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Topological complexity T C(B) of a space B is introduced by M. Farber to measure how
much complex the space is, which is first considered on a configuration space of a motion
planning of a robot arm. We also consider a stronger version T C M(B) of topological
complexity with an additional condition: in a robot motion planning, a motion must be
stasis if the initial and the terminal states are the same. Our main goal is to show the
equalities T C(B) = cat∗B(d(B)) + 1 and T C M(B) = catB

B(d(B)) + 1, where d(B) = B × B
is a fibrewise pointed space over B whose projection and section are given by pd(B) =
pr2 : B × B → B the canonical projection to the second factor and sd(B) = �B : B → B × B
the diagonal. In addition, our method in studying fibrewise L–S category is able to treat a
fibrewise space with singular fibres.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We say a pair of spaces (X, A) is an NDR pair or A is an NDR subset of X , if the inclusion map is a (closed) cofibration,
in other words, the inclusion map has the (strong) Strøm structure (see p. 22 in G. Whitehead [24]). When the set of the
base point of a space is an NDR subset, the space is called well-pointed.

Let us recall the definition of a sectional category (see James [14]) which is originally defined and called by Schwarz
‘genus’.

Definition 1.1. (Schwarz [21], James [15]) For a fibration p : E → X , the sectional category secat(p) (= one less than the
Schwarz genus Genus(p)) is the minimal number m � 0 such that there exists a cover of X by (m + 1) open subsets Ui ⊂ X
each of which admits a continuous section si : Ui → E .

The topological complexity of a robot motion planning is first introduced by M. Farber [2] in 2003 to measure the
discontinuity of a robot motion planning algorithm searching also the way to minimise the discontinuity. At a more general
view point, Farber defined a numerical invariant T C(B) of any topological space B: let P (B) be the space of all paths in B .
Then there is a Serre path fibration π : P (B) → B × B given by π(�) = (�(0), �(1)) for � ∈ P (B).

Definition 1.2 (Farber). For a space B , the topological complexity T C(B) is the minimal number m � 1 such that there exists
a cover of B × B by m open subsets Ui each of which admits a continuous section si : Ui → P (B) for π : P (B) → B × B .

By definition, we can observe that the topological complexity is nothing but the Schwarz genus or the sectional category.
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Farber has further introduced a new invariant restricting motions by giving two additional conditions on the section
s : U → P (B) (see Farber [3]).

(1) s(b,b) = cb the constant path at b for any b ∈ B ,
(2) s(b1,b2) = s(b2,b1)

−1 if (b1,b2) ∈ U .

It gives a stronger invariant than the topological complexity, and the Z/2-equivariant theory must be applied as in Farber
and Grant [4]. This new topological invariant, in turn, suggests us another motion planning under the condition that a
motion is stasis if the initial and the terminal states are the same. Let us state more precisely.

Definition 1.3. For a space B , the ‘monoidal’ topological complexity T C M(B) is the minimal number m � 1 such that there
exists a cover of B × B by m open subsets Ui ⊃ �(B) each of which admits a continuous section si : Ui → P (B) for the Serre
path fibration π : P (B) → B × B satisfying si(b,b) = cb for any b ∈ B .

Remark 1.4. This new topological complexity T C M is not a homotopy invariant, in general. However, it is a homotopy
invariant if we restrict our working category to the category of a space B such that the pair (B × B,�(B)) is NDR.

On the other hand, a fibrewise pointed L–S category of a fibrewise pointed space is introduced and studied by James and
Morris [13]. Let us recall the definition:

Definition 1.5. (James and Morris [13])

(1) Let X be a fibrewise pointed space over B . The fibrewise pointed L–S category catB
B(X) is the minimal number m � 0

such that there exists a cover of X by (m + 1) open subsets Ui ⊃ sX (B) each of which is fibrewise null-homotopic in X
by a fibrewise pointed homotopy. If there is no such m, we say catB

B(X) = ∞.
(2) Let f : Y → X be a fibrewise pointed map over B . The fibrewise pointed L–S category catB

B( f ) is the minimal number
m � 0 such that there exists a cover of Y by (m + 1) open subsets Ui ⊃ sY (B), where the restriction f |Ui to each subset
is fibrewise compressible into sX (B) in X by a fibrewise pointed homotopy. If there is no such m, we say catB

B( f ) = ∞.

To describe our main result, we further introduce a new unpointed version of fibrewise L–S category: the fibrewise L–S
category catB( ) of a fibrewise unpointed space is also defined by James and Morris [13] as the minimum number (minus
one) of open subsets which cover the given space and are fibrewise null-homotopic (see also James [14] and Crabb and
James [1]). In this paper, we give a new version of a fibrewise unpointed L–S category of a fibrewise pointed space as
follows:

Definition 1.6.

(1) Let X be a fibrewise pointed space over B . The fibrewise unpointed L–S category cat∗B(X) is the minimal number m � 0
such that there exists a cover of X by (m + 1) open subsets Ui each of which is fibrewise compressible into sX (B) in X
by a fibrewise homotopy. If there is no such m, we say cat∗B(X) = ∞.

(2) Let f : Y → X be a fibrewise pointed map over B . The fibrewise unpointed L–S category cat∗B( f ) is the minimal number
m � 0 such that there exists a cover of Y by (m + 1) open subsets Ui , where the restriction f |Ui to each subset is
fibrewise compressible into sX (B) in X by a fibrewise homotopy. If there is no such m, we say cat∗B( f ) = ∞.

For a given space B , we define a fibrewise pointed space d(B) by d(B) = B × B with pd(B) = pr2 : B × B → B and
sd(B) = �B : B → B × B the diagonal. One of our main goals of this paper is to show the following theorem.

Theorem 1.7. For a space B, we have the following equalities.

(1) T C(B) = cat∗B(d(B)) + 1.

(2) T C M(B) = catB
B(d(B)) + 1.

Farber and Grant have also introduced lower bounds for the topological complexity by using the cup length and category
weight (see Rudyak [17,18] for example) on the ideal of zero-divisors, i.e., the kernel of �∗ : H∗(B × B; R) → H∗(B; R).

Definition 1.8. (Farber [2] and Farber and Grant [4]) For a space B and a ring R � 1, the zero-divisors cup-length Z R(B) and
the TC-weight wgtπ (u; R) for u ∈ I = ker�∗ : H∗(B × B; R) → H∗(B; R) are defined as follows.

(1) Z R(B) = Max{m � 0 | H∗(B × B; R) ⊃ Im 	= 0}.
(2) wgtπ (u; R) = Max{m � 0 | ∀ f : Y → B × B (secat( f ∗π) < m), f ∗(u) = 0}.
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In the category T B
B of fibrewise pointed spaces with base space B and maps between them, we also have corresponding

definitions.

Definition 1.9. For a fibrewise pointed space X over B and a ring R � 1 and u ∈ I = H∗(X, B; R) ⊂ H∗(X; R), we define

(1) cupB
B(X; R) = Max{m � 0 | ∃{u1, . . . , um ∈ H∗(X, B; R)} s.t. u1 · · · um 	= 0}.

(2) wgtB
B(u; R) = Max{m � 0 | ∀ f : Y → X ∈ T B

B (catB
B( f ) < m), f ∗(u) = 0}.

This immediately implies the following.

Theorem 1.10. For a space B, we have Z R(B) = cupB
B(d(B); R) for a ring R � 1.

Motivating by this equality, we proceed to obtain the following result.

Theorem 1.11. For any space B, any element u ∈ H∗(B × B,�(B); R) and a ring R � 1, we have wgtπ (u; R) = wgtB
B(u; R).

Let us consider one technical condition on a fibrewise pointed space:

Theorem 1.12. For any space B having the homotopy type of a locally finite simplicial complex, we may assume that d(B) is fibrewise
well-pointed up to homotopy.

The following is the main result of our paper.

Theorem 1.13. For any fibrewise well-pointed space X over B, we have catB
B(X) = cat∗B(X). So, if B is a locally finite simplicial complex,

we have T C(B) = T C M(B) = catB
B(d(B)) + 1.

In [19] Sakai showed in his study of the fibrewise pointed L–S category of a fibrewise well-pointed spaces, using White-
head style definition, that we can utilise A∞ methods used in the study of L–S category (see Iwase [7,8]). Let us state the
Whitehead style definitions of fibrewise L–S categories following [19].

Definition 1.14. Let X be a fibrewise well-pointed space over B . The fibrewise pointed L–S category catB
B(X) is the minimal

number m � 0 such that the (m + 1)-fold fibrewise diagonal �m+1
B : X → m+1

�B X is compressible into the fibrewise fat wedge
m+1
TB X in T B

B . If there is no such m, we say catB
B(X) = ∞.

We remark that this new definition coincides with the ordinary one, if the total space X is a finite simplicial complex.
The above Whitehead-style definition allows us to define the module weight, cone length and categorical length, and

moreover, to give their relationship as in Section 8. To show that, we need a criterion given by fibrewise A∞ structure on
the fibrewise loop space (see Sections 6, 7).

2. Proof of Theorem 1.7

First, we show the equality T C M(B) = catB
B(d(B)) + 1: assume T C M(B) = m + 1, m � 0 and that there are an open cover⋃m

i=0 Ui = B × B and a series of sections si : Ui → P (B) of π : P (B) → d(B) satisfying si(b,b) = cb for b ∈ B , since we are
considering monoidal topological complexity. Then each Ui is fibrewise compressible relative to �(B) into �(B) ⊂ B × B =
d(B) by a homotopy Hi : Ui × [0,1] → B × B given by the following:

Hi(a,b; t) = (
si(a,b)(t),b

)
, (a,b) ∈ Ui, t ∈ [0,1],

where we can easily check that Hi gives a fibrewise compression of Ui relative to �(B) into �(B) ⊂ B × B . Since
⋃

i=0 Ui =
B × B = d(B), we obtain catB

B(d(B)) � m, and hence we have catB
B(d(B)) + 1 � T C M(B).

Conversely assume that catB
B(d(B)) = m, m � 0 and there is an open cover

⋃m
i=0 Ui = d(B) of d(B) = B × B where Ui

is fibrewise compressible relative to �(B) into �(B) ⊂ d(B) = B × B: let us denote the compression homotopy of Ui by
Hi(a,b; t) = (σi(a,b; t),b) for (a,b) ∈ Ui and t ∈ [0,1], where σi(a,b;0) = a and σi(a,b;1) = b. Hence we can define a
section si : Ui → P (B) by the formula

si(a,b)(t) = σi(a,b; t), t ∈ [0,1].
Since

⋃
i=0 Ui = B × B , we obtain T C M(B) � m + 1 and hence we have T C M(B) � catB

B(d(B)) + 1. Thus we have T C M(B) =
catB(d(B)) + 1.
B
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Second, we show the equality T C(B) = cat∗B(d(B)) + 1: assume T C(B) = m + 1, m � 0 and that there are an open cover⋃m
i=0 Ui = B × B and a section si : Ui → P (B) of π : P (B) → d(B). Then each Ui is fibrewise compressible into �(B) ⊂

B × B = d(B) by a homotopy Hi : Ui × [0,1] → B × B which is given by

Hi(a,b; t) = (
s(a,b)(t),b

)
, (a,b) ∈ Ui, t ∈ [0,1],

where we can easily check that H gives a fibrewise compression of Ui into �(B) ⊂ B × B = d(B). Since
⋃

i=0 Ui = B × B =
d(B), we obtain cat∗B(d(B)) � m, and hence we have cat∗B(d(B)) + 1 � T C(B).

Conversely assume that cat∗B(d(B)) = m, m � 0 and there is an open cover
⋃m

i=0 Ui = d(B) of d(B) = B × B where Ui is
fibrewise compressible into �(B) ⊂ B × B = d(B): the compression homotopy is described as Hi(a,b; t) = (σi(a,b; t),b) for
(a,b) ∈ Ui and t ∈ [0,1], such that σi(a,b;0) = a and σi(a,b;1) = b. Hence we can define a section si : Ui → P (B) by the
formula

si(a,b)(t) = σi(a,b; t), t ∈ [0,1].
Since

⋃
i=0 Ui = B × B , we obtain T C(B) � m + 1 and hence we have T C(B) � cat∗B(d(B)) + 1. Thus we have T C(B) =

cat∗B(d(B)) + 1.

3. Proof of Theorem 1.11

Assume that wgtB
B(u; R) = m, where u ∈ H∗(B × B,�(B)) and f : Y → d(B) = B × B is a map of secat( f ∗π) < m. Then

there is an open cover
⋃m

i=1 Ui = Y and a series of maps {σi : Ui → P (B); 1 � i � m} satisfying π �σi = f |Ui . Let Ŷ = Y  B
with projection pŶ and section sŶ given by

pŶ |Y = pY , pŶ |B = idB and sŶ : B ↪→ Y  B = Ŷ .

Then we can extend f to a map f̂ : Ŷ → d(B) by the formula

f̂ |Y = f , f̂ |B = sd(B) = �.

By putting Û i = Ui  B which is open in Ŷ , we obtain an open cover
⋃m

i=1 Û i = Ŷ and a series of maps σ̂i : Û i → P (B)

satisfying π � σ̂i = f̂ |Û i
:

σ̂i |Ui = σi, σ̂i |B = sP (B).

Hence there is a fibrewise homotopy Φi : Û i × [0,1] → d(B) such that Φi(y,0) = f̂ (y) and Φi(y,1) ∈ �(B) given by the
following formula

Φi(y, t) = (
σ̂i(y)(t), σ̂i(y)(1)

)
, (y, t) ∈ Û i×[0,1],

so that we have Φi(y,0) = (σ̂i(y)(0), σ̂i(y)(1)) = π � σ̂i(y) = f̂ (y) and Φi(y,1) = (σ̂i(y)(1), σ̂i(y)(1)) ∈ �(B). Moreover,
for any (b, t) ∈ B × [0,1], we have Φi(b, t) = (σ̂i(b)(t), σ̂i(b)(1)) = (sP (B)(t), sP (B)(1)) = (b,b). Thus Φi gives a fibrewise

pointed compression homotopy of f̂ |Û i
into �(B). Then it follows that catB

B( f̂ ) < m and hence we obtain f ∗(u) = 0 and

wgtπ (u; R) � m. Thus we obtain wgtπ (u; R) � m = wgtB
B(u; R).

Conversely assume that wgtπ (u; R) = m, where u ∈ H∗(B × B,�(B)) and f : Y → B × B such that catB
B( f ) < m. Then

there exist an open covering
⋃m

i=1 Ui = Y with Ui ⊃ sY (B) and a sequence of fibrewise homotopies {φi : Ui ×[0,1] → B × B}
such that φi(y,0) = f |Ui (y), φi(y,1) ∈ �(B) and pr2 � φi(y, t) = pr2 � f (y) for (y, t) ∈ Ui × [0,1]. Hence there is a sequence
of maps {σi : Ui → P (B)} given by

σi(y)(t) = pr1 � φi(y, t), y ∈ Ui, t ∈ [0,1]
such that π � σi(y) = (pr1 � φi(y,0),pr1 � φi(y,1)) = f (y) since pr2 � φi(y, t) = pr2 � f (y) for (y, t) ∈ Ui × [0,1]. Thus we
obtain secat( f ∗π) < m, and hence f ∗(u) = 0. This implies wgtB

B(u; R) � m = wgtπ (u; R) and hence wgtB
B(u; R) = wgtπ (u; R).

4. Proof of Theorem 1.12

The proof of Lemma 2 in §2 of Milnor [16] implies the following:

Lemma 4.1. The pair (B × B,�(B)) is an NDR-pair.

Proof. For each vertex β of B , let Vβ be the star neighbourhood in B and V = ⋃
β Vβ × Vβ ⊂ B × B . Then the closure

V̄ = ⋃
β V̄β × V̄β is a subcomplex of B × B . For the barycentric coordinates {ξβ} and {ηβ} of x and y, resp., we see that

(x, y) ∈ V if and only if
∑

β Min(ξβ ,ηβ) > 0 and that
∑

β Min(ξβ,ηβ) = 1 if and only if the barycentric coordinates of x and
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y are the same, or equivalently, (x, y) ∈ �(B). Hence we can define a continuous map v : B × B → [−1,1] by the following
formula

v(x, y) =
{

2
∑

β Min(ξβ,ηβ) − 1, if (x, y) ∈ V̄ ,

−1, if (x, y) /∈ V .

Then we have that v−1(1) = �(B). Let U = v−1((0,1]) be an open neighbourhood of �(B). Using Milnor’s map s, we obtain
a pair of maps (u,h) as follows:

u(x, y) = Min
{

1,1 − v(x, y)
}

and

h(x, y, t) = (
s(x, y)

(
Min

{
t, w(x, y)

})
, y

)
,

where w(x, y) = u(x, y) + v(x, y) = Min{1,1 + v(x, y)}. Note that w(x, y) = 1 if (x, y) ∈ U and that w(x, y) = 0 if
(x, y) /∈ V . Then u−1(0) = �(B), u−1([0,1)) = U and h(x, y,1) = (y, y) ∈ �(B) if (x, y) ∈ U . Moreover, pr2 � h(x, y, t) = y
and h(x, x, t) = (s(x, x)(t), x) = (x, x) for any x, y ∈ B and t ∈ [0,1]. Thus the data (u,h) gives the fibrewise Strøm structure
on (B × B,�(B)). �
5. Proof of Theorem 1.13

Let X be a fibrewise well-pointed space over B and X̂ the fibrewise pointed space obtained from X by giving a fibrewise
whisker. More precisely, we define X̂ as the mapping cylinder of sX ,

X̂ = X ∪sX B × [0,1], X � sX (b) ∼ (b,0) ∈ B × [0,1] for any b ∈ B,

with projection p X̂ and section s X̂ given by the formulas

p X̂ |X = p X , p X̂ |B×[0,1](b, t) = b, for (b, t) ∈ B × [0,1],
sX̂ (b) = (b,1) ∈ B × [0,1] ⊂ X̂ .

Then by the definition of Strøm structure, X is fibrewise pointed homotopy equivalent to X̂ the fibrewise whiskered space
over B . So we have catB

B(X) = catB
B( X̂) and cat∗B(X) = cat∗B( X̂).

Assume that catB
B(X) = m � 0. Then it is clear by definition that cat∗B(X) � m = catB

B(X).
Conversely assume that cat∗B(X) = m � 0. Then there is an open cover

⋃m
i=0 Ui = X such that Ui is compressible into

sX (B) ⊂ X . Hence there is a fibrewise homotopy Φi : Ui × [0,1] → X such that Φi(x,0) = x, Φi(x,1) = sX (p X (x)) and p X �
Φi(x, t) = p X (x). We define Û i as follows:

Û i = Ui ∪sX (sX )−1(Ui) × [0,1] ∪ B ×
(

2

3
,1

]
.

We also define a fibrewise pointed homotopy Φ̂i : Û i × [0,1] → X̂ as follows:

Φ̂i(x̂, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φi(x, t), x̂ = x ∈ X,

Φi(sX (b), t − 3s), x̂ = (b, s) ∈ (sX )−1(Ui) × (0, t
3 ),

sX (b), x̂ = (b, t
3 ), b ∈ (sX )−1(Ui),

(b, 6s−2t
6−3t ), x̂ = (b, s) ∈ (sX )−1(Ui) × ( t

3 , 2
3 ),

(b, 2
3 ), x̂ = (b, 2

3 ), b ∈ (sX )−1(Ui),

(b, s), x̂ = (b, s) ∈ B × ( 2
3 ,1].

It is then easy to see that Û i ’s cover the entire X , and hence we have catB
B( X̂) � m = cat∗B(X). Thus catB

B(X) � cat∗B(X) and
hence catB

B(X) = cat∗B(X). In particular, we have T C(B) = T C M(B) for a locally finite simplicial complex B .

6. Fibrewise A∞ structures

From now on, we work in the category T B
B . For any X a fibrewise pointed space over B , we denote by p X : X → B its

projection and by sX : B → X its section.
We say that a pair (X, A) of fibrewise pointed spaces over B is a fibrewise NDR-pair or that A is a fibrewise NDR subset

of X , if the inclusion map A ↪→ X is a fibrewise cofibration, in other words, the inclusion has the fibrewise (strong) Strøm
structure (see Crabb and James [1]). Since B is the zero object in T B

B , for any given fibrewise pointed space X over B , we

always have a pair (X, B) in T B
B , where we regard sX (B) = B . When the pair (X, B) is fibrewise NDR, the space X is called

fibrewise well-pointed.
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Proposition 6.1. (Crabb and James [1])

(1) If (X, A) and (X ′, A′) are fibrewise NDR-pairs, then so is (X, A) ×B (X ′, A′) = (X ×B X ′, X ×B A′ ∪ A ×B X ′).

(2) If (X, A) is a fibrewise NDR-pair, then so is (
m
�B X,

m
TB(X, A)), which is defined by induction for all m � 1:

( 1
�B X,

1
TB(X, A)

)
= (X, A),

(m+1
�B X,

m+1
TB (X, A)

)
=

(m
�B X,

m
TB(X, A)

)
×B (X, A).

If X is a fibrewise pointed space over B , then by taking A = B , we obtain a fibrewise subspace
m+1
TB (X, B) of

m+1
TB X , which

is called an (m + 1)-fold fibrewise fat-wedge of X , and is often denoted by
m+1
TB X . In addition, the pair (

m+1
�B X,

m+1
TB X) is a

fibrewise NDR-pair for all m � 0, if X is fibrewise well-pointed.

Example 6.2.

(1) Let X be a fibrewise pointed space over B with p X = pr2 : X = F × B → B the canonical projection to the second factor
and sX = in2 : B ↪→ F × B = E the canonical inclusion to the second factor. Then X is a fibrewise pointed space over B .

(2) Let X = B × B , p X = pr2 : B × B → B be the canonical projection to the second factor and sX = �B : B ↪→ B × B the
diagonal. Then X is a fibrewise pointed space over B .

(3) Let G be a topological group, EG the infinite join of G with right G action and BG = EG/G the classifying space of G .
By considering G as a left G space by the adjoint action, we obtain a fibrewise pointed space X = EG ×G G with
p X : EG ×G G → BG with section sX : BG ↪→ EG ×G {e} ⊆ EG ×G G .

(4) Let B be a space, X = L(B) the space of free loops on B . Then p X : L(B) → B the evaluation map at 1 ∈ S1 ⊂ C is
a fibration with section sX : B → L(B) given by the inclusion of constant loops. In view of Milnor’s arguments, this
example is homotopically equivalent to the example (3).

Definition 6.3. Let PB(X) = {� : [0,1] → X | ∃b∈B s.t. ∀t∈[0,1] p X (�(t)) = b} be the fibrewise free path space, LB(X) = {� ∈
PB(X) | �(1) = �(0)} the fibrewise free loop space and L B

B(X) = {� ∈ PB(X) | �(1) = �(0) = sX � p X (�(0))} the fibrewise
pointed loop space. For any m � 0, we define an A∞ structure of L B

B(X) as follows.

(1) Em+1
B (L B

B(X)) as the homotopy pull-back in T B
B of B ↪→ m+1

�B X ←↩
m+1
TB X ,

(2) Pm
B (L B

B(X)) as the homotopy pull-back in T B
B of X

�m+1
B−−−−→ m+1

�B X ←↩
m+1
TB X ,

(3) e X
m : Pm

B (L B
B(X)) → X as the induced map from the inclusion

m+1
TB X ↪→ m+1

�B X by the diagonal �m+1
B : X → m+1

�B X , and

(4) p
L B

B (X)

B : Em+1
B (L B

B(X)) → Pm
B (L B

B(X)) as a map of fibrewise pointed spaces induced from the section sX : B → X , since

the section B ↪→ m+1
�B X is nothing but the composition �m+1

B � sX : B s−→ X
�m+1

B−−−−→ m+1
�B X .

We further investigate to understand an A∞ structure in a fibrewise view point, using fibrewise constructions. Clearly,
these constructions are not exactly the Ganea-type fibre–cofibre constructions but the following.

Proposition 6.4 (Sakai). Let X be a fibrewise pointed space over B and m � 0. Then Pm+1
B (L B

B(X)) has the homotopy type of a

push-out of p
L B

B (X)

B : Em+1
B (L B

B(X)) → Pm
B (L B

B(X)) and the projection Em+1
B (L B

B(X)) → B.

This is a direct consequence of the following lemma.

Lemma 6.5. Let (X, A) and (X ′, A′) be fibrewise NDR-pairs of fibrewise pointed spaces over B and Z a fibrewise pointed space
over B with fibrewise maps f : Z → X and g : Z → X ′ . Then the homotopy pull-back Ω( f ,g),k of maps ( f , g) : Z → X ×B X ′ and
k : X ×B A′ ∪ A ×B X ′ ↪→ X ×B X ′ has naturally the homotopy type of the reduced homotopy push-out W = Ωg, j ∪p2 {Ω( f ,g),i× j ∧B

(B × J+)} ∪p1 Ω f ,i of p1 :Ω( f ,g),i× j → Ω f ,i and p2 :Ω( f ,g),i× j → Ωg, j , where J = [−1,1] and

Ω( f ,g),k = {
(z, �, �′) ∈ Z ×B PB(X) ×B PB(X ′)

∣∣ f (z) = �(0), g(z) = �′(0),
(
�(1), �′(1)

) ∈ A ×B X ′ ∪ X ×B A′},
Ω( f ,g),i× j = {

(z, �, �′) ∈ Ω( f ,g),k
∣∣ (

�(1), �′(1)
) ∈ A ×B A′},

Ω f ,i = {
(z, �) ∈ Z ×B PB(X)

∣∣ f (z) = �(0), �(1) ∈ A
}
,
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Ωg, j = {
(z, �′) ∈ Z ×B PB(X ′)

∣∣ g(z) = �′(0), �′(1) ∈ A′},
p1(z, �, �′) = (z, �) and p2(z, �, �′) = (z, �′).

Outline of the proof. The proof of Lemma 6.5 is quite similar to that of Theorem 1.1 in Sakai [20] (which is based on Iwase
[7]) by replacing (Y , B) in [20] by (X ′, A′), defining and using the following spaces.

Ŵ = Ω( f ,g),i×idX ′ × {−1} ∪ {Ω( f ,g),i× j × J } ∪ Ω( f ,g),idX × j × {1} ⊂ Ω( f ,g),k × J ,

Ω( f ,g),idX × j = {
(z, �, �′) ∈ Ω( f ,g),k

∣∣ (
�(1), �′(1)

) ∈ X ×B A′},
Ω( f ,g),i×idX ′ = {

(z, �, �′) ∈ Ω( f ,g),k
∣∣ (

�(1), �′(1)
) ∈ A ×B X ′}.

The precise construction of homotopy equivalences and homotopies is identical to that in [20] and is left to the readers. �
Theorem 6.6. Let X be a fibrewise well-pointed space over B. Then the sequence {p

L B
B (X)

B : Em+1
B (L B

B(X)) → Pm
B (L B

B(X))} gives a
fibrewise pointed version of A∞-structure on the fibrewise pointed loop space L B

B(X).

Thus in the case when X is a fibrewise well-pointed space over B , we assume that Pm
B (L B

B(X)) is an increasing sequence
given by homotopy push-outs with a fibrewise fibration e X

m : Pm
B (L B

B(X)) → X such that e X
1 : S B

B (L B
B(X)) → X is a fibrewise

evaluation.

Example 6.7.

(1) Let X be a fibrewise pointed space over B with p X = pr2 : F × B → B the canonical projection and sX = in2 : B ↪→
F × B the canonical inclusion. Then L B

B(X) = L(F ) × B is given by pL B
B (X) = pr2 : L(F ) × B → B and sL B

B (X) = in2 : B ↪→
L(F ) × B .

(2) Let X = B × B be a fibrewise pointed space over B with p X = pr2 : B × B → B and sX = �B : B ↪→ B × B the diagonal.
Then L B

B(X) = L(B) is the free loop space on B , pL B
B (X) : L(B) → B is the evaluation map at 1 ∈ S1 ⊂ C and sL B

B (X) : B ↪→
L(B) is the inclusion of constant loops.

Remark 6.8. When E is a cell-wise trivial fibration on a polyhedron B (see [12]), we can see that the canonical map
eE∞ : P∞

B (L B
B(E)) → E is a homotopy equivalence by a similar arguments given in the proof of Theorem 2.9 of [12].

7. Fibrewise L–S categories of fibrewise pointed spaces

The fibrewise pointed L–S category of an fibrewise pointed space is first defined by James and Morris [13] as the least
number (minus one) of open subsets which cover the given space and are contractible by a homotopy fixing the base point
in each fibre (see also James [14] and Crabb and James [1]) and is redefined by Sakai in [19] as follows: let X be a fibrewise

pointed space over B . For given k � 0, we denote by
k+1
�B X the (k + 1)-fold fibrewise product and by

k+1
TB X the (k + 1)-fold

fibrewise fat wedge. Then catB
B(X) � m if the (m+1)-fold fibrewise diagonal map �m+1

B : X → m+1
�B X is compressible into the

fibrewise fat wedge
m+1
TB X in T B

B . If there is no such m, we say catB
B(X) = ∞. Let us consider the case when catB

B(X) < ∞.
The definition of a fibrewise A∞ structure yields the following criterion.

Theorem 7.1. Let X be a fibrewise pointed space over B and m � 0. Then catB
B(X) � m if and only if idX : X → X has a lift to

Pm
B (L B

B(X))
e X

m−→ X in T B
B .

Proof. If catB
B(X) � m, then the fibrewise diagonal �m+1

B : X → m+1
�B X is compressible into the fibrewise fat wedge

m+1
TB X ⊂

m+1
�B X in T B

B . Hence there is a map σ : X → Pm
B (L B

B(X)) in T B
B such that e X

m � σ ∼B 1X in T B
B . The converse is clear by the

definition of Pm
B (L B

B(X)). �
In the rest of this section, we work within the category T B of fibrewise unpointed spaces and maps between them. But

we concentrate ourselves to consider its full subcategory T ∗
B of all fibrewise pointed spaces, so in T ∗

B , we have more maps

than in T B
B while we have just the same objects as in T B

B .

Let X be a fibrewise pointed space over B . For given k � 0, we denote by
k+1
�B X the (k + 1)-fold fibrewise product and by

k+1
TB X the (k + 1)-fold fibrewise fat wedge. Then cat∗(X) � m if the (m + 1)-fold fibrewise diagonal map �m+1 : X → m+1

�B X
B B



N. Iwase, M. Sakai / Topology and its Applications 157 (2010) 10–21 17
is compressible into the fibrewise fat wedge
m+1
TB X in T ∗

B . If there is no such m, we say cat∗B(X) = ∞. Let us consider the
case when cat∗B(X) < ∞. The definition of a fibrewise A∞ structure yields the following.

Theorem 7.2. Let X be a fibrewise pointed space over B and m � 0. Then cat∗B(X) � m if and only if idX : X → X has a lift to

Pm
B (L B

B(X))
e X

m−→ X in the category T ∗
B .

Proof. If cat∗B(X) � m, then the fibrewise diagonal �m+1
B : X → m+1

�B X is compressible into the fibrewise fat wedge
m+1
TB X ⊂

m+1
�B X in T ∗

B . Hence there is a map σ : X → Pm
B (L B

B(X)) in T ∗
B such that e X

m � σ ∼B 1X in T ∗
B . The converse is clear by the

definition of Pm
B (L B

B(X)).

8. Upper and lower estimates

For X a fibrewise pointed space over B , we define a fibrewise version of Ganea’s strong L–S category (see Ganea [6])
of X as CatB

B(X) and also a fibrewise version of Fox’s categorical length (see Fox [5] and Iwase [10]) of X as catlenB
B(X).

Definition 8.1. Let X be a fibrewise pointed space over B .

(1) CatB
B(X) is the least number m � 0 such that there exists a sequence {(Xi,hi) | hi : Ai → Xi−1, 0 � i � m} of pairs of

space and map satisfying X0 = B and Xm �B X in T B
B with the following homotopy push-out diagram:

Ai
p Ai

hi

B

sXi

Xi−1 Xi

(2) catlenB
B(X) is the least number m � 0 such that there exists a sequence {Xi | hi : Ai → Xi−1, 0 � i � m} of spaces

satisfying X0 = B and Xm �B X in T B
B and that �B : Xi → Xi ×B Xi is compressible into Xi ×B Xi−1 ∪ B ×B Xi in

Xm ×B Xm .

A lower bound for the fibrewise L–S category of a fibrewise pointed space X over B can be described by a variant of cup
length: since X is a fibrewise pointed space over B , there is a projection p X : X → B with its section sX : B → X . Hence we
can easily observe for any multiplicative cohomology theory h that

h∗(X) ∼= h∗(B) ⊕ h∗(X, B),

where we may identify h∗(X, B) with the ideal ker s∗
X : h∗(X) → h∗(B).

Definition 8.2. For a fibrewise pointed space X over B and any multiplicative cohomology theory h, we define

cupB
B(X;h) = Max

{
m � 0

∣∣ ∃{
u1, . . . , um ∈ h∗(X, B)

}
s.t. u1 · · · um 	= 0

}
,

cupB
B(X) = Max

{
cupB

B(X;h)
∣∣ h is a multiplicative cohomology theory

}
.

We often denote cupB
B( ;h) by cupB

B( ; R) when h∗( ) = H∗( ; R), where R is a ring with unit.
Let us recall that the relationship between an A∞-structure and a Lusternik–Schnirelmann category gives the key obser-

vation in [7–9].
On the other hand, Rudyak [17] and Strom [23] introduced a homotopy theoretical version of Fadell–Husseini’s cat-

egory weight, which can be translated into our setting as follows: for any fibrewise pointed space X over B , let

{p
L B

B (X)

k : Ek
B(L B

B(X)) → Pk−1
B (L B

B(X)); k � 1} be the fibrewise A∞-structure of L B
B(X) in the sense of Stasheff [22] (see

also [11] for some more properties). Let h be a generalised cohomology theory.

Definition 8.3. For any u ∈ h∗(X, B), we define

wgtB
B(u;h) = Min

{
m � 0

∣∣ (
e X

m

)∗
(u) 	= 0

}
,

where e X
m is the composition of fibrewise maps Pm

B (L B
B(X)) ↪→ P∞

B (L B
B(X))

e X∞−−→�B
X .

Using this, we introduce some more invariants as follows.
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Definition 8.4. For any fibrewise pointed space X over B , we define

wgtπ (X;h) = Max
{

wgtπ (u;h)
∣∣ u ∈ h∗(X, B)

}
,

wgtπ (X) = Max
{

wgtπ (X;h)
∣∣ h is a generalised cohomology theory

}
,

wgtB
B(X;h) = Max

{
wgtB

B(u;h)
∣∣ u ∈ h∗(X, B)

}
,

wgtB
B(X) = Max

{
wgtB

B(X;h)
∣∣ h is a generalised cohomology theory

}
.

We often denote wgtπ ( ;h) and wgtB
B( ;h) by wgtπ ( ; R) and wgtB

B( ; R) respectively when h∗( ) = H∗( ; R), where R is
a ring with unit. We define versions of module weight for a fibrewise pointed space over B .

Definition 8.5. For a fibrewise pointed space X over B , we define

(1) MwgtB
B(X;h) = Min{m � 0 | (e X

m)∗ is a split mono of (unstable) h∗h-modules} for a generalised cohomology theory h.
(2) MwgtB

B(X) = Max{MwgtB
B(X;h) | h is a generalised cohomology theory}.

Then we immediately obtain the following result.

Theorem 8.6. For any fibrewise pointed space X over B, we have

cupB
B(X) � wgtB

B(X) � MwgtB
B(X) � catB

B(X) � catlenB
B(X) � CatB

B(X).

By Lemma 4.1, we have the following as a corollary of Theorem 1.13.

Corollary 8.7. For any space B having the homotopy type of a locally finite simplicial complex, we obtain

Zπ (B) � wgtπ (B) � MwgtB
B

(
d(B)

)
� T C(B) − 1 � catlenB

B

(
d(B)

)
� CatB

B

(
d(B)

)
.

9. Higher Hopf invariants

For any fibrewise pointed map f : S B
B (V ) → X in T B

B , we have its adjoint ad f : V → L B
B(X) such that

e X
1 � S B

B (ad f ) = f : S B
B (V ) → X .

If catB
B(X) � m, then there is a fibrewise pointed map σ : X → Pm

B L B
B(X) in T B

B such that

e X
1 � σ �B

B idX : X → X .

Hence both the fibrewise maps e X
1 � (σ � f ) and e X

1 � S B
B (ad f ) are fibrewise pointed homotopic to f in T B

B . Then we have

e X
1 � {

S B
B (ad f ) − (σ � f )

} �B
B ∗B ,

where �B
B denotes the fibrewise pointed homotopy and ∗B denotes the fibrewise trivial map in T B

B . Thus there is a fibrewise

pointed map Hσ
m( f ) : S B

B (V ) → Em+1
B L B

B(X) such that

p
L B

B (X)
m � Hσ

m( f ) �B
B S B

B (ad f ) − (σ � f ).

Definition 9.1. Let X be of catB
B(X) � m, m � 0. For f : S B

B (V ) → X , we define

(1) H B
m( f ) = {Hσ

m( f ) | e X
1 � σ �B

B idX } ⊂ [S B
B (V ), X],

(2) H B
m( f ) = {(S B

B )∞∗ Hσ
m( f ) | e X

1 � σ �B
B idX } ⊂ {S B

B (V ), X}B
B ,

where, for two fibrewise spaces V and W , we denote by {V , W }B
B the homotopy set of fibrewise stable maps from V to W .

Appendix A. Fibrewise homotopy pull-backs and push-outs

In this paper, we are using A∞ structures which is constructed using tools in T B and T B
B — especially, finite homotopy

limits and colimits, in other words, fibrewise homotopy pull-backs and push-outs in T B and T B
B . We show in this section

that such constructions are possible even when a fibrewise space has some singular fibres.
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First we consider the fibrewise homotopy pull-backs in T B
B : let X , Y , Z and E be fibrewise spaces over B and p : E → Z

be a fibrewise fibration in T B . For any fibrewise map f : X → Z in T B , there exists a pull-back X
f ∗ p←−−− f ∗E

f̂−→ E of

X
f−→ Z

p←− E as

f ∗E = {
(x, e) ∈ X ×B E

∣∣ f (x) = p(e)
}

a subspace of X ×B E together with fibrewise maps f ∗ p : f ∗E → X and f̂ : f ∗E → E given by restricting canonical projec-
tions:

( f ∗ p)(x, e) = x, f̂ (x, e) = e.

Theorem A.1. (Crabb and James [1]) Let p : E → Z be a fibrewise fibration. For any fibrewise map f : W → Z in T B , f ∗ p : f ∗E → W
is also a fibrewise fibration.

Let πt : PB(Z) → Z be fibrewise fibrations given by πt(�) = �(t), t = 0,1 (see also [1]). Then π0 and π1 induce a map
π : PB(Z) → Z ×B Z to the fibre product of two copies of p Z : Z → B .

Proposition A.2. π : PB(Z) → Z ×B Z is a fibrewise fibration.

Proof. For any fibrewise map φ : W → PB(Z) and a fibrewise homotopy H : W × [0,1] = W ×B (I B) → Z ×B Z such that
H(w,0) = π � φ(w) for w ∈ W , we define a fibrewise homotopy Ĥ : W × [0,1] = W ×B (I B) → PB(Z)(⊂ P (Z)) by

Ĥ(w, s)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pr0 � H(w, s), if t = 0,
pr0 � H(w, s − 3t), if 0 < t < s

3 ,
π0 � φ(w), if t = s

3 ,

φ(w)( 3t−s
3−2s ), if s

3 < t < 3−s
3 ,

π1 � φ(w), if t = 3−s
3 ,

pr1 � H(w,3t − 3 + s), if 3−s
3 < t < 1

pr1 � H(w, s), if t = 0

for (w, s) ∈ W ×B I B and t ∈ [0,1], where prk : Z ×B Z ⊂ Z × Z → Z denotes the canonical projection given by prk(z0, z1) =
zk , k = 0,1 for any (z0, z1) ∈ Z ×B Z . Then for any (w, s) ∈ W ×B I B , we clearly have

Ĥ(w,0)(t) = φ(w)(t), t ∈ [0,1],(
Ĥ(w, s)(0), Ĥ(w, s)(1)

) = (
pr0 � H(w, s),pr1 � H(w, s)

) = H(w, s),

and hence we have Ĥ(w,0) = φ(w) for any w ∈ W and also π � Ĥ = H . This implies that Ĥ is a fibrewise homotopy of φ

covering H . Thus π is a fibrewise fibration. �
This yields the following corollary.

Corollary A.3. For any fibrewise maps f : X → Z and g : Y → Z in T B , the induced map ( f ×B g)∗π : ( f ×B g)∗PB(Z) → X ×B Y
is a fibrewise fibration in T B .

We often call the fibrewise space ( f ×B g)∗PB(Z) together with the projections prX � ( f ×B g)∗π : ( f ×B g)∗PB(Z) → X

and prY � ( f ×B g)∗π : ( f ×B g)∗PB(Z) → Y the homotopy pull-back in T B of X
f−→ Z

g←− Y . We remark that the above

construction can be performed within T B
B if X , Y , Z , f and g are all in T B

B , so that we have a pointed version of a fibrewise
homotopy pull-back:

Corollary A.4. For any fibrewise maps f : X → Z and g : Y → Z in T B
B , the induced map ( f ×B g)∗π : ( f ×B g)∗PB(Z) → X ×B Y

is a fibrewise fibration in T B
B .

Second we consider the fibrewise homotopy push-outs in T B
B : let X , Y , Z and W be fibrewise pointed spaces over B

and i : Z → W be a fibrewise cofibration in T B
B . For any fibrewise map f : Z → X over B , there exists a push-out X

f∗ i−−→
f∗W

f̌←− W of X
f←− Z i−→ W as a quotient space of X B W by gluing f (z) with i(z) together with fibrewise maps f∗i and

f̌ induced from the canonical inclusions.
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Theorem A.5. (Crabb and James [1]) Let i : Z → W be a fibrewise cofibration in T B (or T B
B ). For any fibrewise map f : Z → X in T B

(or T B
B , resp.), f∗i : X → f∗W is also a fibrewise cofibration in T B (or T B

B , resp.).

Let us recall that I B
B (Z) is obtained from I B(Z) = Z ×B (B × [0,1]) = Z × [0,1] by identifying the subspace sZ (B) ×

[0,1] ⊂ Z × [0,1] with sZ (B) by the canonical projection to the first factor: sZ (B) × [0,1] → sZ (B). Let ιt : Z → I B
B (Z) be

fibrewise cofibration in T B
B given by ιt(z) = q(z, t), 0 � t � 1, where q : Z × [0,1] → I B

B (Z) denotes the identification map.

Then ι0 and ι1 induce a map ι : Z ∨B Z → I B
B (Z) from Z ∨B Z the push-out of two copies of sZ : B → Z .

Proposition A.6. ι : Z ∨B Z → I B
B (Z) is a fibrewise cofibration.

Proof. For any fibrewise map φ : I B
B (Z) → W and a fibrewise homotopy H : (Z ∨B Z) × [0,1] = (Z ∨B Z) ×B I B → W such

that H(z,0) = φ � ι(z) for z ∈ Z ∨B Z , we define a fibrewise homotopy Ȟ : I B
B (Z) × [0,1] = I B

B (Z) ×B (I B) → W by

Ȟ
(
q(z, t), s

) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H(in0(z), s − 3t), if 0 � t < s
3 ,

φ � ι0(z), if t = s
3 ,

φ(q(z, 3t−s
3−2s )), if s

3 < t < 3−s
3 ,

φ � ι1(z), if t = 3−s
3 ,

H(in1(z),3t − 3 + s), if 3−s
3 < t � 1

for (q(z, t), s) ∈ I B
B (Z) ×B I B , where ink : Z ↪→ Z ∨B Z , k = 0,1 denote the canonical inclusion given by in0(z) = (z,∗b) and

in1(z) = (∗b, z), b = p Z (z) for any z ∈ Z . Then for any (q(z, t), s) ∈ I B
B (Z) ×B I B , we clearly have

Ȟ
(
q(z, t)

)
(0) = φ

(
q(z, t)

)
,

Ȟ
(
q(z,0)

)
(s) = H

(
in0(z), s

)
, Ȟ

(
q(z,1)

)
(s) = H

(
in1(z), s

)
,

and hence we have Ȟ(q(z, t))(0) = φ(q(z, t)) for any q(z, t) ∈ I B
B (Z) and also Ȟ � (ι ×B 1I B ) = H . This implies that Ȟ is a

fibrewise homotopy of φ extending H . Thus ι is a fibrewise cofibration. �
This yields the following corollary.

Corollary A.7. For any fibrewise maps f : Z → X and g : Z → Y in T B
B , the induced map ( f ∨B g)∗ι : X ∨B Y → ( f ∨B g)∗I B

B (Z) is

a fibrewise cofibration in T B
B .

We often call the fibrewise space ( f ∨B g)∗I B
B (Z) together with the inclusions ( f ∨B g)∗ι � inX : X → ( f ∨B g)∗I B

B (Z) and

( f ∨B g)∗ι � inY : Y → ( f ∨B g)∗I B
B (Z) as homotopy push-out in T B

B of X
f←− Z

g−→ Y .
Quite similarly for a fibrewise space Z in T B , we obtain a fibrewise cofibration ι̂ : Z  Z = Z ×{0}∪ Z ×{1} ↪→ Z ×[0,1] =

I B(Z). Thus we have the following.

Corollary A.8. For any fibrewise maps f : Z → X and g : Z → Y in T B , the induced map ( f  g)∗ ι̂ : X  Y → ( f  g)∗I B(Z) is a
fibrewise cofibration in T B .

Thus we also have an unpointed version of a fibrewise homotopy push-out.
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