Topology and its Applications 157 (2010) 10-21

ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Topological complexity is a fibrewise L-S category

Norio Iwase^{a,*}, Michihiro Sakai^b

^a Faculty of Mathematics, Kyushu University, Fukuoka 810-8560, Japan ^b Gifu National College of Technology, Gifu 501-0495, Japan

ARTICLE INFO

MSC: primary 55M30 secondary 55Q25

Keywords: Topological complexity Lusternik–Schnirelmann category

ABSTRACT

Topological complexity $\mathcal{TC}(B)$ of a space *B* is introduced by M. Farber to measure how much complex the space is, which is first considered on a configuration space of a motion planning of a robot arm. We also consider a stronger version $\mathcal{TC}^{M}(B)$ of topological complexity with an additional condition: in a robot motion planning, a motion must be stasis if the initial and the terminal states are the same. Our main goal is to show the equalities $\mathcal{TC}(B) = \operatorname{cat}_{B}^{*}(d(B)) + 1$ and $\mathcal{TC}^{M}(B) = \operatorname{cat}_{B}^{*}(d(B)) + 1$, where $d(B) = B \times B$ is a fibrewise pointed space over *B* whose projection and section are given by $p_{d(B)} = \operatorname{pr}_{2} : B \times B \to B$ the canonical projection to the second factor and $s_{d(B)} = \Delta_{B} : B \to B \times B$ the diagonal. In addition, our method in studying fibrewise L–S category is able to treat a fibrewise space with singular fibres.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We say a pair of spaces (X, A) is an NDR pair or A is an NDR subset of X, if the inclusion map is a (closed) cofibration, in other words, the inclusion map has the (strong) Strøm structure (see p. 22 in G. Whitehead [24]). When the set of the base point of a space is an NDR subset, the space is called well-pointed.

Let us recall the definition of a sectional category (see James [14]) which is originally defined and called by Schwarz 'genus'.

Definition 1.1. (Schwarz [21], James [15]) For a fibration $p: E \to X$, the sectional category secat(p) (= one less than the Schwarz genus Genus(p)) is the minimal number $m \ge 0$ such that there exists a cover of X by (m + 1) open subsets $U_i \subset X$ each of which admits a continuous section $s_i: U_i \to E$.

The topological complexity of a robot motion planning is first introduced by M. Farber [2] in 2003 to measure the discontinuity of a robot motion planning algorithm searching also the way to minimise the discontinuity. At a more general view point, Farber defined a numerical invariant TC(B) of any topological space *B*: let P(B) be the space of all paths in *B*. Then there is a Serre path fibration $\pi : P(B) \to B \times B$ given by $\pi(\ell) = (\ell(0), \ell(1))$ for $\ell \in P(B)$.

Definition 1.2 (*Farber*). For a space *B*, the topological complexity $\mathcal{TC}(B)$ is the minimal number $m \ge 1$ such that there exists a cover of $B \times B$ by *m* open subsets U_i each of which admits a continuous section $s_i : U_i \to \mathcal{P}(B)$ for $\pi : \mathcal{P}(B) \to B \times B$.

By definition, we can observe that the topological complexity is nothing but the Schwarz genus or the sectional category.

* Corresponding author. E-mail addresses: iwase@math.kyushu-u.ac.jp (N. Iwase), sakai@gifu-nct.ac.jp (M. Sakai).

Farber has further introduced a new invariant restricting motions by giving two additional conditions on the section $s: U \to \mathcal{P}(B)$ (see Farber [3]).

(1) $s(b,b) = c_b$ the constant path at *b* for any $b \in B$, (2) $s(b_1,b_2) = s(b_2,b_1)^{-1}$ if $(b_1,b_2) \in U$.

It gives a stronger invariant than the topological complexity, and the $\mathbb{Z}/2$ -equivariant theory must be applied as in Farber and Grant [4]. This new topological invariant, in turn, suggests us another motion planning under the condition that a motion is stasis if the initial and the terminal states are the same. Let us state more precisely.

Definition 1.3. For a space *B*, the 'monoidal' topological complexity $\mathcal{TC}^{M}(B)$ is the minimal number $m \ge 1$ such that there exists a cover of $B \times B$ by *m* open subsets $U_i \supset \Delta(B)$ each of which admits a continuous section $s_i : U_i \to \mathcal{P}(B)$ for the Serre path fibration $\pi : \mathcal{P}(B) \to B \times B$ satisfying $s_i(b, b) = c_b$ for any $b \in B$.

Remark 1.4. This new topological complexity $\mathcal{TC}^{\mathcal{M}}$ is **not** a homotopy invariant, in general. However, it is a homotopy invariant if we restrict our working category to the category of a space *B* such that the pair $(B \times B, \Delta(B))$ is NDR.

On the other hand, a fibrewise *pointed* L–S category of a fibrewise pointed space is introduced and studied by James and Morris [13]. Let us recall the definition:

Definition 1.5. (James and Morris [13])

- (1) Let X be a fibrewise pointed space over B. The fibrewise **pointed** L-S category $\operatorname{cat}_{B}^{B}(X)$ is the minimal number $m \ge 0$ such that there exists a cover of X by (m + 1) open subsets $U_i \supset s_X(B)$ each of which is fibrewise null-homotopic in X by a fibrewise pointed homotopy. If there is no such m, we say $\operatorname{cat}_{B}^{B}(X) = \infty$.
- (2) Let $f: Y \to X$ be a fibrewise pointed map over *B*. The fibrewise **pointed** L–S category $\operatorname{cat}_{B}^{B}(f)$ is the minimal number $m \ge 0$ such that there exists a cover of Y by (m + 1) open subsets $U_i \supset s_Y(B)$, where the restriction $f|_{U_i}$ to each subset is fibrewise compressible into $s_X(B)$ in X by a fibrewise pointed homotopy. If there is no such *m*, we say $\operatorname{cat}_{B}^{B}(f) = \infty$.

To describe our main result, we further introduce a new unpointed version of fibrewise L–S category: the fibrewise L–S category $cat_B()$ of a fibrewise *unpointed* space is also defined by James and Morris [13] as the minimum number (minus one) of open subsets which cover the given space and are fibrewise null-homotopic (see also James [14] and Crabb and James [1]). In this paper, we give a new version of a fibrewise *unpointed* L–S category of a fibrewise *pointed* space as follows:

Definition 1.6.

- (1) Let *X* be a fibrewise pointed space over *B*. The fibrewise **unpointed** L–S category $\operatorname{cat}_{B}^{*}(X)$ is the minimal number $m \ge 0$ such that there exists a cover of *X* by (m + 1) open subsets U_i each of which is fibrewise compressible into $s_X(B)$ in *X* by a fibrewise homotopy. If there is no such *m*, we say $\operatorname{cat}_{B}^{*}(X) = \infty$.
- (2) Let $f: Y \to X$ be a fibrewise pointed map over *B*. The fibrewise **unpointed** L–S category $\operatorname{cat}_{\mathbb{B}}^{*}(f)$ is the minimal number $m \ge 0$ such that there exists a cover of *Y* by (m + 1) open subsets U_i , where the restriction $f|_{U_i}$ to each subset is fibrewise compressible into $s_X(B)$ in *X* by a fibrewise homotopy. If there is no such *m*, we say $\operatorname{cat}_{\mathbb{B}}^{*}(f) = \infty$.

For a given space *B*, we define a fibrewise pointed space d(B) by $d(B) = B \times B$ with $p_{d(B)} = \text{pr}_2 : B \times B \to B$ and $s_{d(B)} = \Delta_B : B \to B \times B$ the diagonal. One of our main goals of this paper is to show the following theorem.

Theorem 1.7. For a space *B*, we have the following equalities.

(1) $\mathcal{TC}(B) = \operatorname{cat}_{B}^{*}(d(B)) + 1.$ (2) $\mathcal{TC}^{M}(B) = \operatorname{cat}_{B}^{B}(d(B)) + 1.$

Farber and Grant have also introduced lower bounds for the topological complexity by using the cup length and category weight (see Rudyak [17,18] for example) on the ideal of zero-divisors, i.e., the kernel of Δ^* : $H^*(B \times B; R) \rightarrow H^*(B; R)$.

Definition 1.8. (Farber [2] and Farber and Grant [4]) For a space *B* and a ring $R \ni 1$, the zero-divisors cup-length $\mathcal{Z}_R(B)$ and the TC-weight wgt_{π}(*u*; *R*) for $u \in I = \ker \Delta^* : H^*(B \times B; R) \to H^*(B; R)$ are defined as follows.

(1) $\mathcal{Z}_R(B) = \operatorname{Max}\{m \ge 0 \mid H^*(B \times B; R) \supset I^m \neq 0\}.$

(2) wgt_{π}(u; R) = Max{ $m \ge 0 \mid \forall f : Y \to B \times B$ (secat($f^*\pi$) < m), $f^*(u) = 0$ }.

In the category $\underline{\mathcal{I}}_{B}^{B}$ of fibrewise pointed spaces with base space *B* and maps between them, we also have corresponding definitions.

Definition 1.9. For a fibrewise pointed space X over B and a ring $R \ge 1$ and $u \in I = H^*(X, B; R) \subset H^*(X; R)$, we define

(1) $\operatorname{cup}_{B}^{B}(X; R) = \operatorname{Max}\{m \ge 0 \mid \exists \{u_{1}, \dots, u_{m} \in H^{*}(X, B; R)\} \text{ s.t. } u_{1} \cdots u_{m} \ne 0\}.$ (2) $\operatorname{wgt}_{B}^{B}(u; R) = \operatorname{Max}\{m \ge 0 \mid \forall f : Y \to X \in \underline{\mathcal{I}}_{B}^{B} (\operatorname{cat}_{B}^{B}(f) < m), f^{*}(u) = 0\}.$

This immediately implies the following.

Theorem 1.10. For a space *B*, we have $\mathcal{Z}_R(B) = \operatorname{cup}_B^B(d(B); R)$ for a ring $R \ni 1$.

Motivating by this equality, we proceed to obtain the following result.

Theorem 1.11. For any space B, any element $u \in H^*(B \times B, \Delta(B); R)$ and a ring $R \ni 1$, we have $wgt_{\pi}(u; R) = wgt_{\mathbb{B}}^{\mathbb{B}}(u; R)$.

Let us consider one technical condition on a fibrewise pointed space:

Theorem 1.12. For any space *B* having the homotopy type of a locally finite simplicial complex, we may assume that d(B) is fibrewise well-pointed up to homotopy.

The following is the main result of our paper.

Theorem 1.13. For any fibrewise well-pointed space X over B, we have $\operatorname{cat}_{B}^{B}(X) = \operatorname{cat}_{B}^{*}(X)$. So, if B is a locally finite simplicial complex, we have $\mathcal{TC}(B) = \mathcal{TC}^{M}(B) = \operatorname{cat}_{B}^{B}(d(B)) + 1$.

In [19] Sakai showed in his study of the fibrewise *pointed* L–S category of a fibrewise well-pointed spaces, using Whitehead style definition, that we can utilise A_{∞} methods used in the study of L–S category (see Iwase [7,8]). Let us state the Whitehead style definitions of fibrewise L–S categories following [19].

Definition 1.14. Let *X* be a fibrewise *well-pointed* space over *B*. The fibrewise **pointed** L–S category $\operatorname{cat}_{B}^{B}(X)$ is the minimal number $m \ge 0$ such that the (m + 1)-fold fibrewise diagonal $\Delta_{B}^{m+1} : X \to \prod_{B}^{m+1} X$ is compressible into the fibrewise fat wedge $T_{B}^{m+1} X$ in $\underline{\mathcal{T}}_{B}^{B}$. If there is no such *m*, we say $\operatorname{cat}_{B}^{B}(X) = \infty$.

We remark that this new definition coincides with the ordinary one, if the total space *X* is a finite simplicial complex.

The above Whitehead-style definition allows us to define the module weight, cone length and categorical length, and moreover, to give their relationship as in Section 8. To show that, we need a criterion given by fibrewise A_{∞} structure on the fibrewise loop space (see Sections 6, 7).

2. Proof of Theorem 1.7

First, we show the equality $\mathcal{TC}^{M}(B) = \operatorname{cat}_{B}^{B}(d(B)) + 1$: assume $\mathcal{TC}^{M}(B) = m + 1$, $m \ge 0$ and that there are an open cover $\bigcup_{i=0}^{m} U_{i} = B \times B$ and a series of sections $s_{i}: U_{i} \to \mathcal{P}(B)$ of $\pi: \mathcal{P}(B) \to d(B)$ satisfying $s_{i}(b, b) = c_{b}$ for $b \in B$, since we are considering monoidal topological complexity. Then each U_{i} is fibrewise compressible relative to $\Delta(B)$ into $\Delta(B) \subset B \times B = d(B)$ by a homotopy $H_{i}: U_{i} \times [0, 1] \to B \times B$ given by the following:

$$H_i(a, b; t) = (s_i(a, b)(t), b), (a, b) \in U_i, t \in [0, 1],$$

where we can easily check that H_i gives a fibrewise compression of U_i relative to $\Delta(B)$ into $\Delta(B) \subset B \times B$. Since $\bigcup_{i=0} U_i = B \times B = d(B)$, we obtain $\operatorname{cat}_B^B(d(B)) \leq m$, and hence we have $\operatorname{cat}_B^B(d(B)) + 1 \leq \mathcal{TC}^M(B)$.

Conversely assume that $\operatorname{cat}_{B}^{B}(d(B)) = m$, $m \ge 0$ and there is an open cover $\bigcup_{i=0}^{m} U_{i} = d(B)$ of $d(B) = B \times B$ where U_{i} is fibrewise compressible relative to $\Delta(B)$ into $\Delta(B) \subset d(B) = B \times B$: let us denote the compression homotopy of U_{i} by $H_{i}(a, b; t) = (\sigma_{i}(a, b; t), b)$ for $(a, b) \in U_{i}$ and $t \in [0, 1]$, where $\sigma_{i}(a, b; 0) = a$ and $\sigma_{i}(a, b; 1) = b$. Hence we can define a section $s_{i}: U_{i} \to \mathcal{P}(B)$ by the formula

$$s_i(a, b)(t) = \sigma_i(a, b; t), \quad t \in [0, 1]$$

Since $\bigcup_{i=0} U_i = B \times B$, we obtain $\mathcal{TC}^M(B) \leq m+1$ and hence we have $\mathcal{TC}^M(B) \leq \operatorname{cat}_B^B(d(B)) + 1$. Thus we have $\mathcal{TC}^M(B) = \operatorname{cat}_B^B(d(B)) + 1$.

Second, we show the equality $\mathcal{TC}(B) = \operatorname{cat}_{B}^{*}(d(B)) + 1$: assume $\mathcal{TC}(B) = m + 1$, $m \ge 0$ and that there are an open cover $\bigcup_{i=0}^{m} U_{i} = B \times B$ and a section $s_{i}: U_{i} \to \mathcal{P}(B)$ of $\pi: \mathcal{P}(B) \to d(B)$. Then each U_{i} is fibrewise compressible into $\Delta(B) \subset B \times B = d(B)$ by a homotopy $H_{i}: U_{i} \times [0, 1] \to B \times B$ which is given by

$$H_i(a, b; t) = (s(a, b)(t), b), (a, b) \in U_i, t \in [0, 1],$$

where we can easily check that *H* gives a fibrewise compression of U_i into $\Delta(B) \subset B \times B = d(B)$. Since $\bigcup_{i=0} U_i = B \times B = d(B)$, we obtain $\operatorname{cat}_{\mathbb{P}}^*(d(B)) \leq m$, and hence we have $\operatorname{cat}_{\mathbb{P}}^*(d(B)) + 1 \leq \mathcal{TC}(B)$.

Conversely assume that $\operatorname{cat}_{B}^{*}(d(B)) = m$, $m \ge 0$ and there is an open cover $\bigcup_{i=0}^{m} U_{i} = d(B)$ of $d(B) = B \times B$ where U_{i} is fibrewise compressible into $\Delta(B) \subset B \times B = d(B)$: the compression homotopy is described as $H_{i}(a, b; t) = (\sigma_{i}(a, b; t), b)$ for $(a, b) \in U_{i}$ and $t \in [0, 1]$, such that $\sigma_{i}(a, b; 0) = a$ and $\sigma_{i}(a, b; 1) = b$. Hence we can define a section $s_{i} : U_{i} \to \mathcal{P}(B)$ by the formula

$$s_i(a, b)(t) = \sigma_i(a, b; t), \quad t \in [0, 1]$$

Since $\bigcup_{i=0} U_i = B \times B$, we obtain $\mathcal{TC}(B) \leq m+1$ and hence we have $\mathcal{TC}(B) \leq \operatorname{cat}^*_B(d(B)) + 1$. Thus we have $\mathcal{TC}(B) = \operatorname{cat}^*_B(d(B)) + 1$.

3. Proof of Theorem 1.11

Assume that $\operatorname{wgt}_{B}^{B}(u; R) = m$, where $u \in H^{*}(B \times B, \Delta(B))$ and $f: Y \to d(B) = B \times B$ is a map of $\operatorname{secat}(f^{*}\pi) < m$. Then there is an open cover $\bigcup_{i=1}^{m} U_{i} = Y$ and a series of maps $\{\sigma_{i}: U_{i} \to \mathcal{P}(B); 1 \leq i \leq m\}$ satisfying $\pi \circ \sigma_{i} = f|_{U_{i}}$. Let $\hat{Y} = Y \amalg B$ with projection $p_{\hat{Y}}$ and section $s_{\hat{Y}}$ given by

$$p_{\hat{Y}}|_{Y} = p_{Y}, \qquad p_{\hat{Y}}|_{B} = \mathrm{id}_{B} \quad \mathrm{and} \quad s_{\hat{Y}} : B \hookrightarrow Y \amalg B = \hat{Y}.$$

Then we can extend *f* to a map $\hat{f}: \hat{Y} \to d(B)$ by the formula

$$f|_{\mathbf{Y}} = f, \qquad f|_{B} = s_{d(B)} = \Delta$$

By putting $\hat{U}_i = U_i \amalg B$ which is open in \hat{Y} , we obtain an open cover $\bigcup_{i=1}^m \hat{U}_i = \hat{Y}$ and a series of maps $\hat{\sigma}_i : \hat{U}_i \to \mathcal{P}(B)$ satisfying $\pi \circ \hat{\sigma}_i = \hat{f}|_{\hat{U}_i}$:

$$\hat{\sigma}_i|_{U_i} = \sigma_i, \qquad \hat{\sigma}_i|_B = s_{\mathcal{P}(B)}.$$

Hence there is a fibrewise homotopy $\Phi_i: \hat{U}_i \times [0, 1] \to d(B)$ such that $\Phi_i(y, 0) = \hat{f}(y)$ and $\Phi_i(y, 1) \in \Delta(B)$ given by the following formula

$$\Phi_{i}(y,t) = (\hat{\sigma}_{i}(y)(t), \hat{\sigma}_{i}(y)(1)), \quad (y,t) \in \hat{U}_{i} \times [0,1],$$

so that we have $\Phi_i(y, 0) = (\hat{\sigma}_i(y)(0), \hat{\sigma}_i(y)(1)) = \pi \circ \hat{\sigma}_i(y) = \hat{f}(y)$ and $\Phi_i(y, 1) = (\hat{\sigma}_i(y)(1), \hat{\sigma}_i(y)(1)) \in \Delta(B)$. Moreover, for any $(b, t) \in B \times [0, 1]$, we have $\Phi_i(b, t) = (\hat{\sigma}_i(b)(t), \hat{\sigma}_i(b)(1)) = (s_{\mathcal{P}(B)}(t), s_{\mathcal{P}(B)}(1)) = (b, b)$. Thus Φ_i gives a fibrewise pointed compression homotopy of $\hat{f}|_{\hat{U}_i}$ into $\Delta(B)$. Then it follows that $\operatorname{cat}_B^B(\hat{f}) < m$ and hence we obtain $f^*(u) = 0$ and $\operatorname{wgt}_{\pi}(u; R) \ge m$. Thus we obtain $\operatorname{wgt}_{\pi}(u; R) \ge m = \operatorname{wgt}_B^B(u; R)$.

Conversely assume that $\operatorname{wgt}_{\pi}(u; R) = m$, where $u \in H^*(B \times B, \Delta(B))$ and $f: Y \to B \times B$ such that $\operatorname{cat}_B^B(f) < m$. Then there exist an open covering $\bigcup_{i=1}^m U_i = Y$ with $U_i \supset s_Y(B)$ and a sequence of fibrewise homotopies $\{\phi_i : U_i \times [0, 1] \to B \times B\}$ such that $\phi_i(y, 0) = f|_{U_i}(y)$, $\phi_i(y, 1) \in \Delta(B)$ and $\operatorname{pr}_2 \circ \phi_i(y, t) = \operatorname{pr}_2 \circ f(y)$ for $(y, t) \in U_i \times [0, 1]$. Hence there is a sequence of maps $\{\sigma_i : U_i \to \mathcal{P}(B)\}$ given by

$$\sigma_i(y)(t) = \operatorname{pr}_1 \circ \phi_i(y, t), \quad y \in U_i, \ t \in [0, 1]$$

such that $\pi \circ \sigma_i(y) = (\operatorname{pr}_1 \circ \phi_i(y, 0), \operatorname{pr}_1 \circ \phi_i(y, 1)) = f(y)$ since $\operatorname{pr}_2 \circ \phi_i(y, t) = \operatorname{pr}_2 \circ f(y)$ for $(y, t) \in U_i \times [0, 1]$. Thus we obtain secat $(f^*\pi) < m$, and hence $f^*(u) = 0$. This implies $\operatorname{wgt}_B^B(u; R) \ge m = \operatorname{wgt}_\pi(u; R)$ and hence $\operatorname{wgt}_B^B(u; R) = \operatorname{wgt}_\pi(u; R)$.

4. Proof of Theorem 1.12

The proof of Lemma 2 in §2 of Milnor [16] implies the following:

Lemma 4.1. The pair $(B \times B, \Delta(B))$ is an NDR-pair.

Proof. For each vertex β of B, let V_{β} be the star neighbourhood in B and $V = \bigcup_{\beta} V_{\beta} \times V_{\beta} \subset B \times B$. Then the closure $\overline{V} = \bigcup_{\beta} \overline{V}_{\beta} \times \overline{V}_{\beta}$ is a subcomplex of $B \times B$. For the barycentric coordinates $\{\xi_{\beta}\}$ and $\{\eta_{\beta}\}$ of x and y, resp., we see that $(x, y) \in V$ if and only if $\sum_{\beta} \text{Min}(\xi_{\beta}, \eta_{\beta}) > 0$ and that $\sum_{\beta} \text{Min}(\xi_{\beta}, \eta_{\beta}) = 1$ if and only if the barycentric coordinates of x and

y are the same, or equivalently, $(x, y) \in \Delta(B)$. Hence we can define a continuous map $v : B \times B \rightarrow [-1, 1]$ by the following formula

$$v(x, y) = \begin{cases} 2\sum_{\beta} \operatorname{Min}(\xi_{\beta}, \eta_{\beta}) - 1, & \text{if } (x, y) \in \overline{V}, \\ -1, & \text{if } (x, y) \notin V. \end{cases}$$

Then we have that $v^{-1}(1) = \Delta(B)$. Let $U = v^{-1}((0, 1])$ be an open neighbourhood of $\Delta(B)$. Using Milnor's map *s*, we obtain a pair of maps (u, h) as follows:

$$u(x, y) = \min\{1, 1 - v(x, y)\} \text{ and } h(x, y, t) = (s(x, y)(\min\{t, w(x, y)\}), y),$$

where $w(x, y) = u(x, y) + v(x, y) = Min\{1, 1 + v(x, y)\}$. Note that w(x, y) = 1 if $(x, y) \in U$ and that w(x, y) = 0 if $(x, y) \notin V$. Then $u^{-1}(0) = \Delta(B)$, $u^{-1}([0, 1)) = U$ and $h(x, y, 1) = (y, y) \in \Delta(B)$ if $(x, y) \in U$. Moreover, $pr_2 \circ h(x, y, t) = y$ and h(x, x, t) = (s(x, x)(t), x) = (x, x) for any $x, y \in B$ and $t \in [0, 1]$. Thus the data (u, h) gives the fibrewise Strøm structure on $(B \times B, \Delta(B))$. \Box

5. Proof of Theorem 1.13

Let X be a fibrewise well-pointed space over B and \hat{X} the fibrewise pointed space obtained from X by giving a fibrewise whisker. More precisely, we define \hat{X} as the mapping cylinder of s_X ,

 $\hat{X} = X \cup_{s_X} B \times [0, 1], \quad X \ni s_X(b) \sim (b, 0) \in B \times [0, 1] \text{ for any } b \in B,$

with projection $p_{\hat{x}}$ and section $s_{\hat{x}}$ given by the formulas

$$\begin{split} p_{\hat{X}}|_{X} &= p_{X}, \qquad p_{\hat{X}}|_{B \times [0,1]}(b,t) = b, \quad \text{for } (b,t) \in B \times [0,1], \\ s_{\hat{X}}(b) &= (b,1) \in B \times [0,1] \subset \hat{X}. \end{split}$$

Then by the definition of Strøm structure, *X* is fibrewise pointed homotopy equivalent to \hat{X} the fibrewise whiskered space over *B*. So we have $\operatorname{cat}_{B}^{B}(X) = \operatorname{cat}_{B}^{B}(\hat{X})$ and $\operatorname{cat}_{B}^{*}(X) = \operatorname{cat}_{B}^{*}(\hat{X})$.

Assume that $\operatorname{cat}_{\mathsf{R}}^{\mathsf{B}}(X) = m \ge 0$. Then it is clear by definition that $\operatorname{cat}_{\mathsf{R}}^{*}(X) \le m = \operatorname{cat}_{\mathsf{R}}^{\mathsf{B}}(X)$.

Conversely assume that $\operatorname{cat}_{B}^{*}(X) = m \ge 0$. Then there is an open cover $\bigcup_{i=0}^{m} U_i = X$ such that U_i is compressible into $s_X(B) \subset X$. Hence there is a fibrewise homotopy $\Phi_i : U_i \times [0, 1] \to X$ such that $\Phi_i(x, 0) = x$, $\Phi_i(x, 1) = s_X(p_X(x))$ and $p_X \circ \Phi_i(x, t) = p_X(x)$. We define \hat{U}_i as follows:

$$\hat{U}_i = U_i \cup_{s_X} (s_X)^{-1} (U_i) \times [0,1] \cup B \times \left(\frac{2}{3},1\right]$$

We also define a fibrewise pointed homotopy $\hat{\Phi}_i : \hat{U}_i \times [0, 1] \rightarrow \hat{X}$ as follows:

$$\hat{\Phi}_{i}(\hat{x},t) = \begin{cases} \Phi_{i}(x,t), & \hat{x} = x \in X, \\ \Phi_{i}(s_{X}(b), t - 3s), & \hat{x} = (b,s) \in (s_{X})^{-1}(U_{i}) \times (0, \frac{t}{3}), \\ s_{X}(b), & \hat{x} = (b, \frac{t}{3}), & b \in (s_{X})^{-1}(U_{i}), \\ (b, \frac{6s-2t}{6-3t}), & \hat{x} = (b,s) \in (s_{X})^{-1}(U_{i}) \times (\frac{t}{3}, \frac{2}{3}), \\ (b, \frac{2}{3}), & \hat{x} = (b, \frac{2}{3}), & b \in (s_{X})^{-1}(U_{i}), \\ (b, s), & \hat{x} = (b, s) \in B \times (\frac{2}{3}, 1]. \end{cases}$$

It is then easy to see that \hat{U}_i 's cover the entire X, and hence we have $\operatorname{cat}_B^B(\hat{X}) \leq m = \operatorname{cat}_B^*(X)$. Thus $\operatorname{cat}_B^B(X) \leq \operatorname{cat}_B^*(X)$ and hence $\operatorname{cat}_B^B(X) = \operatorname{cat}_B^*(X)$. In particular, we have $\mathcal{TC}(B) = \mathcal{TC}^M(B)$ for a locally finite simplicial complex B.

6. Fibrewise A_{∞} structures

From now on, we work in the category $\underline{\mathcal{T}}_{B}^{B}$. For any X a fibrewise pointed space over B, we denote by $p_{X}: X \to B$ its projection and by $s_{X}: B \to X$ its section.

We say that a pair (X, A) of fibrewise pointed spaces over *B* is a fibrewise NDR-pair or that *A* is a fibrewise NDR subset of *X*, if the inclusion map $A \hookrightarrow X$ is a fibrewise cofibration, in other words, the inclusion has the fibrewise (strong) Strøm structure (see Crabb and James [1]). Since *B* is the zero object in $\underline{\mathcal{I}}_{B}^{B}$, for any given fibrewise pointed space *X* over *B*, we always have a pair (X, B) in $\underline{\mathcal{I}}_{B}^{B}$, where we regard $s_X(B) = B$. When the pair (X, B) is fibrewise NDR, the space *X* is called fibrewise well-pointed.

Proposition 6.1. (Crabb and James [1])

(1) If (X, A) and (X', A') are fibrewise NDR-pairs, then so is $(X, A) \times_B (X', A') = (X \times_B X', X \times_B A' \cup A \times_B X')$. (2) If (X, A) is a fibrewise NDR-pair, then so is $(\prod_{B} X, \prod_{B} (X, A))$, which is defined by induction for all $m \ge 1$:

$$\begin{pmatrix} 1\\ \Pi_B X, T_B(X, A) \end{pmatrix} = (X, A),$$
$$\begin{pmatrix} m+1\\ \Pi_B X, T_B(X, A) \end{pmatrix} = \begin{pmatrix} m\\ \Pi_B X, T_B(X, A) \end{pmatrix} \times_B (X, A).$$

If X is a fibrewise pointed space over B, then by taking A = B, we obtain a fibrewise subspace $\begin{array}{c}m+1\\T_B(X,B) \text{ of } T_B^{m+1}X$, which is called an (m + 1)-fold fibrewise fat-wedge of X, and is often denoted by $\begin{array}{c}m+1\\T_B^{m+1}X$. In addition, the pair $(\begin{array}{c}m+1\\T_B^{m+1}X, T_B^{m+1}X)$ is a fibrewise NDR-pair for all $m \ge 0$, if X is fibrewise well-pointed.

Example 6.2.

- (1) Let *X* be a fibrewise pointed space over *B* with $p_X = pr_2 : X = F \times B \to B$ the canonical projection to the second factor and $s_X = in_2 : B \hookrightarrow F \times B = E$ the canonical inclusion to the second factor. Then *X* is a fibrewise pointed space over *B*.
- (2) Let $X = B \times B$, $p_X = pr_2 : B \times B \to B$ be the canonical projection to the second factor and $s_X = \Delta_B : B \hookrightarrow B \times B$ the diagonal. Then X is a fibrewise pointed space over *B*.
- (3) Let *G* be a topological group, *EG* the infinite join of *G* with right *G* action and BG = EG/G the classifying space of *G*. By considering *G* as a left *G* space by the adjoint action, we obtain a fibrewise pointed space $X = EG \times_G G$ with $p_X : EG \times_G G \to BG$ with section $s_X : BG \hookrightarrow EG \times_G \{e\} \subseteq EG \times_G G$.
- (4) Let *B* be a space, $X = \mathcal{L}(B)$ the space of free loops on *B*. Then $p_X : \mathcal{L}(B) \to B$ the evaluation map at $1 \in S^1 \subset \mathbb{C}$ is a fibration with section $s_X : B \to \mathcal{L}(B)$ given by the inclusion of constant loops. In view of Milnor's arguments, this example is homotopically equivalent to the example (3).

Definition 6.3. Let $\mathcal{P}_B(X) = \{\ell : [0, 1] \to X \mid \exists_{b \in B} \text{ s.t. } \forall_{t \in [0, 1]} p_X(\ell(t)) = b\}$ be the fibrewise free path space, $\mathcal{L}_B(X) = \{\ell \in \mathcal{P}_B(X) \mid \ell(1) = \ell(0)\}$ the fibrewise free loop space and $\mathcal{L}_B^B(X) = \{\ell \in \mathcal{P}_B(X) \mid \ell(1) = \ell(0) = s_X \circ p_X(\ell(0))\}$ the fibrewise pointed loop space. For any $m \ge 0$, we define an A_∞ structure of $\mathcal{L}_B^B(X)$ as follows.

- (1) $E_B^{m+1}(\mathcal{L}_B^B(X))$ as the homotopy pull-back in $\underline{\mathcal{I}}_B^B$ of $B \hookrightarrow \prod_{B=1}^{m+1} X \xleftarrow{} T_B^{m+1} X$,
- (2) $P_B^m(\mathcal{L}_B^B(X))$ as the homotopy pull-back in $\underline{\mathcal{I}}_B^B$ of $X \xrightarrow{\Delta_B^{m+1}} \prod_{B=1}^{m+1} X \xleftarrow{m+1}_{B=1} X$,
- (3) $e_m^X : P_B^m(\mathcal{L}_B^B(X)) \to X$ as the induced map from the inclusion $\overset{m+1}{T_B}X \hookrightarrow \overset{m+1}{\Pi_B}X$ by the diagonal $\Delta_B^{m+1} : X \to \overset{m+1}{\Pi_B}X$, and (4) $p_B^{\mathcal{L}_B^B(X)} : E_B^{m+1}(\mathcal{L}_B^B(X)) \to P_B^m(\mathcal{L}_B^B(X))$ as a map of fibrewise pointed spaces induced from the section $s_X : B \to X$, since the section $B \hookrightarrow \overset{m+1}{\Pi_B}X$ is nothing but the composition $\Delta_B^{m+1} \circ s_X : B \xrightarrow{s} X \xrightarrow{\Delta_B^{m+1}} \overset{m+1}{\Pi_B}X$.

We further investigate to understand an A_∞ structure in a fibrewise view point, using fibrewise constructions. Clearly,

these constructions are not exactly the Ganea-type fibre-cofibre constructions but the following.

Proposition 6.4 (Sakai). Let X be a fibrewise pointed space over B and $m \ge 0$. Then $P_B^{m+1}(\mathcal{L}_B^B(X))$ has the homotopy type of a push-out of $p_B^{\mathcal{L}_B^B(X)}: E_B^{m+1}(\mathcal{L}_B^B(X)) \to P_B^m(\mathcal{L}_B^B(X))$ and the projection $E_B^{m+1}(\mathcal{L}_B^B(X)) \to B$.

This is a direct consequence of the following lemma.

Lemma 6.5. Let (X, A) and (X', A') be fibrewise NDR-pairs of fibrewise pointed spaces over B and Z a fibrewise pointed space over B with fibrewise maps $f: Z \to X$ and $g: Z \to X'$. Then the homotopy pull-back $\Omega_{(f,g),k}$ of maps $(f,g): Z \to X \times_B X'$ and $k: X \times_B A' \cup A \times_B X' \hookrightarrow X \times_B X'$ has naturally the homotopy type of the reduced homotopy push-out $W = \Omega_{g,j} \cup_{p_2} \{\Omega_{(f,g),i\times j} \land_B (B \times J^+)\} \cup_{p_1} \Omega_{f,i}$ of $p_1: \Omega_{(f,g),i\times j} \to \Omega_{f,i}$ and $p_2: \Omega_{(f,g),i\times j} \to \Omega_{g,j}$, where J = [-1, 1] and

$$\begin{aligned} \Omega_{(f,g),k} &= \left\{ (z,\ell,\ell') \in Z \times_B \mathcal{P}_{B}(X) \times_B \mathcal{P}_{B}(X') \mid f(z) = \ell(0), \ g(z) = \ell'(0), \ \left(\ell(1),\ell'(1)\right) \in A \times_B X' \cup X \times_B A' \right\}, \\ \Omega_{(f,g),i \times j} &= \left\{ (z,\ell,\ell') \in \Omega_{(f,g),k} \mid \left(\ell(1),\ell'(1)\right) \in A \times_B A' \right\}, \\ \Omega_{f,i} &= \left\{ (z,\ell) \in Z \times_B \mathcal{P}_{B}(X) \mid f(z) = \ell(0), \ \ell(1) \in A \right\}, \end{aligned}$$

$$\Omega_{g,j} = \left\{ (z, \ell') \in Z \times_B \mathcal{P}_B(X') \mid g(z) = \ell'(0), \ \ell'(1) \in A' \right\}$$

 $p_1(z, \ell, \ell') = (z, \ell)$ and $p_2(z, \ell, \ell') = (z, \ell')$.

Outline of the proof. The proof of Lemma 6.5 is quite similar to that of Theorem 1.1 in Sakai [20] (which is based on Iwase [7]) by replacing (Y, B) in [20] by (X', A'), defining and using the following spaces.

$$\begin{split} \hat{W} &= \Omega_{(f,g),i \times \mathrm{id}_{X'}} \times \{-1\} \cup \{\Omega_{(f,g),i \times j} \times J\} \cup \Omega_{(f,g),\mathrm{id}_X \times j} \times \{1\} \subset \Omega_{(f,g),k} \times J, \\ \Omega_{(f,g),\mathrm{id}_X \times j} &= \{(z,\ell,\ell') \in \Omega_{(f,g),k} \mid (\ell(1),\ell'(1)) \in X \times_B A'\}, \\ \Omega_{(f,g),i \times \mathrm{id}_{X'}} &= \{(z,\ell,\ell') \in \Omega_{(f,g),k} \mid (\ell(1),\ell'(1)) \in A \times_B X'\}. \end{split}$$

The precise construction of homotopy equivalences and homotopies is identical to that in [20] and is left to the readers. \Box

Theorem 6.6. Let X be a fibrewise well-pointed space over B. Then the sequence $\{p_B^{\mathcal{L}^B_B(X)}: E_B^{m+1}(\mathcal{L}^B_B(X)) \to P_B^m(\mathcal{L}^B_B(X))\}$ gives a fibrewise pointed version of A_∞ -structure on the fibrewise pointed loop space $\mathcal{L}^B_B(X)$.

Thus in the case when X is a fibrewise well-pointed space over B, we assume that $P_B^m(\mathcal{L}_B^B(X))$ is an increasing sequence given by homotopy push-outs with a fibrewise fibration $e_m^X \colon P_B^m(\mathcal{L}_B^B(X)) \to X$ such that $e_1^X \colon \mathcal{S}_B^B(\mathcal{L}_B^B(X)) \to X$ is a fibrewise evaluation.

Example 6.7.

- (1) Let *X* be a fibrewise pointed space over *B* with $p_X = pr_2 : F \times B \to B$ the canonical projection and $s_X = in_2 : B \hookrightarrow F \times B$ the canonical inclusion. Then $\mathcal{L}^B_B(X) = \mathcal{L}(F) \times B$ is given by $p_{\mathcal{L}^B_B(X)} = pr_2 : \mathcal{L}(F) \times B \to B$ and $s_{\mathcal{L}^B_B(X)} = in_2 : B \hookrightarrow \mathcal{L}(F) \times B$.
- (2) Let $X = B \times B$ be a fibrewise pointed space over B with $p_X = pr_2 : B \times B \to B$ and $s_X = \Delta_B : B \hookrightarrow B \times B$ the diagonal. Then $\mathcal{L}^B_B(X) = \mathcal{L}(B)$ is the free loop space on B, $p_{\mathcal{L}^B_B(X)} : \mathcal{L}(B) \to B$ is the evaluation map at $1 \in S^1 \subset \mathbb{C}$ and $s_{\mathcal{L}^B_B(X)} : B \hookrightarrow \mathcal{L}(B)$ is the inclusion of constant loops.

Remark 6.8. When *E* is a cell-wise trivial fibration on a polyhedron *B* (see [12]), we can see that the canonical map $e_{\mathbb{Z}}^{E}: P_{B}^{\infty}(\mathcal{L}_{B}^{B}(E)) \to E$ is a homotopy equivalence by a similar arguments given in the proof of Theorem 2.9 of [12].

7. Fibrewise L-S categories of fibrewise pointed spaces

The fibrewise *pointed* L–S category of an fibrewise pointed space is first defined by James and Morris [13] as the least number (minus one) of open subsets which cover the given space and are contractible by a homotopy fixing the base point in each fibre (see also James [14] and Crabb and James [1]) and is redefined by Sakai in [19] as follows: let X be a fibrewise pointed space over B. For given $k \ge 0$, we denote by $\prod_{B}^{k+1} X$ the (k + 1)-fold fibrewise product and by $\prod_{B}^{k+1} X$ the (k + 1)-fold fibrewise fat wedge. Then $\operatorname{cat}_{B}^{B}(X) \le m$ if the (m+1)-fold fibrewise diagonal map $\Delta_{B}^{m+1} : X \to \prod_{B}^{m+1} X$ is compressible into the fibrewise fat wedge $\prod_{B}^{m+1} X$ in \underline{T}_{B}^{B} . If there is no such m, we say $\operatorname{cat}_{B}^{B}(X) = \infty$. Let us consider the case when $\operatorname{cat}_{B}^{B}(X) < \infty$. The definition of a fibrewise \overline{A}_{∞} structure yields the following criterion.

Theorem 7.1. Let X be a fibrewise pointed space over B and $m \ge 0$. Then $\operatorname{cat}_{B}^{B}(X) \le m$ if and only if $\operatorname{id}_{X} : X \to X$ has a lift to $P_{B}^{m}(\mathcal{L}_{B}^{B}(X)) \xrightarrow{e_{M}^{X}} X$ in $\underline{\mathcal{T}}_{B}^{B}$.

Proof. If $\operatorname{cat}^B_B(X) \leq m$, then the fibrewise diagonal $\Delta_B^{m+1} : X \to \prod_B^{m+1} X$ is compressible into the fibrewise fat wedge $\overset{m+1}{T_B} X \subset \prod_B^{m+1} X$ in $\underline{\underline{T}}^B_B$. Hence there is a map $\sigma : X \to P^m_B(\mathcal{L}^B_B(X))$ in $\underline{\underline{T}}^B_B$ such that $e^X_m \circ \sigma \sim_B 1_X$ in $\underline{\underline{T}}^B_B$. The converse is clear by the definition of $P^m_B(\mathcal{L}^B_B(X))$. \Box

In the rest of this section, we work within the category $\underline{\underline{\mathcal{T}}}_B$ of fibrewise *unpointed* spaces and maps between them. But we concentrate ourselves to consider its full subcategory $\underline{\underline{\mathcal{T}}}_B^*$ of all fibrewise pointed spaces, so in $\underline{\underline{\mathcal{T}}}_B^*$, we have more maps than in $\underline{\underline{\mathcal{T}}}_B^B$ while we have just the same objects as in $\underline{\underline{\mathcal{T}}}_B^B$.

Let *X* be a fibrewise pointed space over *B*. For given $k \ge 0$, we denote by $\prod_{B}^{k+1} X$ the (k+1)-fold fibrewise product and by $\prod_{B}^{k+1} X$ the (k+1)-fold fibrewise fat wedge. Then $\operatorname{cat}_{B}^{*}(X) \le m$ if the (m+1)-fold fibrewise diagonal map $\Delta_{B}^{m+1} : X \to \prod_{B}^{m+1} X$

is compressible into the fibrewise fat wedge $T_B^{m+1} X$ in $\underline{\mathcal{I}}_B^*$. If there is no such *m*, we say $\operatorname{cat}_B^*(X) = \infty$. Let us consider the case when $\operatorname{cat}_B^*(X) < \infty$. The definition of a fibrewise A_∞ structure yields the following.

Theorem 7.2. Let X be a fibrewise pointed space over B and $m \ge 0$. Then $\operatorname{cat}_{B}^{*}(X) \le m$ if and only if $\operatorname{id}_{X} : X \to X$ has a lift to $P_{B}^{m}(\mathcal{L}_{B}^{B}(X)) \xrightarrow{e_{m}^{X}} X$ in the category $\underline{\mathcal{T}}_{B}^{*}$.

Proof. If $\operatorname{cat}_{B}^{*}(X) \leq m$, then the fibrewise diagonal $\Delta_{B}^{m+1} : X \to \Pi_{B}^{m+1} X$ is compressible into the fibrewise fat wedge $\operatorname{T}_{B}^{m+1} X \subset \operatorname{T}_{B}^{m+1} X$ in $\underline{\mathcal{T}}_{B}^{*}$. Hence there is a map $\sigma : X \to P_{B}^{m}(\mathcal{L}_{B}^{B}(X))$ in $\underline{\mathcal{T}}_{B}^{*}$ such that $e_{m}^{X} \circ \sigma \sim_{B} 1_{X}$ in $\underline{\mathcal{T}}_{B}^{*}$. The converse is clear by the definition of $P_{B}^{m}(\mathcal{L}_{B}^{B}(X))$.

8. Upper and lower estimates

For *X* a fibrewise pointed space over *B*, we define a fibrewise version of Ganea's strong L–S category (see Ganea [6]) of *X* as $Cat_{B}^{B}(X)$ and also a fibrewise version of Fox's categorical length (see Fox [5] and Iwase [10]) of *X* as $catlen_{B}^{B}(X)$.

Definition 8.1. Let *X* be a fibrewise pointed space over *B*.

(1) $\operatorname{Cat}_{B}^{B}(X)$ is the least number $m \ge 0$ such that there exists a sequence $\{(X_{i}, h_{i}) \mid h_{i} : A_{i} \to X_{i-1}, 0 \le i \le m\}$ of pairs of space and map satisfying $X_{0} = B$ and $X_{m} \simeq_{B} X$ in $\underline{\mathcal{T}}_{B}^{B}$ with the following homotopy push-out diagram:

(2) catlen^B_B(X) is the least number $m \ge 0$ such that there exists a sequence $\{X_i \mid h_i : A_i \to X_{i-1}, 0 \le i \le m\}$ of spaces satisfying $X_0 = B$ and $X_m \simeq_B X$ in $\underline{\mathcal{T}}^B_B$ and that $\Delta_B : X_i \to X_i \times_B X_i$ is compressible into $X_i \times_B X_{i-1} \cup B \times_B X_i$ in $X_m \times_B X_m$.

A lower bound for the fibrewise L–S category of a fibrewise pointed space X over B can be described by a variant of cup length: since X is a fibrewise pointed space over B, there is a projection $p_X : X \to B$ with its section $s_X : B \to X$. Hence we can easily observe for any multiplicative cohomology theory h that

$$h^*(X) \cong h^*(B) \oplus h^*(X, B),$$

where we may identify $h^*(X, B)$ with the ideal ker $s_X^* : h^*(X) \to h^*(B)$.

Definition 8.2. For a fibrewise pointed space X over B and any multiplicative cohomology theory h, we define

 $\operatorname{cup}_{\mathsf{B}}^{\mathsf{B}}(X;h) = \operatorname{Max}\left\{m \ge 0 \mid \exists \left\{u_{1}, \ldots, u_{m} \in h^{*}(X,B)\right\} \text{ s.t. } u_{1} \cdots u_{m} \neq 0\right\},\$ $\operatorname{cup}_{\mathsf{B}}^{\mathsf{B}}(X) = \operatorname{Max}\left\{\operatorname{cup}_{\mathsf{B}}^{\mathsf{B}}(X;h) \mid h \text{ is a multiplicative cohomology theory}\right\}.$

We often denote $\operatorname{cup}_{B}^{B}(;h)$ by $\operatorname{cup}_{B}^{B}(;R)$ when $h^{*}() = H^{*}(;R)$, where *R* is a ring with unit.

Let us recall that the relationship between an A_{∞} -structure and a Lusternik–Schnirelmann category gives the key observation in [7–9].

On the other hand, Rudyak [17] and Strom [23] introduced a homotopy theoretical version of Fadell–Husseini's category weight, which can be translated into our setting as follows: for any fibrewise pointed space X over B, let $\{p_k^{\mathcal{L}_B^B(X)}: E_B^k(\mathcal{L}_B^B(X)) \rightarrow P_B^{k-1}(\mathcal{L}_B^B(X)); k \ge 1\}$ be the fibrewise A_∞ -structure of $\mathcal{L}_B^B(X)$ in the sense of Stasheff [22] (see also [11] for some more properties). Let h be a generalised cohomology theory.

Definition 8.3. For any $u \in h^*(X, B)$, we define

 $\operatorname{wgt}_{B}^{B}(u;h) = \operatorname{Min}\{m \ge 0 \mid (e_{m}^{X})^{*}(u) \neq 0\},\$

where e_m^X is the composition of fibrewise maps $P_B^m(\mathcal{L}_B^B(X)) \hookrightarrow P_B^\infty(\mathcal{L}_B^B(X)) \xrightarrow{e_\infty^X} X$.

Using this, we introduce some more invariants as follows.

Definition 8.4. For any fibrewise pointed space X over B, we define

$$\begin{split} & \mathsf{wgt}_{\pi}(X;h) = \mathsf{Max}\big\{\mathsf{wgt}_{\pi}(u;h) \mid u \in h^*(X,B)\big\}, \\ & \mathsf{wgt}_{\pi}(X) = \mathsf{Max}\big\{\mathsf{wgt}_{\pi}(X;h) \mid h \text{ is a generalised cohomology theory}\big\}, \\ & \mathsf{wgt}_{\mathsf{B}}^{\mathsf{B}}(X;h) = \mathsf{Max}\big\{\mathsf{wgt}_{\mathsf{B}}^{\mathsf{B}}(u;h) \mid u \in h^*(X,B)\big\}, \\ & \mathsf{wgt}_{\mathsf{B}}^{\mathsf{B}}(X) = \mathsf{Max}\big\{\mathsf{wgt}_{\mathsf{B}}^{\mathsf{B}}(X;h) \mid h \text{ is a generalised cohomology theory}\big\}. \end{split}$$

We often denote $wgt_{\pi}(;h)$ and $wgt_{B}^{B}(;h)$ by $wgt_{\pi}(;R)$ and $wgt_{B}^{B}(;R)$ respectively when $h^{*}() = H^{*}(;R)$, where *R* is a ring with unit. We define versions of module weight for a fibrewise pointed space over *B*.

Definition 8.5. For a fibrewise pointed space X over B, we define

(1) $\operatorname{Mwgt}_{B}^{B}(X; h) = \operatorname{Min}\{m \ge 0 \mid (e_{m}^{X})^{*} \text{ is a split mono of (unstable) } h^{*}h\text{-modules}\}$ for a generalised cohomology theory *h*. (2) $\operatorname{Mwgt}_{B}^{B}(X) = \operatorname{Max}\{\operatorname{Mwgt}_{B}^{B}(X; h) \mid h \text{ is a generalised cohomology theory}\}.$

Then we immediately obtain the following result.

Theorem 8.6. For any fibrewise pointed space X over B, we have

 $\operatorname{cup}_{\mathsf{B}}^{\mathsf{B}}(X) \leqslant \operatorname{wgt}_{\mathsf{B}}^{\mathsf{B}}(X) \leqslant \operatorname{Mwgt}_{\mathsf{B}}^{\mathsf{B}}(X) \leqslant \operatorname{cat}_{\mathsf{B}}^{\mathsf{B}}(X) \leqslant \operatorname{cat}_{\mathsf{B}}^{\mathsf{B}}(X) \leqslant \operatorname{Cat}_{\mathsf{B}}^{\mathsf{B}}(X).$

By Lemma 4.1, we have the following as a corollary of Theorem 1.13.

Corollary 8.7. For any space B having the homotopy type of a locally finite simplicial complex, we obtain

 $\mathcal{Z}_{\pi}(B) \leq \operatorname{wgt}_{\pi}(B) \leq \operatorname{Mwgt}_{B}^{B}(d(B)) \leq \mathcal{TC}(B) - 1 \leq \operatorname{catlen}_{B}^{B}(d(B)) \leq \operatorname{Cat}_{B}^{B}(d(B)).$

9. Higher Hopf invariants

For any fibrewise pointed map $f: \mathcal{S}_B^B(V) \to X$ in $\underline{\mathcal{T}}_B^B$, we have its adjoint $\mathrm{ad} f: V \to \mathcal{L}_B^B(X)$ such that

$$e_1^X \circ \mathcal{S}_B^B(\mathrm{ad} f) = f : \mathcal{S}_B^B(V) \to X.$$

If $\operatorname{cat}_{B}^{B}(X) \leq m$, then there is a fibrewise pointed map $\sigma: X \to P_{B}^{m} \mathcal{L}_{B}^{B}(X)$ in $\underline{\underline{\mathcal{I}}}_{B}^{B}$ such that

$$e_1^X \circ \sigma \simeq^B_B \operatorname{id}_X : X \to X.$$

Hence both the fibrewise maps $e_1^X \circ (\sigma \circ f)$ and $e_1^X \circ S_B^B(\operatorname{ad} f)$ are fibrewise pointed homotopic to f in $\underline{\mathcal{I}}_B^B$. Then we have

$$e_1^X \circ \left\{ \mathcal{S}_B^B(\mathrm{ad} f) - (\sigma \circ f) \right\} \simeq^B_B *_B$$

where \simeq_B^B denotes the fibrewise pointed homotopy and $*_B$ denotes the fibrewise trivial map in $\underline{\mathcal{I}}_B^B$. Thus there is a fibrewise pointed map $H_m^{\sigma}(f): \mathcal{S}_B^B(V) \to E_B^{m+1} \mathcal{L}_B^B(X)$ such that

$$p_m^{\mathcal{L}_B^B(X)} \circ H_m^{\sigma}(f) \simeq^B_B \mathcal{S}_B^B(\mathrm{ad}\, f) - (\sigma \circ f).$$

Definition 9.1. Let X be of $\operatorname{cat}_{\mathsf{B}}^{\mathsf{B}}(X) \leq m, m \geq 0$. For $f: \mathcal{S}_{\mathsf{B}}^{\mathsf{B}}(V) \to X$, we define

(1) $H_m^B(f) = \{H_m^\sigma(f) \mid e_1^X \circ \sigma \simeq_B^B \operatorname{id}_X\} \subset [\mathcal{S}_B^B(V), X],$ (2) $\mathcal{H}_m^B(f) = \{(\mathcal{S}_B^B)_*^\infty H_m^\sigma(f) \mid e_1^X \circ \sigma \simeq_B^B \operatorname{id}_X\} \subset \{\mathcal{S}_B^B(V), X\}_B^B,$

where, for two fibrewise spaces V and W, we denote by $\{V, W\}_{B}^{B}$ the homotopy set of fibrewise stable maps from V to W.

Appendix A. Fibrewise homotopy pull-backs and push-outs

In this paper, we are using A_{∞} structures which is constructed using tools in $\underline{\mathcal{I}}_B$ and $\underline{\mathcal{I}}_B^B$ – especially, finite homotopy limits and colimits, in other words, fibrewise homotopy pull-backs and push-outs in $\underline{\mathcal{I}}_B$ and $\underline{\mathcal{I}}_B^B$. We show in this section that such constructions are possible even when a fibrewise space has some singular fibres.

First we consider the fibrewise homotopy pull-backs in $\underline{\mathcal{I}}_B^B$: let *X*, *Y*, *Z* and *E* be fibrewise spaces over *B* and $p: E \to Z$ be a fibrewise fibration in $\underline{\mathcal{I}}_B$. For any fibrewise map $f: X \to Z$ in $\underline{\mathcal{I}}_B$, there exists a pull-back $X \xleftarrow{f^*p} f^*E \xrightarrow{\hat{f}} E$ of $X \xrightarrow{f} Z \xleftarrow{p} E$ as

$$f^*E = \left\{ (x, e) \in X \times_B E \mid f(x) = p(e) \right\}$$

a subspace of $X \times_B E$ together with fibrewise maps $f^*p: f^*E \to X$ and $\hat{f}: f^*E \to E$ given by restricting canonical projections:

$$(f^*p)(x, e) = x, \qquad \hat{f}(x, e) = e.$$

Theorem A.1. (*Crabb and James* [1]) Let $p: E \to Z$ be a fibrewise fibration. For any fibrewise map $f: W \to Z$ in $\underline{\mathcal{T}}_{B}$, $f^*p: f^*E \to W$ is also a fibrewise fibration.

Let $\pi_t: \mathcal{P}_B(Z) \to Z$ be fibrewise fibrations given by $\pi_t(\ell) = \ell(t)$, t = 0, 1 (see also [1]). Then π_0 and π_1 induce a map $\pi: \mathcal{P}_B(Z) \to Z \times_B Z$ to the fibre product of two copies of $p_Z: Z \to B$.

Proposition A.2. $\pi : \mathcal{P}_B(Z) \to Z \times_B Z$ is a fibrewise fibration.

Proof. For any fibrewise map $\phi: W \to \mathcal{P}_B(Z)$ and a fibrewise homotopy $H: W \times [0, 1] = W \times_B (I_B) \to Z \times_B Z$ such that $H(w, 0) = \pi \circ \phi(w)$ for $w \in W$, we define a fibrewise homotopy $\hat{H}: W \times [0, 1] = W \times_B (I_B) \to \mathcal{P}_B(Z)(\subset \mathcal{P}(Z))$ by

$$\hat{H}(w,s)(t) = \begin{cases} pr_0 \circ H(w,s), & \text{if } t = 0, \\ pr_0 \circ H(w,s - 3t), & \text{if } 0 < t < \frac{s}{3}, \\ \pi_0 \circ \phi(w), & \text{if } t = \frac{s}{3}, \\ \phi(w)(\frac{3t-s}{3-2s}), & \text{if } \frac{s}{3} < t < \frac{3-s}{3}, \\ \pi_1 \circ \phi(w), & \text{if } t = \frac{3-s}{3}, \\ pr_1 \circ H(w, 3t - 3 + s), & \text{if } \frac{3-s}{3} < t < 1 \\ pr_1 \circ H(w,s), & \text{if } t = 0 \end{cases}$$

for $(w, s) \in W \times_B I_B$ and $t \in [0, 1]$, where $\operatorname{pr}_k : Z \times_B Z \subset Z \times Z \to Z$ denotes the canonical projection given by $\operatorname{pr}_k(z_0, z_1) = z_k$, k = 0, 1 for any $(z_0, z_1) \in Z \times_B Z$. Then for any $(w, s) \in W \times_B I_B$, we clearly have

$$\hat{H}(w, 0)(t) = \phi(w)(t), \quad t \in [0, 1],$$

$$\left(\hat{H}(w, s)(0), \hat{H}(w, s)(1)\right) = \left(\mathrm{pr}_0 \circ H(w, s), \mathrm{pr}_1 \circ H(w, s)\right) = H(w, s),$$

and hence we have $\hat{H}(w, 0) = \phi(w)$ for any $w \in W$ and also $\pi \circ \hat{H} = H$. This implies that \hat{H} is a fibrewise homotopy of ϕ covering H. Thus π is a fibrewise fibration. \Box

This yields the following corollary.

Corollary A.3. For any fibrewise maps $f: X \to Z$ and $g: Y \to Z$ in $\underline{\mathcal{I}}_B$, the induced map $(f \times_B g)^* \pi : (f \times_B g)^* \mathcal{P}_B(Z) \to X \times_B Y$ is a fibrewise fibration in $\underline{\mathcal{I}}_B$.

We often call the fibrewise space $(f \times_B g)^* \mathcal{P}_B(Z)$ together with the projections $\operatorname{pr}_X \circ (f \times_B g)^* \pi : (f \times_B g)^* \mathcal{P}_B(Z) \to X$ and $\operatorname{pr}_Y \circ (f \times_B g)^* \pi : (f \times_B g)^* \mathcal{P}_B(Z) \to Y$ the homotopy pull-back in $\underline{\mathcal{I}}_B$ of $X \xrightarrow{f} Z \xleftarrow{g} Y$. We remark that the above construction can be performed within $\underline{\mathcal{I}}_B^B$ if X, Y, Z, f and g are all in $\underline{\mathcal{I}}_B^B$, so that we have a pointed version of a fibrewise homotopy pull-back:

Corollary A.4. For any fibrewise maps $f: X \to Z$ and $g: Y \to Z$ in $\underline{\underline{\mathcal{T}}}_{B}^{B}$, the induced map $(f \times_{B} g)^{*}\pi: (f \times_{B} g)^{*}\mathcal{P}_{B}(Z) \to X \times_{B} Y$ is a fibrewise fibration in $\underline{\mathcal{T}}_{B}^{B}$.

Second we consider the fibrewise homotopy push-outs in $\underline{\mathcal{I}}_B^B$: let *X*, *Y*, *Z* and *W* be fibrewise pointed spaces over *B* and $i: Z \to W$ be a fibrewise cofibration in $\underline{\mathcal{I}}_B^B$. For any fibrewise map $f: Z \to X$ over *B*, there exists a push-out $X \xrightarrow{f_*i} f_*W \xleftarrow{f} W$ of $X \xleftarrow{f} Z \xrightarrow{i} W$ as a quotient space of $X \amalg_B W$ by gluing f(z) with i(z) together with fibrewise maps f_*i and \check{f} induced from the canonical inclusions.

Theorem A.5. (*Crabb and James* [1]) Let $i : Z \to W$ be a fibrewise cofibration in $\underline{\underline{\mathcal{T}}}_B$ (or $\underline{\underline{\mathcal{T}}}_B^B$). For any fibrewise map $f : Z \to X$ in $\underline{\underline{\mathcal{T}}}_B$ (or $\underline{\mathcal{T}}_{B}^{B}$, resp.), $f_{*}i: X \to f_{*}W$ is also a fibrewise cofibration in $\underline{\mathcal{T}}_{B}$ (or $\underline{\mathcal{T}}_{B}^{B}$, resp.).

Let us recall that $\mathcal{I}_{B}^{B}(Z)$ is obtained from $\mathcal{I}_{B}(Z) = Z \times_{B} (B \times [0, 1]) = Z \times [0, 1]$ by identifying the subspace $s_{Z}(B) \times [0, 1]$ $[0,1] \subset Z \times [0,1]$ with $s_Z(B)$ by the canonical projection to the first factor: $s_Z(B) \times [0,1] \rightarrow s_Z(B)$. Let $\iota_t : Z \rightarrow \mathcal{I}_B^B(Z)$ be fibrewise cofibration in $\underline{\mathcal{I}}_B^B$ given by $\iota_t(z) = q(z, t)$, $0 \le t \le 1$, where $q: Z \times [0, 1] \to \mathcal{I}_B^B(Z)$ denotes the identification map. Then ι_0 and ι_1 induce a map $\iota: Z \vee_B Z \to \mathcal{I}^B_B(Z)$ from $Z \vee_B Z$ the push-out of two copies of $s_Z: B \to Z$.

Proposition A.6. $\iota: Z \vee_B Z \to \mathcal{I}^B_B(Z)$ is a fibrewise cofibration.

Proof. For any fibrewise map $\phi : \mathcal{I}_B^B(Z) \to W$ and a fibrewise homotopy $H : (Z \lor_B Z) \times [0, 1] = (Z \lor_B Z) \times_B I_B \to W$ such that $H(z, 0) = \phi \circ \iota(z)$ for $z \in Z \vee_B Z$, we define a fibrewise homotopy $\check{H} : \mathcal{I}_B^B(Z) \times [0, 1] = \mathcal{I}_B^B(Z) \times_B (I_B) \to W$ by

$$\check{H}(q(z,t),s) = \begin{cases} H(\mathrm{in}_{0}(z), s - 3t), & \text{if } 0 \leq t < \frac{s}{3}, \\ \phi \circ \iota_{0}(z), & \text{if } t = \frac{s}{3}, \\ \phi(q(z, \frac{3t-s}{3-2s})), & \text{if } \frac{s}{3} < t < \frac{3-s}{3}, \\ \phi \circ \iota_{1}(z), & \text{if } t = \frac{3-s}{3}, \\ H(\mathrm{in}_{1}(z), 3t - 3 + s), & \text{if } \frac{3-s}{3} < t \leq 1 \end{cases}$$

for $(q(z, t), s) \in \mathcal{I}_B^B(Z) \times_B I_B$, where $in_k : Z \hookrightarrow Z \vee_B Z$, k = 0, 1 denote the canonical inclusion given by $in_0(z) = (z, *_b)$ and in₁(*z*) = (*_{*b*}, *z*), *b* = $p_Z(z)$ for any $z \in Z$. Then for any $(q(z, t), s) \in \mathcal{I}_B^B(Z) \times_B I_B$, we clearly have

$$\check{H}(q(z,t))(0) = \phi(q(z,t)), \check{H}(q(z,0))(s) = H(in_0(z),s), \qquad \check{H}(q(z,1))(s) = H(in_1(z),s),$$

and hence we have $\check{H}(q(z,t))(0) = \phi(q(z,t))$ for any $q(z,t) \in \mathcal{I}_B^B(Z)$ and also $\check{H} \circ (\iota \times_B \mathbf{1}_{I_B}) = H$. This implies that \check{H} is a fibrewise homotopy of ϕ extending *H*. Thus ι is a fibrewise cofibration. \Box

This yields the following corollary.

Corollary A.7. For any fibrewise maps $f: Z \to X$ and $g: Z \to Y$ in $\underline{\mathcal{T}}^B_B$, the induced map $(f \lor_B g)_* \iota: X \lor_B Y \to (f \lor_B g)^* \mathcal{I}^B_B(Z)$ is a fibrewise cofibration in $\underline{\mathcal{T}}_{B}^{B}$.

We often call the fibrewise space $(f \lor_B g)^* \mathcal{I}_B^B(Z)$ together with the inclusions $(f \lor_B g)_* \iota \circ in_X : X \to (f \lor_B g)_* \mathcal{I}_B^B(Z)$ and $(f \lor_B g)_* \iota \circ \operatorname{in}_Y : Y \to (f \lor_B g)_* \mathcal{I}_B^B(Z)$ as homotopy push-out in $\underline{\mathcal{I}}_B^B$ of $X \xleftarrow{f} Z \xrightarrow{g} Y$. Quite similarly for a fibrewise space Z in $\underline{\mathcal{I}}_B$, we obtain a fibrewise cofibration $\hat{\iota} : Z \amalg Z = Z \times \{0\} \cup Z \times \{1\} \hookrightarrow Z \times [0, 1] =$

 $\mathcal{I}_B(Z)$. Thus we have the following.

Corollary A.8. For any fibrewise maps $f: Z \to X$ and $g: Z \to Y$ in $\underline{\mathcal{T}}_B$, the induced map $(f \amalg g)_* \hat{\iota}: X \amalg Y \to (f \amalg g)^* \mathcal{I}_B(Z)$ is a fibrewise cofibration in \underline{T}_B .

Thus we also have an unpointed version of a fibrewise homotopy push-out.

References

- [1] M.C. Crabb, I.M. James, Fibrewise Homotopy Theory, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 1998.
- [2] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211-221.
- [3] M. Farber, Topology of robot motion planning, in: Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, in: NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185-230.
- [4] M. Farber, M. Grant, Symmetric motion planning, in: Topology and Robotics, in: Contemp. Math., vol. 438, Amer. Math. Soc., Providence, RI, 2007, pp. 85-104.
- [5] R.H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941) 333-370.
- [6] T. Ganea, Lusternik–Schnirelmann category and strong category, Illinois J. Math. 11 (1967) 417-427.
- [7] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998) 623-634.
- [8] N. Iwase, A_{∞} -method in Lusternik–Schnirelmann category, Topology 41 (2002) 695–723.
- [9] N. Iwase, Lusternik–Schnirelmann category of a sphere-bundle over a sphere, Topology 42 (2003) 701-713.
- [10] N. Iwase, Categorical length, relative L-S category and higher Hopf invariants, preprint.
- [11] N. Iwase, M. Mimura, Higher homotopy associativity, in: Algebraic Topology, Arcata, CA, 1986, in: Lecture Notes in Math., vol. 1370, Springer-Verlag, Berlin, 1989, pp. 193-220.
- [12] N. Iwase, M. Sakai, Functors on the category of quasi-fibrations, Topology Appl. 155 (2008) 1403-1409.

- [13] I.M. James, J.R. Morris, Fibrewise category, Proc. Roy. Soc. Edinburgh. Sect. A 119 (1991) 177-190.
- [14] I.M. James, Introduction to fibrewise homotopy theory, in: Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 169-194.
- [15] I.M. James, Lusternik-Schnirelmann category, in: Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 1293-1310.
- [16] J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959) 272–280.
- [17] Y.B. Rudyak, On category weight and its applications, Topology 38 (1999) 37–55.
- [18] Y.B. Rudyak, On analytical applications of stable homotopy (the Arnold conjecture, critical points), Math. Z. 230 (1999) 659-672.
- [19] M. Sakai, The functor on the category of quasi-fibrations, DSc thesis, Kyushu University, 1999.
- [20] M. Sakai, A proof of the homotopy push-out and pull-back lemma, Proc. Amer. Math. Soc. 129 (2001) 2461-2466.
- [21] A.S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. Ser. 2 55 (1966) 49-140.
- [22] J.D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc. 108 (1963) 275-292, 293-312.
- [23] J. Strom, Essential category weight and phantom maps, in: Cohomological Methods in Homotopy Theory, Bellaterra, 1998, in: Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 409–415.
- [24] G.W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math., vol. 61, Springer-Verlag, Berlin, 1978.