Topological structures of the sets of composition operators on the Bloch spaces

Takuya Hosokawa a,\!*, Shûichi Ohno b,\!*

a Omae-bashi 1-1-17 B-205, Hasuda, Saitama 349-0125, Japan
b Nippon Institute of Technology, Miyashiro, Minami-Saitama 345-8501, Japan

Received 23 December 2004
Available online 15 June 2005
Submitted by Z.-J. Ruan

Dedicated to Professor Sin-Ei Takahasi on the occasion of his 60th birthday

Abstract

We study properties of the topological sets of composition operators on Bloch and little Bloch spaces in the operator topology.

Keywords: Composition operator; Bloch space; Little Bloch space

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane with the unit circle $\partial \mathbb{D}$ as its boundary, and let $H(\mathbb{D})$ be the space of all analytic functions on \mathbb{D}. Denote by $S(\mathbb{D})$ the set of analytic self-maps of \mathbb{D}. Every self-map $\varphi \in S(\mathbb{D})$ induces the composition operator C_φ defined by $C_\varphi f = f \circ \varphi$ for $f \in H(\mathbb{D})$.

\!* Corresponding author.
E-mail addresses: turtlemumu@yahoo.co.jp (T. Hosokawa), ohno@nit.ac.jp (S. Ohno).

The author is partially supported by Grant-in-Aid for Scientific Research (No. 15540181), Ministry of Education, Science and Culture.

0022-247X/S – see front matter © 2005 Elsevier Inc. All rights reserved.
Recall that the Bloch space \mathcal{B} consists of all $f \in H(\mathbb{D})$ such that
\[\| f \| = \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty. \]
Then $\| \cdot \|$ defines a complete semi-norm on \mathcal{B}. Let the little Bloch space \mathcal{B}_o denote the subspace of \mathcal{B} consisting of those functions f such that
\[\lim_{|z| \to 1} (1 - |z|^2) f'(z) = 0. \]
Hence \mathcal{B} is a Banach space under the norm
\[\| f \|_B = |f(0)| + \| f \| \]
and \mathcal{B}_o is a closed subspace of \mathcal{B}. In particular, \mathcal{B}_o is the closure in \mathcal{B} of the polynomials.

It is well known that for any $w \in \mathbb{D}$,
\[\sup \{(1 - |w|^2) |f'(w)| : f \in \mathcal{B}, \| f \| \leq 1\} = 1. \tag{1} \]
See [2,8,12] for more information on composition operators and Bloch spaces.

Let $H^\infty = H^\infty(\mathbb{D})$ be the set of all bounded analytic functions on \mathbb{D}. Then H^∞ is the Banach algebra with the supremum norm
\[\| f \|_\infty = \sup_{z \in \mathbb{D}} |f(z)|. \]

Note that $H^\infty \subset \mathcal{B}$ and that $\| f \| \leq \| f \|_\infty$ if $f \in H^\infty$.

For a Banach space X of analytic functions on \mathbb{D}, let $\mathcal{C}(X)$ be the set of composition operators on X with the operator norm topology. We write $C_\varphi \sim_X C_\psi$ if C_φ and C_ψ are in the same path component of $\mathcal{C}(X)$. In this paper, we investigate the topological structure of $\mathcal{C}(\mathcal{B})$ and $\mathcal{C}(\mathcal{B}_o)$. Here, by the Schwarz–Pick inequality, C_φ is always bounded on \mathcal{B} and C_φ is bounded on \mathcal{B}_o if and only if $\varphi \in \mathcal{B}_o$ [6]. We can easily obtain that if $C_\varphi \sim_{H^\infty} C_\psi$, then $C_\varphi \sim_{\mathcal{B}} C_\psi$ [4, Corollary 4.3]. Originally Sundberg and Shapiro [9] posed the topological structure of the set $\mathcal{C}(H^2)$ of composition operators on the Hilbert–Hardy space H^2 and asked conditions to characterize components and isolated elements of the set $\mathcal{C}(H^2)$. These problems are so hard. Instead, MacCluer, Zhao and the second author [5] considered the above problems on H^∞. In the setting of $\mathcal{C}(H^\infty)$, path components and isolated points have been completely characterized in [3,5]. Then this work gave a relationship between a component problem and the behavior of the difference of two composition operators acting from \mathcal{B} to H^∞. The authors [4] studied properties of the differences of two composition operators on \mathcal{B} and \mathcal{B}_o. Continuously, we here consider properties of the path components of both $\mathcal{C}(\mathcal{B})$ and $\mathcal{C}(\mathcal{B}_o)$ in the operator topology.

In Section 2, we have the inequalities estimating the differences of two Bloch-type derivatives which would be useful tools to obtain our main results. In Section 3, we will consider the problem whether the set of compact composition operators forms a path component in $\mathcal{C}(\mathcal{B})$ and $\mathcal{C}(\mathcal{B}_o)$. In the case of Bloch space, Toews proved in his thesis [11] that the compact composition operators form a path connected set in $\mathcal{C}(\mathcal{B})$. We here will have a similar result in $\mathcal{C}(\mathcal{B}_o)$ using a different method. After such a characterization, we will present analytic self-maps φ, ψ of \mathbb{D} such that corresponding composition operators C_φ and C_ψ are isolated in $\mathcal{C}(H^\infty)$ but lie in the same component in $\mathcal{C}(\mathcal{B}_o)$. In Section 4, we will show that the compactness of $C_\varphi - C_\psi$ implies $C_\varphi \sim_{\mathcal{B}_o} C_\psi$ and in the last section we give a remark to the isolation problem of $\mathcal{C}(\mathcal{B})$.

2. Prerequisites

For \(w \in \mathbb{D} \), let \(\alpha_w \) be the Möbius transformation of \(\mathbb{D} \) defined by
\[
\alpha_w(z) = \frac{w - z}{1 - \overline{w}z}.
\]
For \(w, z \) in \(\mathbb{D} \), the pseudo-hyperbolic distance \(\rho(w, z) \) between \(z \) and \(w \) is given by
\[
\rho(w, z) = |\alpha_w(z)|,
\]
and the hyperbolic metric \(\beta(w, z) \) is given by
\[
\beta(w, z) = \frac{1}{2} \log \frac{1 + \rho(w, z)}{1 - \rho(w, z)}.
\]
To study properties of composition operator \(C_\varphi \) on \(B \) and \(B_\alpha \), we introduce the following derivative \(\varphi^\# \) induced by the Schwarz–Pick lemma:
\[
\varphi^\#(z) = \frac{1 - |z|^2}{1 - |\varphi(z)|^2} \varphi'(z).
\]
This form will be an important tool in the sequel. Explicitly we will consider the behavior of \(\varphi^\# \) on the neighborhood of \(\partial \mathbb{D} \). To discuss the behavior, we need the following sets.

Definition 2.1. For \(\varphi \in S(\mathbb{D}) \), let \(\Gamma_r(\varphi) = \{ z \in \mathbb{D} : |\varphi(z)| > r \} \) for \(r \in (0, 1) \). Let \(\Gamma(\varphi) \) be the set of sequences \(\{ z_k \} \) in \(\mathbb{D} \) such that \(|\varphi(z_k)| \to 1 \), and let \(\Gamma^\#(\varphi) \) be the set of sequences \(\{ z_k \} \) in \(\mathbb{D} \) such that \(|\varphi(z_k)| \to 1 \) and \(\varphi^\#(z_k) \nrightarrow 0 \).

Then it is clear that \(\Gamma^\#(\varphi) \subset \Gamma(\varphi) \). It is well known that \(C_\varphi \) is compact on \(H^\infty \) if and only if \(\Gamma(\varphi) = \emptyset \). In [6], it is showed that \(C_\varphi \) is compact on \(B \) if and only if \(\Gamma^\#(\varphi) = \emptyset \). Montes-Rodríguez [7] determined the essential norm of composition operators on \(B \) and \(B_\alpha \). Recall that the essential norm \(\| T \|_e \) of a bounded linear operator \(T \) on a Banach space \(X \) is defined as
\[
\| T \|_e = \inf \{ \| T - K \| : K \text{ is compact on } X \}.
\]
That is, he obtained
\[
\| C_\varphi \|_e = \lim_{s \to 1^-} \sup_{|\varphi(z)| > s} |\varphi^\#(z)|.
\]
We can also estimate the “semi-operator norm” \(\| C_\varphi \| \) of \(C_\varphi \) on \(B \), which is defined by
\[
\| C_\varphi \| = \sup \{ \| C_\varphi f \| : \| f \| \leq 1 \}.
\]

Proposition 2.2. Let \(\varphi \in S(\mathbb{D}) \). Then \(\| C_\varphi \| = \| \varphi^\# \|_\infty \).

Proof. Let \(\varphi \in S(\mathbb{D}) \) and \(f \in B \) with \(\| f \| \leq 1 \). Then (1) implies that
\[
\| C_\varphi f \| = \sup_{z \in \mathbb{D}} (1 - |z|^2) |\varphi'(z)| |f'(\varphi(z))| \\
= \sup_{z \in \mathbb{D}} |\varphi^\#(z)| (1 - |\varphi(z)|^2) |f'(\varphi(z))| \leq \| \varphi^\# \|_\infty.
\]
Hence we have that \(\| C_\varphi \| \leq \| \varphi^\# \|_\infty \).
Conversely we can easily check that \(\| \alpha_w \| = 1 \) for \(w \in \mathbb{D} \). So

\[
\| C_\varphi \| \geq \| C_\varphi \alpha_\varphi(w) \| = \sup_{z \in \mathbb{D}} |\varphi^#(z)|(1 - |\varphi(z)|^2) \frac{1 - |\varphi(w)|^2}{|1 - \varphi(w)\varphi(z)|^2} \geq |\varphi^#(w)|.
\]

Taking the supremum of \(w \) in \(\mathbb{D} \), we have that \(\| C_\varphi \| \geq \| \varphi^# \|_\infty \). \(\square \)

For any \(s \in (0, 1) \), we can always make composition operator \(C_\varphi \) satisfying \(\| C_\varphi \| \epsilon = s \) or \(\| \varphi^# \|_\infty = s \).

Example 2.3. Let \(\sigma(z) = (1 + z)/(1 - z) \) and

\[
\varphi_s(z) = \frac{\sigma(z)^s - 1}{\sigma(z)^s + 1} \quad \text{for } s \in (0, 1).
\]

This \(\varphi_s \) is called the lens map. Then \(\| C_{\varphi_s} \| \epsilon = \| \varphi_s^# \|_\infty = s \).

Proof. Put \(w = \sigma(z) = re^{i\theta} \). We have that

\[
|\varphi_s^#(z)| = \frac{1 - |z|^2}{1 - |\sigma(z)^s - 1|} \cdot \frac{2s|\sigma'(z)||\sigma(z)^{s-1}|}{|\sigma(z)^s + 1|^2} = \frac{1 - |z|^2}{1 - |1 - z|^2} \cdot \frac{2s|\sigma(z)^{s-1}|}{|\sigma(z)^s + \sigma(z)^s|}
\]

\[
= \frac{1 - |\frac{w}{w+1}|^2}{1 - |\frac{w}{w+1}|^2} \cdot s \frac{r^{s-1}}{r^s \cos s\theta} = \frac{s \cos \theta}{\cos s\theta}.
\]

Since \(\cos s\theta > \cos \theta > 0 \) for \(|\theta| < \pi/2 \), then \(|\varphi_s^#(z)| < s \). Moreover, we can see that \(\varphi_s^#(x) = s \) for all \(x \in (-1, 1) \). This implies that \(\| C_{\varphi_s} \| \epsilon = \| \varphi_s^# \|_\infty = s \). \(\square \)

Our results involve the difference of two Bloch-type derivatives, defined by

\[
\| (C_\varphi - C_\psi) f \| \leq \sup_{z \in \mathbb{D}} \left| \left(1 - |z|^2 \right) f'(z) - \left(1 - |w|^2 \right) f'(w) \right|.
\]

Hence we have the following estimations:

\[
\| (C_\varphi - C_\psi) f \| \leq \sup_{z \in \mathbb{D}} \left| \left[|\varphi^#(z)| - |\psi^#(z)| \right] (1 - |\varphi(z)|^2) f'(\varphi(z)) - \left(1 - |\psi(z)|^2 \right) f'(\psi(z)) \right|
\]

and

\[
\| C_\varphi - C_\psi \| \leq \sup_{z \in \mathbb{D}} \left(|\varphi^#(z) - \psi^#(z)| + |\varphi^#(z)| b(\varphi(z), \psi(z)) \right).
\]

In [4], the distance \(b(z, w) \) is estimated as

\[
\rho(z, w)^2 \leq b(z, w) \leq C \beta(z, w) + 2\rho(z, w),
\]

where \(C \) is a positive constant independent of \(z, w \). We remark that \(b(z, w) \leq 2 \) by the definition and that for \(\{z_n\}, \{w_n\} \subset \mathbb{D}, \rho(z_n, w_n) \to 0 \) if and only if \(b(z_n, w_n) \to 0 \).

The compactness of \(C_\varphi - C_\psi \) on \(\mathcal{B} \) and \(\mathcal{B}_\alpha \) was characterized in [4]. We here present such results for convenience.
Theorem 2.4 [4]. Let $\varphi, \psi \in S(\mathbb{D})$. Then the following are equivalent:

(i) $C_{\varphi} - C_{\psi}$ is compact on \mathcal{B}.

(ii) Both (a) and (b) hold:

(a) $\Gamma^*(\varphi)$ and $\Gamma^*(\psi)$ are included in $\Gamma(\varphi) \cap \Gamma(\psi)$.

(b) For $\{z_n\} \subset \Gamma(\varphi) \cap \Gamma(\psi)$,

$$\lim_{n \to \infty} (\varphi^*(z_n) - \psi^*(z_n)) = 0 \quad \text{and} \quad \lim_{n \to \infty} \varphi^*(z_n) \rho(\varphi(z_n), \psi(z_n)) = \lim_{n \to \infty} \psi^*(z_n) \rho(\varphi(z_n), \psi(z_n)) = 0.$$

Theorem 2.5 [4]. Let $\varphi, \psi \in S(\mathbb{D})$. Then the following are equivalent:

(i) $C_{\varphi} - C_{\psi}$ is compact on \mathcal{B}_0.

(ii) Both (a) and (b) hold:

(a) $\lim_{|z| \to 1} (\varphi^*(z) - \psi^*(z)) = 0$.

(b) $\lim_{|z| \to 1} \varphi^*(z) \rho(\varphi(z), \psi(z)) = \lim_{|z| \to 1} \psi^*(z) \rho(\varphi(z), \psi(z)) = 0$.

Relating to these results, we can add the following theorem, which follows from well-known facts in functional analysis using the Schur property.

Theorem 2.6. Let $\varphi, \psi \in S(\mathbb{D})$. Then the following are equivalent:

(i) $C_{\varphi} - C_{\psi} : \mathcal{B} \to \mathcal{B}_0$ is bounded.

(ii) $C_{\varphi} - C_{\psi} : \mathcal{B} \to \mathcal{B}_0$ is compact.

(iii) $C_{\varphi} - C_{\psi} : \mathcal{B}_0 \to \mathcal{B}_0$ is compact.

3. The sets of compact composition operators on the Bloch spaces

Let $\varphi_s(z) = \varphi(sz)$ for each $s \in [0, 1]$. Then

$$\varphi_s^*(z) = \frac{s(1 - |z|^2)}{1 - s^2 |z|^2} \varphi^*(sz).$$

Since $s(1 - |z|^2) \leq 1 - s^2 |z|^2$,

$$|\varphi_s^*(z)| \leq |\varphi^*(sz)|. \quad (3)$$

In this section, we will consider the curve $\{C_{\varphi_s} : s \in [0, 1]\}$ for a compact composition operator C_{φ} on \mathcal{B}_0.

Proposition 3.1. For $\varphi \in S(\mathbb{D})$, suppose that C_{φ} is compact on \mathcal{B}_0. Then the map $s \mapsto \varphi_s^*$ is continuous for $s \in [0, 1]$ under the supremum norm on \mathbb{D}.

Proof. It is easy to prove that the correspondence $s \mapsto \varphi_s^*$ is continuous for $s \in [0, 1)$. So it is sufficient to consider only the case $s = 1$.
Suppose that \(s = 1 \). Since \(C_\psi \) is compact on \(B_o \), there exists a constant \(r \in (0, 1) \) such that for any \(1 > |z| > r \), \(|\phi^#(z)| < \varepsilon/2\). Fix \(r' \in (r, 1) \). If \(t > r/r' \) and \(1 > |z| > r' \), then \(|tz| > r\). By (3), we have that, for any \(t > r/r' \) and any \(1 > |z| > r' \), \(|\phi^#(tz)| < \varepsilon/2\). Hence put \(\delta_1 = 1 - r/r' \), then we have that for \(t > 1 - \delta_1 \),

\[
\sup_{z \in \mathbb{D} \cap r' \mathbb{D}} |\phi^#(z) - \phi^#(z)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]

Similarly, we can estimate the case of \(r' \mathbb{D} \) and obtain that there exists some \(\delta_2 \) such that if \(1 - t < \delta_2 \),

\[
\sup_{z \in r' \mathbb{D}} |\phi^#(z) - \phi^#(z)| < \varepsilon.
\]

Put \(\delta = \min\{\delta_1, \delta_2\} \). We have that \(\|\phi^# - \phi^#\|_{\infty} < \varepsilon \) for any \(t > 1 - \delta \). So the continuity at \(s = 1 \) is proved. \(\Box \)

Remark 3.2. Theorem 5.2.2 of [12] says that if \(f \in B_o \) if and only if \(\|f_r - f\| \to 0 \) as \(r \to 1- \).

Analogously to this result, we can say that \(C_\psi \) is compact on \(B_o \) if and only if \(\|\phi^# - \phi^#\|_{\infty} \to 0 \) as \(t \to 1- \).

In the case of the Bloch space, Toews proved in his thesis [11] that \(C_\psi \sim_{\mathcal{B}} C_\psi \) if both \(C_\psi \) and \(C_\psi \) are compact on \(\mathcal{B} \). Explicitly, he showed that the curve of composition operators \(\{C_\phi^s\} \) is continuous in \(\mathcal{C}(\mathcal{B}) \), so obtained that \(C_\psi \sim_{\mathcal{B}} C_0 \sim_{\mathcal{B}} C_\psi \). In the proof of the following theorem we will show that the dilation transform \(\{\psi_t\} \) induces a continuous curve in \(\mathcal{C}(B_o) \).

Theorem 3.3. The set of compact composition operators on \(B_o \) is path connected.

Proof. We will show that \(C_\psi \sim_{\mathcal{B}} C_\psi(0) \sim_{\mathcal{B}} C_\psi(0) \sim_{\mathcal{B}} C_\psi \).

Denote the point evaluations at \(p \in \mathbb{D} \) by \(C_p \), that is, \(C_p f(z) = f(p) \) for any \(f \in B_o \) and \(z \in \mathbb{D} \). Then \(C_{\psi_0} = C_{\psi(0)} \) and \(C_{\psi_0} = C_{\psi(0)} \).

At first we note \(C_{\psi_0} \sim_{B_o} C_{\psi_0} \). Indeed, put \(p_s = (1-s)\psi(0) + s\psi(0) \) for \(s \in [0, 1] \). Then \(\{C_{ps} : s \in [0, 1]\} \) is a continuous curve from \(C_{\psi_0} \) to \(C_{\psi_0} \).

Next we will prove \(C_\psi \sim_{B_o} C_{\psi_0} \) and \(C_\psi \sim_{B_o} C_{\psi_0} \), we will show that \(\|C_{\psi_s} - C_{\psi_r}\|_{B_o} \to 0 \) as \(s - t \to 0 \).

Suppose that \(f \in B_o \) and \(\|f\| \leq 1 \). By (2),

\[
\|\(C_{\psi_s} - C_{\psi_r}\) f\|_{B_o} = \|f \circ \psi_s(0) - f \circ \psi_r(0)\| + \|\(C_{\psi_s} - C_{\psi_r}\) f\| \\
\leq \|\phi_s^# - \phi_r^#\|_{\infty} + \sup_{z \in \mathbb{D}} |\phi^#(z)| |\psi_s(z) - \psi_r(z)|.
\]

(4)

From Proposition 3.1, the first term on the right side of (4) converges to 0 as \(t \to s \). So it is sufficient to prove our assertion that if \(t \to s \), the second term of (4) converges to 0.

Fix \(s < 1 \). Without loss of generality, we can suppose that \(t < s \). By [4, Proposition 2.2] and Schwarz’s lemma, we have that
\[
\sup_{z \in \mathbb{D}} |\varphi^#(z)| \beta(\varphi_s(z), \varphi_t(z)) \leq \sup_{z \in \mathbb{D}} (C\beta(\varphi_s(z), \varphi_t(z)) + 2\rho(\varphi_s(z), \varphi_t(z))) \\
\leq C' \sup_{z \in \mathbb{D}} \frac{\rho(\varphi_s(z), \varphi_t(z))}{1 - \rho(\varphi_s(z), \varphi_t(z))} \\
\leq C' \sup_{z \in \mathbb{D}} \frac{\rho(sz, tz)}{1 - \rho(sz, tz)} \\
\leq C' \frac{s - t}{1 - s},
\]

where \(C \) and \(C' \) are constant numbers independent of \(s, t \) and \(z \in \mathbb{D} \). This implies that \(\| C_{\varphi_s} - C_{\varphi_t} \|_{\mathcal{B}_o} \to 0 \) as \(t \to s \).

Next we suppose that \(s = 1 \). Fix any \(\varepsilon > 0 \). Since \(C_{\varphi} \) is compact on \(\mathcal{B}_o \), there exists \(r \in (0, 1) \) such that \(|\varphi^#(z)| < \varepsilon / 2\) for any \(z \in \mathbb{D} \setminus r\mathbb{D} \). By \(\beta(\varphi(z), \varphi_t(z)) \leq 2 \), we have that

\[
\sup_{z \in \mathbb{D} \setminus r\mathbb{D}} |\varphi^#(z)| \beta(\varphi(z), \varphi_t(z)) < \varepsilon.
\]

By the similar method as in the case that \(s < 1 \), there exists a constant \(C \) such that

\[
\sup_{z \in r\mathbb{D}} |\varphi^#(z)| \beta(\varphi(z), \varphi_t(z)) \leq C(1 - t).
\]

Thus, for \(t > 1 - \varepsilon / C \),

\[
\sup_{z \in \mathbb{D}} |\varphi^#(z)| \beta(\varphi(z), \varphi_t(z)) < \varepsilon.
\]

Hence we have that \(C_{\varphi} \sim_{\mathcal{B}_o} C_{\varphi_0} \).

By the similar way, we have that \(C_{\psi} \sim_{\mathcal{B}_o} C_{\psi_0} \). Our proof is completed. \(\square \)

Using this theorem, we can present the difference between the isolation problems on \(H^\infty \) and on \(\mathcal{B}_o \).

Example 3.4. There exist analytic self-maps \(\varphi, \psi \in S(\mathbb{D}) \) such that corresponding composition operators \(C_{\varphi} \) and \(C_{\psi} \) are isolated in \(\mathcal{C}(H^\infty) \) but lie in the same component in \(\mathcal{C}(\mathcal{B}_o) \).

Proof. Indeed, we can find out inner functions \(\varphi, \psi \) satisfying

\[
\varphi^#(z), \psi^#(z) \to 0
\]
as \(|z| \to 1\) in [1] or [10]. Then \(C_{\varphi} \) and \(C_{\psi} \) are isolated in \(\mathcal{C}(H^\infty) \) because \(\varphi \) and \(\psi \) are inner functions.

On the other hand, \(C_{\varphi} \) and \(C_{\psi} \) are compact on \(\mathcal{B}_o \) [6] and so lie in the same component in \(\mathcal{C}(\mathcal{B}_o) \) by Theorem 3.3. \(\square \)

4. Compact differences and components

In this section, we consider the relationship between the compact differences of two composition operators and the components of \(\mathcal{C}(\mathcal{B}) \) and \(\mathcal{C}(\mathcal{B}_o) \).
For \(s \in [0, 1] \), put \(z_s = (1 - s)z + sw \) and \(\varphi_s(z) = (1 - s)\varphi(z) + s\psi(z) \). Then it is easy to see that \(\Gamma(\varphi_s) \subset \Gamma(\varphi) \cap \Gamma(\psi) \) and that for \(z \in \mathbb{D} \),

\[
1 - |\varphi_s(z)| \geq (1 - s)(1 - |\varphi(z)|).
\]

We start from the following lemma.

Lemma 4.1. Let \(z, w \in \mathbb{D} \) and \(\rho(z, w) = \lambda < 1 \). Then the map \(s \mapsto \rho(z_s, w) \) is continuous and decreasing on \([0, 1]\).

Proof. We have that

\[
\rho(z_s, w) = \left| \frac{1 - s}{1 - zw} + s \frac{z}{w} \right| \leq \frac{1 - s}{\lambda - 1 - s} = \frac{(1 - s)\lambda}{1 - s\lambda}.
\]

This implies the continuity at \(s = 1 \), that is, \(\rho(z_s, w) \to 0 \) as \(s \to 1 \).

Next, suppose that \(0 \leq s < t < 1 \). Put \(\tau = z_t \) and \(\tau_u = (1 - u)z + u\tau \). Then \(z_s = \tau_{s/t} \).

Since \(\rho(z_s, z_t) = \rho(\tau_{s/t}, \tau) \), we can see that \(\rho(z_s, z_t) \to 0 \) as \(s - t \to 0 \) and \(s \mapsto \rho(z_s, w) \) is decreasing by the inequality above. \(\square \)

Next, we give the following lemma.

Lemma 4.2. Suppose that \(\varphi, \psi \in S(\mathbb{D}) \) and \(s \in [0, 1] \). Then, for each \(z \in \mathbb{D} \),

\[
|\varphi^#(z) - \varphi_s^#(z)| \leq |\varphi^#(z) - \psi^#(z)| + |\varphi^#(z)|\rho(\varphi(z), \psi(z))^2.
\]

Proof. We have that

\[
\varphi_s^#(z) = (1 - s)\frac{1 - |\varphi(z)|^2}{1 - |\varphi_s(z)|^2}\varphi^#(z) + s\frac{1 - |\psi(z)|^2}{1 - |\varphi_s(z)|^2}\psi^#(z).
\]

Then

\[
|\varphi^#(z) - \varphi_s^#(z)| \leq |\varphi^#(z) - \psi^#(z)|\frac{s(1 - |\psi(z)|^2)}{1 - |\varphi_s(z)|^2} + |\varphi^#(z)|\left| 1 - (1 - s)\frac{1 - |\varphi(z)|^2}{1 - |\varphi_s(z)|^2} - s\frac{1 - |\psi(z)|^2}{1 - |\varphi_s(z)|^2} \right|.
\]

(5)

Here we estimate the first term on the right-hand side of (5),

\[
\frac{s(1 - |\psi(z)|^2)}{1 - |\varphi_s(z)|^2} \leq \left| \frac{s(1 - |\psi(z)|^2)}{1 - (1 - s)^2 - 2s(1 - s)|\psi(z)| - 2s(1 - s)|\psi(z)|^2} \right| \leq 1 - |\psi(z)|^2
\]

\[
= \frac{1 + |\psi(z)|}{2 - s(1 - |\psi(z)|)} \leq 1.
\]

(6)

Next, we estimate the second term of (5):
\[
1 - (1 - s) \frac{1 - |\varphi(z)|^2}{1 - |\varphi_s(z)|^2} - s \frac{1 - |\psi(z)|^2}{1 - |\varphi_s(z)|^2} \leq \left| 1 - \frac{(1 - s)|\varphi(z)|^2 + s|\psi(z)|^2 - |\varphi_s(z)|^2}{1 - (1 - s)^2 - s^2 - 2s(1 - s) \text{Re}(\varphi(z)\psi(z))} \right| \\
\leq \frac{|\varphi(z)|^2 + |\psi(z)|^2 - 2 \text{Re}(\varphi(z)\psi(z))}{2(1 - \text{Re}(\varphi(z)\psi(z)))} \\
= \frac{|\varphi(z) - \psi(z)|^2}{2(1 - \text{Re}(\varphi(z)\psi(z)))} \\
= \rho(\varphi(z), \psi(z))^2 \frac{1 - |\varphi(z)\psi(z)|^2}{2(1 - \text{Re}(\varphi(z)\psi(z)))} \\
= \rho(\varphi(z), \psi(z))^2 \frac{1 + |\varphi(z)|^2|\psi(z)|^2 - 2 \text{Re}(\varphi(z)\psi(z))}{2(1 - \text{Re}(\varphi(z)\psi(z)))} \\
\leq \rho(\varphi(z), \psi(z))^2. \\
\tag{7}
\]

By (5)–(7), we have that
\[
\left| \varphi_s'(z) - \varphi'(z) \right| \leq \left| \varphi'(z) - \psi'(z) \right| + \left| \varphi'(z) \right| \rho(\varphi(z), \psi(z))^2.
\]

\textbf{Proposition 4.3.} Let \(\varphi \) and \(\psi \) be in \(S(D) \) such that \(C_\varphi - C_\psi \) is compact on \(B \). Then for any \(s \in [0, 1] \), the following hold:

(i) \(\Gamma^#(\varphi_s) \subset \Gamma(\varphi) \cap \Gamma(\psi) \).

(ii) For any \(\{z_n\} \subset \Gamma(\varphi) \cap \Gamma(\psi) \),
\[
\lim_{n \to \infty} (\varphi'(z_n) - \varphi_s'(z_n)) = \lim_{n \to \infty} \varphi'(z_n) \rho(\varphi(z_n), \varphi_s(z_n)) = 0.
\]

Moreover, \(C_\varphi - C_\psi_s \) is compact on \(B \) for any \(s \in [0, 1] \).

\textbf{Proof.} (i) By the definition, \(\Gamma^#(\varphi_s) \subset \Gamma(\varphi_s) \). Since \(\Gamma(\varphi_s) \subset \Gamma(\varphi) \cap \Gamma(\psi) \), we have that \(\Gamma^#(\varphi_s) \subset \Gamma(\varphi) \cap \Gamma(\psi) \).

(ii) Since \(C_\varphi - C_\psi \) is compact on \(B \), Theorem 2.4 asserts that
\[
\lim_{n \to \infty} (\varphi'(z_n) - \psi'(z_n)) = \lim_{n \to \infty} \varphi'(z_n) \rho(\varphi(z_n), \psi(z_n)) = 0
\]
for any \(\{z_n\} \subset \Gamma(\varphi) \cap \Gamma(\psi) \). By Lemma 4.2, for any \(\{z_n\} \subset \Gamma(\varphi) \cap \Gamma(\psi) \),
\[
\left| \varphi'(z_n) - \psi'(z_n) \right| \leq \left| \varphi'(z_n) - \psi'(z_n) \right| + \left| \varphi'(z_n) \right| \rho(\varphi(z_n), \psi(z_n))^2 \to 0.
\]

Next, by Lemma 4.1, we have that
\[
\left| \varphi'(z_n) \right| \rho(\varphi(z_n), \varphi_s(z_n)) \leq \left| \varphi'(z_n) \right| \rho(\varphi(z_n), \psi(z_n)) \to 0.
\]

Hence we get (ii).

Then the last part of the assertion follows from (i) immediately.

Similar consequence holds on \(B_0 \).
Proposition 4.4. Let \(\varphi \) and \(\psi \) be in \(S(D) \) such that \(C\varphi \) and \(C\psi \) are bounded on \(B_\alpha \). If \(C\varphi - C\psi \) is compact on \(B_\alpha \), then \(C\varphi - C\psi_{s} \) is compact on \(B_\alpha \) for any \(s \in [0, 1] \), that is,

\[
\lim_{|z| \to 1} (\varphi^#(z) - \varphi_s^#(z)) = \lim_{|z| \to 1} \varphi^#(z) \rho(\varphi(z), \varphi_s(z)) = 0.
\]

The following theorem is a main result in this section.

Theorem 4.5. Let \(\varphi, \psi \in S(D) \). Suppose that \(C\varphi - C\psi \) is compact on \(B \). Then the following are equivalent:

(i) \(\varphi^#(z_n) \to 0 \) on \(\Gamma(\psi) \setminus \Gamma(\varphi) \) and \(\psi^#(z_n) \to 0 \) on \(\Gamma(\varphi) \setminus \Gamma(\psi) \).

(ii) The map \(s \to C\varphi_s \) is continuous from \([0, 1]\) to \(C(B) \).

Proof. (i) \(\Rightarrow \) (ii). To prove this implication, it is sufficient to consider only the continuity at \(s = 0 \). By (2),

\[
\|C\varphi - C\varphi_{s}\|_{B} \leq \beta(\varphi(0), \varphi_s(0)) + \|\varphi^# - \varphi_s^#\|_{\infty} + \sup_{z \in \mathbb{D}} |\varphi^#(z)| \rho(\varphi(z), \varphi_s(z)).
\]

It is trivial that \(\beta(\varphi(0), \varphi_s(0)) \to 0 \) as \(s \to 0 \).

Fix \(\varepsilon > 0 \). By the assumption and Theorem 2.4, we have that for any \(\{z_n\} \subset \Gamma(\varphi) \),

\[
\lim_{n \to \infty} (\varphi^#(z_n) - \psi^#(z_n)) = \lim_{n \to \infty} \varphi^#(z_n) \rho(\varphi(z_n), \psi(z_n)) = 0.
\]

Then there exists some \(r_1 \in (0, 1) \) such that for any \(z \in \Gamma_1(\varphi) \), \(|\varphi^#(z) - \psi^#(z)| < \varepsilon / 2 \) and \(|\varphi^#(z_n)| \rho(\varphi(z_n), \psi(z_n)) < \varepsilon / 2 \). By Lemma 4.2, we have that for any \(z \in \Gamma_1(\varphi) \),

\[
|\varphi^#(z) - \varphi_s^#(z)| \leq |\varphi^#(z) - \psi^#(z)| + |\varphi^#(z)| \rho(\varphi(z), \psi(z))^2 < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

(8)

On \(\mathbb{D} \setminus \Gamma_1(\varphi) \), \(\varphi^#(z) - \varphi_s^#(z) \) converges uniformly to 0 as \(s \to 0 \). Thus there exists some \(s_1 \) so close to 0 that for any \(s < s_1 \),

\[
\sup_{z \in \mathbb{D} \setminus \Gamma_1(\varphi)} |\varphi^#(z) - \varphi_s^#(z)| < \varepsilon.
\]

(9)

Combining (8) and (9), we have that for any \(s < s_1 \),

\[
\sup_{z \in \mathbb{D}} |\varphi^#(z) - \varphi_s^#(z)| < \varepsilon.
\]

Hence we get

\[
\sup_{z \in \mathbb{D}} |\varphi^#(z) - \varphi_s^#(z)| \to 0 \quad \text{as} \quad s \to 0.
\]

Next we prove

\[
\sup_{z \in \mathbb{D}} \varphi^#(z) \rho(\varphi(z), \varphi_s(z)) \to 0 \quad \text{as} \quad s \to 0.
\]

(10)

as \(s \to 0 \). Fix \(\varepsilon > 0 \) again. By Proposition 4.3 and Theorem 2.4, for any \(\{z_n\} \subset \Gamma(\varphi) \),

\[
\lim_{n \to \infty} \varphi^#(z_n) \rho(\varphi(z_n), \varphi_s(z_n)) = 0.
\]
This implies that there exists some $r_2 \in (0, 1)$ such that for any $z \in \Gamma_{r_2}(\varphi)$,
\[|\varphi^#(z)| \beta(\varphi(z), \varphi_s(z)) < \varepsilon. \]
Since $\beta(\varphi(z), \varphi_s(z))$ converges uniformly to 0 on $\mathbb{D} \setminus \Gamma_{r_2}(\varphi)$ as $s \to 0$, there exists some s_2 so close to 0 that for any $s < s_2$,
\[\sup_{z \in \mathbb{D} \setminus \Gamma_{r_2}(\varphi)} |\varphi^#(z)| \beta(\varphi(z), \varphi_s(z)) < \varepsilon. \]

Now we get (10).

Consequently, by the inequality (2), we have that $\|C\varphi - C\varphi_s\|$ converges to 0 as $s \to 0$. Similarly, we can prove the continuity at $s = 1$ using the condition that $\psi^#(z_n) \to 0$ on $\Gamma(\varphi) \setminus \Gamma(\psi)$.

(ii) \Rightarrow (i). Suppose that there exists a sequence $\{z_n\} \in \Gamma(\psi) \setminus \Gamma(\varphi)$ such that $\varphi^#(z_n) \to \omega \neq 0$.

Since $\|\alpha_w\| = 1$ for each $w \in \mathbb{D}$, we have that
\[\|C\varphi - C\varphi_s\| \geq \| (C\varphi - C\varphi_s) \alpha(\varphi(z_n)) \| \]
\[= \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \varphi'(z) \frac{1 - |\varphi(z_n)|^2}{(1 - \varphi(z_n)\overline{\varphi}(z))^2} - \frac{1 - |\varphi(z_n)|^2}{(1 - \varphi(z_n)\varphi_s(z))^2} \right| \]
\[\geq (1 - |z_n|^2) \left| \frac{1}{1 - |\varphi(z_n)|^2} \varphi'(z_n) - \varphi_s'(z_n) \right| \frac{1 - |\varphi(z_n)|^2}{(1 - \varphi(z_n)\varphi_s(z))^2} \]
\[\geq |\varphi^#(z_n)| - |\varphi_s^#(z_n)| \frac{(1 - |\psi(z_n)|^2)(1 - |\varphi(z_n)|^2)}{|1 - \varphi(z_n)\varphi_s(z_n)|^2}. \]
\[\geq |\varphi^#(z_n)| - |\varphi_s^#(z_n)| \left(1 - \rho(\varphi(z_n), \varphi_s(z_n))^2 \right). \] (11)

So, taking the limit, we obtain that
\[\|C\varphi - C\varphi_s\| \geq |w| > 0 \quad \text{for} \ s \in (0, 1]. \]

This implies that the map $s \to C\varphi_s$ is not continuous at $s = 0$. This contradicts the condition (ii).

Corollary 4.6. Let φ and ψ be in $S(\mathbb{D})$ such that neither $C\varphi$ nor $C\psi$ are compact but $C\varphi - C\psi$ is compact on B. Suppose $\Gamma(\psi) = \Gamma(\varphi)$. Then $C\varphi \sim_B C\psi$.

In the case of H^∞, if $C\varphi - C\psi$ is compact on H^∞, then $\Gamma(\varphi) = \Gamma(\psi)$ holds. But in the case of B, this implication is not always true. For example, let I be an inner function satisfying $\lim_{|z| \to 1} |I^#(z)| = 0$. For $\xi \in \partial\mathbb{D}$, we put $\varphi_\xi(z) = (1 + \overline{\xi} I(z))/2$. Then we can easily check that $\lim_{|z| \to 1} |\varphi_\xi(z)| = 0$ and that $C\varphi_\xi$ is compact on B. So when we take two different points $\xi_1, \xi_2 \in \partial\mathbb{D}$, both $C\varphi_{\xi_1}$ and $C\varphi_{\xi_2}$ are compact on B and so that $C\varphi_{\xi_1} \sim_B C\varphi_{\xi_2}$. On the other hand, $\Gamma(\varphi_{\xi_1}) \neq \Gamma(\varphi_{\xi_2})$.

About the converse of Corollary 4.6, Toews [11] presented an example which shows that there exist composition operators with non-compact differences that lie in the same component of $\mathcal{C}(B)$.

Similarly, we can prove the following theorem.
Theorem 4.7. Let \(\varphi \) and \(\psi \) be in \(S(\mathbb{D}) \) such that \(C_\varphi \) and \(C_\psi \) are bounded on \(\mathcal{B}_\alpha \). If \(C_\varphi - C_\psi \) is compact on \(\mathcal{B}_\alpha \), then \(C_\varphi \sim C_\psi \) in \(\mathcal{C}(\mathcal{B}_\alpha) \).

5. Isolation

Finally we give a remark to the isolation of \(\mathcal{C}(\mathcal{B}) \). To compare the topology, we can see that if \(C_\varphi \) is isolated in \(\mathcal{C}(\mathcal{B}) \), then \(C_\varphi \) is isolated in \(\mathcal{C}(\mathcal{H}_\infty) \). But Example 3.4 shows that the converse does not always hold.

We will give a sufficient condition for isolated points in \(\mathcal{C}(\mathcal{B}) \). We denote by \(\Gamma^\#(\varphi) \) the limit point of \(\Gamma^\#(\varphi) \). Then \(\Gamma^\#(\varphi) \) is a subset of \(\partial \mathbb{D} \).

Theorem 5.1. If \(\Gamma^\#(\varphi) \) has positive measure, then \(C_\varphi \) is isolated in \(\mathcal{C}(\mathcal{B}) \).

Proof. Suppose that there exists a positive constant \(\varepsilon \) such that \(E = \{ \omega \in \Gamma^\#(\varphi) : |\varphi^\#(\omega)| > \varepsilon \} \) has positive measure. Hence, if \(\psi \) is in \(S(\mathbb{D}) \) and \(\psi \neq \varphi \), then there exists a sequence \(\{z_n\} \subset \mathbb{D} \) such that \(z_n \to \omega \in E \) and \(\varphi(z_n) - \psi(z_n) \not\to 0 \).

So we have that

\[
\|C_\varphi - C_\psi\| \geq \|\alpha_{\varphi(z_n)}\| \geq |\varphi^\#(z_n)| - |\psi^\#(z_n)| \left(1 - \rho(\varphi(z_n), \psi(z_n))^2\right).
\]

As \(z_n \to w \),

\[
\|C_\varphi - C_\psi\| \geq |\varphi^\#(w)| > \varepsilon.
\]

This means that \(C_\psi \) is far from any other \(C_\psi \) at least \(\varepsilon \). \(\Box \)

If \(\varphi \) has finite angular derivatives on a set of positive measure, then \(\varphi \) satisfies the condition of Theorem 5.1. So \(\varphi(z) = z \) and Möbius transformations of \(\mathbb{D} \) induce isolated composition operators in \(\mathcal{C}(\mathcal{B}) \) respectively.

References