn−k−1 − εnqn−1)[k + 1]εn−1q

− εnz

(
n−k−2∑

i=0

[k + 1]εn−1q

(
1 − (

εnq
)n−i−2)

(−z)i − 2
n−k−2∑

i=0
i even

qn−i−1zi[k]εn−1q

)

+ zn−k[k]−q[k + 1]q.

Now we make the following observation. If we expand gn,k(q, z) = ∑
i�0 ai(q)zi then we also have

gn,k(q, z) = b−1(q) + (z − 1)
∑

i�0 bi(q)zi where

bi(q) =
∑
j>i

a j(q) for all i � −1. (12)

To complete the proof we only have to compute the polynomials bi(q) using Eq. (12) and verify
that they agree with the expressions given in (11). Unfortunately, we need to split the proof again,
according to the parity of i and n. We treat the case where i and n are both even, leaving the other
similar cases to the reader.

We have

bi(q) = [k + 1]−q

(
1 −

n−k−2∑
j=i

(
1 − qn− j−2)(−1) j

)
+ 2[k]−q

n−k−2∑
j=i

j even

qn− j−1 + [k]−q[k + 1]q

= [k + 1]−q
(
qk − qk+1 + · · · + qn−i−2) + 2[k]−q

(
qk+1 + qk+3 + · · · + qn−i−1)

+ [k]−q[k + 1]q

= [k]−q[n − i]q + qk[n − i − 1]−q + qn−i−1[k]−q.

Now we make the simple observation that if r and s are both even then [r]q[s]−q = [r]−q[s]q and so

bi(q) = [k]q[n − i]−q + qk[n − i − 1]−q + qn−i−1[k]−q

= [k]q[n − i − 1]−q − qn−i−1[k]q + qk[n − i − 1]−q + qn−i−1[k]−q

= [k + 1]q[n − i − 1]−q + qn−i−1([k]−q − [k]q
)
,

and the proof is complete. �
Corollary 3.4. We have

sn,k(q) =
∑

σ∈Sn,k

εinv(σ )qmaj(σ ) = [k + 1]εk+n+nkq[k + 2]εk+1q[k + 3]εk+2q · · · [n]εn−1q,

where ε = −1.
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Fig. 1. T7,4 (left) and R7,4 (right).

Proof. This follows immediately from Theorem 3.3. �
We close this section by observing that Corollary 3.4 can also be interpreted as an alternating

version of (a special case of) Eq. (8). In fact, consider the poset Tn,k = {x1, x2, . . . , xn} with the ordering
given by xi < x j if and only if n − k < i < j. The Hasse diagram of Tn.k is a forest consisting of n − k
disjoint vertices and of a linear tree of length k (see Fig. 1 (left)). If we consider the natural labelling
for Tn,k given by w(xi) = i, then we clearly have L (w) = Sn,k and so Corollary 3.4 can also be
reformulated as∑

σ∈L (w)

εinv(σ )qmaj(σ ) = [k + 1]εk+n+nkq[k + 2]εk+1q[k + 3]εk+2q · · · [n]εn−1q.

4. Signed mahonian distributions on rakes’ labellings

For k < n we denote by Rn,k the poset consisting of n elements x1, . . . , xn with the ordering given
by xi < x j if and only if i,k < j. The Hasse diagram of Rn,k is shown in Fig. 1 (right) and because of
its shape we call Rn,k a rake with k teeth. It is clear that the action of Aut(Rn,k) ∼= Sk on W (Rn,k) by
permutations of the labels of the teeth preserves inversion index and major index; therefore we can
consider these indices also on the set Rn,k of equivalence classes of labellings.

It follows in particular from (8) that∑
w∈Rn,k

qmaj(w) = [k + 1]q · · · [n]q, (13)

and we denote by rn,k(q) its signed version

rn,k(q) =
∑

w∈Rn,k

εinv(w)qmaj(w).

As for the polynomials sn,k we need to introduce a further catalytic parameter. If w ∈ Rn,k we let
r(w) be n − w(xn), where xn is the top element of Rn,k . We let

rn,k(q, t)
def=

∑
w∈Rn,k

εinv(w)qmaj(w)tr(w).

These polynomials satisfy the following recursion.

Lemma 4.1. For all n � k + 2 we have

rn,k(q, t) = 1

1 + t

(
t
(
1 − qn−1)rn−1,k(q,−t) + (

1 + t(−qt)n−1)rn−1,k(q,1)
)
.

Proof. This proof is similar (and actually much simpler) to that of Theorem 3.1 and so we briefly
sketch it. There is a bijection w → (w0, w(xn)) between Rn,k and Rn−1,k × [n] satisfying inv(w) =
inv(w0) + n − w(xn), r(w) = n − w(xn), maj(w) = maj(w0) if w0(xn−1) < w(xn), and maj(w) =
maj(w0) + n − 1 otherwise. Therefore
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rn,k(q, t) =
∑

w0∈Rn−1,k

εinv(w0)qmaj(w0)

(
qn−1

w0(n−1)∑
i=1

(−t)n−i +
n∑

i=w0(n−1)+1

(−t)n−i

)

=
∑

w0∈Rn−1,k

εinv(w0)qmaj(w0)

(
qn−1 (−t)n−w0(n−1) − (−t)n

1 + t
+ 1 − (−t)n−w0(n−1)

1 + t

)

= 1

1 + t

(
t
(
1 − qn−1)rn−1,k(q,−t) + (

1 + t(−qt)n−1)rn−1,k(q,1)
)
. �

Despite the polynomials sn,k , the polynomials rn,k(q, t) admit a nice factorization only if k is odd.

Proposition 4.2. Let k be odd and n > k. Then

rn,k(q, t) = [k + 1]−q[k + 2]q · · · [n − 1]εnq[n]εn+1qt .

Proof. The case n = k + 1 is an easy verification. Since this initial condition plus the recursion of
Lemma 4.1 uniquely determine rn,k(q, t) we only need to show that the claimed expression satisfies
the recurrence. Substituting rn,k(q, t) as given by the proposition and cancelling a common factor, it
remains to check that

[n]εn+1qt = 1

t + 1

(
t
(
1 + εn−1q

)[n − 1]εn−1qt + 1 + t(−qt)n−1),
where we have also used that (1 − qn−1) = (1 + εn−1q)[n − 1]εnq . But the above right-hand side may
be rewritten as

1

1 + t

(
t
([n − 1]εn−1qt + (−qt)n−1) + εn−1qt[n − 1]εn−1qt + 1

)
= 1

1 + t

(
t[n]εn−1qt + [n]εn−1qt

)
= [n]εn−1qt . �

If k is even the polynomial rn,k(q, t) does not admit a nice factorization in general. Nevertheless, if
n is also even the specialization rn,k(q) can be easily computed thanks to the following result, whose
proof is valid for all k.

Proposition 4.3. Let n be even. Then

rn,k(q) = [k + 1]εkq[k + 2]εk+1q · · · [n − 1]q[n]−q.

Proof. We generalize here an idea appearing in [15]. Consider the following bijection φ of Rn,k . If
w ∈ Rn,k is such that the vertices labelled by 2i − 1 and 2i are either adjacent or are not comparable
for all i ∈ [ n

2 ] we let φ(w) = w . Otherwise let i be the minimum index such that 2i − 1 and 2i are
comparable but not adjacent and we let φ(w) be the labelling obtained by exchanging the labels 2i
and 2i − 1. It is clear that φ is an involution on Rn,k and that if φ(w) 
= w then εinv(w) = −εinv(φ(w))

and maj(w) = maj(φ(w)). Therefore, computing rn,k(q) we can restrict the sum on the fixed points
of φ. If w is fixed by φ then among the n

2 pairs of labels of the form {2i − 1,2i} there are �n+1−k
2 �

pairs in adjacent positions, and � k
2 � pairs which appear in the teeth of the rake. Therefore we can

construct an element w̄ ∈ R n
2 ,� k

2 � in the following way: if 2i − 1 and 2i appear in the teeth of w then

i is a label of a tooth of w̄ . The other labels are inserted in such way that w−1(2i) < w−1(2 j) if and
only if w̄−1(i) < w̄−1( j). We also define a 0–1 vector a(w) = (a1(w), . . . ,ad(w)), with d = �n+1−k

2 �,
in the following way. Let {2i1 − 1,2i1}, . . . , {2id − 1,2id} be the pairs of labels of adjacent vertices
ordered in such way that w−1(2i1) < w−1(2i2) < · · · < w−1(2id), and we let a j(w) = 1 if and only if
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w−1(2i j) < w−1(2i j −1). It is a straightforward verification that the map w → (w̄,a(w)) is a bijection
between the fixed points of φ and R n

2 ,� k
2 � × {0,1}d such that

• inv(w) ≡ ∑
ai(w) mod 2;

• maj(w) = 2 maj(w̄) + a1 + ∑d
i=2(k + 2i − 2)ai if k is odd;

• maj(w) = 2 maj(w̄) + ∑d
i=1(k + 2i − 1)ai if k is even.

Therefore, if k is odd, applying (13), we have

rn,k(q) =
∑

w̄∈R n
2 ,� k

2 �

q2 maj(w̄)(1 − q)
(
1 − qk+2)(1 − qk+4) · · · (1 − qn−1)

=
[

k + 1

2

]
q2

[
k + 3

2

]
q2

· · ·
[

n

2

]
q2

(1 − q)
(
1 − qk+2) · · · (1 − qn−1)

= [k + 1]q[k + 2]−q · · · [n]−q.

Similarly, if k is even, we have

rn,k(q) =
∑

w̄∈R n
2 ,� k

2 �

q2 maj(w̄)
(
1 − qk+1)(1 − qk+3) · · · (1 − qn−1)

=
[

k + 2

2

]
q2

[
k + 4

2

]
q2

· · ·
[

n

2

]
q2

(
1 − qk+1)(1 − qk+3) · · · (1 − qn−1)

= [k + 1]−q[k + 2]q · · · [n]−q. �
5. Mahonian distribution on parabolic quotients in complex reflection groups

In this section we consider the infinite family of complex reflection groups G(r, p,n). We let G =
G(r, p,n) and G∗ = G(r,n)/C p and we recall from [6] that

∑
g∈G∗

qfmaj(g) = [d1]q[d2]q · · · [dn]q,

where di = ri if i < n and dn = rn
p are the fundamental degrees of G . It is therefore natural to look at

the distribution of the flag-major index on sets of cosets representatives for some special subgroups
of G∗ , in order to generalize Eq. (4) to these groups. With this in mind we need to extend the
ideas appearing in [13], and in particular the use of P -partitions, in this context, using some of the
tools developed in [6] and further exploited in [3]. In particular, we recall the following result (see
[6, Theorem 8.3] and [3, Lemma 5.1]).

Lemma 5.1. The map

G∗ ×Pn × {0,1, . . . , p − 1} → N
n,

(g, λ,h) 
→ f = ( f1, . . . , fn),

where fi = λ|g−1(i)|(g) + rλ|g−1(i)| + h r
p for all i ∈ [n], is a bijection. And in this case we say that f is

g-compatible.

For g ∈ G∗ we let S g be the set of g-compatible vectors in N
n .
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Lemma 5.2. We have

F g(x1, . . . , xn)
def=

∑
f ∈S g

x f1
1 · · · x fn

n

= xλ1(g)
|g1| · · · xλn(g)

|gn|
(1 − xr|g1|)(1 − xr|g1|xr|g2|) · · · (1 − xr|g1| · · · xr|gn−1|) · (1 − xr/p

|g1| · · · xr/p
|gn|)

.

Proof. By Lemma 5.1 we have

∑
f ∈S g

x f1
1 · · · x fn

n =
∑
λ∈Pn

p−1∑
h=0

x
λ1(g)+rλ1+h r

p
|g1| · · · x

λn(g)+rλn+h r
p

|gn|

= xλ1(g)
|g1| · · · xλn(g)

|gn|
∑
λ∈Pn

xrλ1|g1| · · · xrλn|gn|
p−1∑
h=0

(x1 · · · xn)
h r

p

= xλ1(g)
|g1| · · · xλn(g)

|gn|
1

(1 − xr|g1|)(1 − xr|g1|xr|g2|) · · · (1 − xr|g1| · · · xr|gn|)
1 − xr

1 · · · xr
n

1 − x
r
p

1 · · · x
r
p

n

,

and the result follows. �
Let

N
n
(r,p)

def=
{
( f1, . . . , fn) ∈N

n: f1 ≡ f2 ≡ · · · ≡ fn ≡ h
r

p
mod r for some h = 0,1, . . . , p − 1

}

and A= {( f1, . . . , fn) ∈N
n: f1 � f2 � · · · � fk and ( f1, . . . , fk) ∈N

k
(r,p)}. We will show that the set A

consists of all g-compatible vectors in N
n as g varies in a suitable subset of G∗ . Before proving this

we need the following preliminary result.

Lemma 5.3. Let g ∈ G∗ . Then (λ1(g) + λ|g(1)|(g−1), . . . , λn(g) + λ|g(n)|(g−1)) ∈N
n
(r,p) .

Proof. We recall that if |g| = σ then g = [σλ1(g)
1 , . . . , σ

λn(g)
n ] and hence also g−1 = [τλ1(g−1)

1 , . . . ,

τ
λn(g−1)
n ], where τ = σ−1. Therefore

g−1 g = [
1λ1(g)+λσ1 (g−1), . . . ,nλn(g)+λσn (g−1)

]
.

Since this is the identity element in the group G∗ , we deduce that there exists h ∈ {0,1, . . . , p − 1}
such that λi(g) + λσi (g−1) ≡ h r

p for all i ∈ [n], and the proof is complete. �
For k < n we let Ck

def= {[σ 0
1 , σ 0

2 , . . . , σ 0
k , gk+1, . . . , gn] ∈ G∗: σ1 < · · · < σk}. We observe that the

subgroup of G∗ given by {g ∈ G∗: g = [σ z1
1 , . . . , σ

zk
k , (k +1)0, (k +2)0, . . . ,n0]} is isomorphic to G(r,k)

for all k < n. Moreover, we may observe that Ck contains exactly p representatives for each right
coset of G(r,k) in G∗ (we prefer here to consider right instead of left cosets to be consistent with the
notation and the results in [9] and [11] that we are going to generalize). In particular, if p = 1, we
have that Ck is a complete system of representatives of the cosets of G(r,k) in G(r,n).

Proposition 5.4. Let f ∈ N
n. Then f ∈A if and only if f is g−1-compatible for some g ∈ Ck.

Proof. Recall that, if |g| = σ , then g = [σλ1(g)
1 , σ

λ2(g)
2 , . . . , σ

λn(g)
n ]. In particular, g ∈ Ck if and only if

σ1 < σ2 < · · · < σk and(
λ1(g), λ2(g), . . . , λk(g)

) ∈N
k
(r,p). (14)
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Let f ∈ N
n be g−1-compatible for some g ∈ G∗ . Then, by Lemma 5.1, there exist λ ∈ Pn and h ∈

{0, . . . , p − 1} such that

f i = λσi

(
g−1) + rλσi + h

r

p
, 1 � i � k. (15)

The proof will follows immediately from the following two claims and Eq. (14).

Claim 1. f1 � f2 � · · · � fk if and only if σ1 < σ2 < · · · < σk. Since λ(g−1) and λ are both partitions, it is
clear that Eqs. (15) imply that if σ1 < σ2 < · · · < σk then f1 � f2 � · · · � fk . For the same reason, if f i > f i+1
then σi < σi+1 . Finally, assume that fi = f i+1 . This immediately implies that λσi (g−1) = λσi+1 (g−1) and a
moment’s thought based on the definition of the statistics λi(g−1) will show that this also implies σi < σi+1 .

Claim 2. ( f1 � f2 � · · · � fk) ∈ N
k
(r,p) if and only if (λ1(g), . . . , λk(g)) ∈N

k
(r,p) . By Eqs. (15) we clearly have

that ( f1, . . . , fk) ∈ N
k
(r,p)

if and only if (λ|g1|(g−1), λ|g2|(g−1), . . . , λ|gk |(g−1)) ∈ N
k
(r,p)

. By Lemma 5.3 this is

also equivalent to (λ1(g), . . . , λk(g)) ∈N
k
(r,p) and the proof is complete. �

We are now ready to state and prove the main result of this section.

Theorem 5.5. Let G = G(r, p,n)∗ . Then∑
g∈Ck

qfmaj(g−1) = [p]qkr/p

[
r(k + 1)

]
q · · · [r(n − 1)

]
q[rn/p]q.

Proof. Consider the formal power series

G(q)
def=

∑
f ∈A

q| f |,

where, if f = ( f1, . . . , fn), we let | f | = f1 + · · · + fn . We compute the series G(q) in two different
ways. First, by Lemma 5.2 and Proposition 5.4 we have

G(q) =
∑
g∈Ck

F g−1(q, . . . ,q)

=
∑
g∈Ck

qλ1(g−1) · · ·qλn(g−1)

(1 − qr)(1 − q2r) · · · (1 − qr(n−1))(1 − qrn/p)

=
∑

g∈Ck
qfmaj(g−1)

(1 − qr)(1 − q2r) · · · (1 − qr(n−1))(1 − qrn/p)
.

Now we compute directly G(q) using the definition of A. We have

G(q) = 1

(1 − qr)(1 − q2r) · · · (1 − qkr)

(1 − qkr)

(1 − qkr/p)

1

(1 − q)n−k

and therefore∑
g∈Ck

qfmaj(g−1) = 1 − qkr

1 − qkr/p

(1 − q(k+1)r) · · · (1 − q(n−1)r)(1 − qnr/p)

(1 − q)n−k
. �

Corollary 5.6. If G = G(r,n), then Ck is a system of coset representatives for the subgroup G(r,k) and∑
g∈Ck

qfmaj(g−1) = [
r(k + 1)

]
q

[
r(k + 2)

]
q · · · [rn]q.
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Eq. (4) has been rediscovered by Panova in [11] to present a simple combinatorial proof of a related
result that was discovered by Garsia in [9], using nice relations of these objects with symmetric
functions. Corollary 5.6 can be easily used to find a natural G(r,n) counterpart of these results. We
first need some further notation. If g ∈ G(r,n) we let

isz(g)
def= max

{
j: ∃1 � i1 < · · · < i j � n with zi1(g) = · · · = zi j (g) = z

and
∣∣g(i1)

∣∣ < · · · < ∣∣g(i j)
∣∣},

be the maximum length of a homogeneous increasing subsequence of g of color z. Then we let

Πr,n,k
def= {

g = [
σ 0

1 , . . . , σ 0
n−k,σ

zn−k+1
n−k+1 , . . . , σ zn

n
] ∈ G(r,n): σ1 < · · · < σn−k

and is0(g) = n − k
}
.

The following result generalizes [11, Theorems 1 and 2] and the main results in [9].

Theorem 5.7. If n � 2k we have that

∑
g∈Πr,n,k

qfmaj(g−1) =
k∑

i=0

(−1)i
(

k

i

)[
r(n − i + 1)

]
q

[
r(n − i + 2)

]
q · · · [rn]q.

The proof of this result for r = 1 in [11] makes use of Eq. (4) and on a cute use of the principle
of inclusion–exclusion on some sets of standard tableaux based on the Robinson–Schensted corre-
spondence. This proof can be generalized to the general case of groups G(r,n) using Corollary 5.6
and the generalized version of the Robinson–Schensted correspondence [14]. This is why we do not
present this proof and we refer the reader to [6, §10] for further details on the generalized Robinson–
Schensted correspondence.

We conclude with some open problems arising from this work.

Problem 5.8. Let J ′ = [k] and S ′
n,k

def= J ′ Sn = {σ ∈ Sn: σ−1(1) < · · · < σ−1(k)}. Numerical evidence
suggests that∑

σ∈S ′
n,k

(−1)inv(σ )qmaj(σ ) =
∑

u∈Sn,k

(−1)inv(σ )qmaj(σ )

if n is even or k is odd. These are the same cases for which sn,k(q) = rn,k(q). Give a (possibly bijective)
proof of these equidistributions.

Problem 5.9. Unify the main results of this work in a unique statement, i.e. compute the polynomials∑
g∈Ck

εinv(|g|)qfmaj(g−1),

where Ck is a system of coset representatives of G(r,k) in G(r,n) including as particular cases Theo-
rems 3.3 and Corollary 5.6.
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