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1. INTRODUCTION

In this paper an algorithm is presented to solve the linear system Ax =b when the
coefficient matrix A is tridiagonal. The algorithm is based on the Alternating Group

Explicit (AGE) iterative method (1].

2. DESCRIPTION OF THE AGE METHOD

Consider the tridiagonal system

Ax =b (1)
of order n, and let
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b=(b,b,,...,5,).
We split the matrix A into the sum of two matrices,
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if nis odd, with d; ={d,/2], i = 1,2,...,n, where G, and G, satisfy the condition G, + r}
and G, + rl are non-singular for any r >0.
By using equation (3), the matrix equation (1) can now be written in the form

(G +Gyx=b (%)

and, by following a strategy similar to the ADI method [2], x**' and x**" can be
determined implicitly by

(G, + rD)x**1? = b — (G, — r1)x¥
and
Gy rDXE* ) = b — (G, — Dy e
or explicitly by
XD = (G +r)7'b — (G, — rl)x¥)

and

x4+ = (G, + r1)~'[b = (G, — rl)x*+12], (6b)

where r is the iteration parameter given by [3]
r=uv (7

where « and ¢ are the minimum and maximum eigenvalues of the submatrices of G,
and G,.

In the cases when the submatrices are singular and the smallest eigenvalue is zero, then
the second smallest eigenvalue is considered [4].

Evidently, (G, + rb), (G, + rl), (G, — r1) and (G, — rl) can be determined by inspection
with (G, + rl) and (G, + rl) easily invertible. Hence, from equations (6b), if n is even then
x*+1D and x**" are given by
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where
a=d/+r and B,;=d/-r, i=12,...,n
and

,/;=l/(1ial+l_ai+lc()s i=1,2,...,n-—l.

9)

By carrying out the necessary algebra, equations (8a, b) can then be written in explicit
form: .
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and
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Equations (10a) can be derived from the computational molecule shown in Fig. 1 and the
equations

xfk wa = Alxik—) | + B‘XEk) + Cixs‘kll + Dixf'klz + Ez (I la)
and
(A =4, x® + B xP+Cop x® + D x8+ E L, (11b)
where
A:=—dv+la:/;v B:= —1i+lﬂ1ﬁv C1=CIBI+I &)
D;=cc, f, and E = (2,0~ cb. \)f (12a)
and

A =aa.,\ f, Bi+l=ai¢lﬁiﬁs Ciol=""anﬁ:+l i
DH-I= _1|C1+lf; and E:+l=(_ai+lbx+1:bi+l)ﬁ (Izb)

fori=1,3,5,...,n— | witha, = ¢, =0. Similarly the explicit computational molecule for
the (k + 1)th sweep given by equations (10b) is given in Fig. 2 and by the equations

xfk¢|)= P,'Xs’k_jl Z)+ Qixgkfl'Z) + Rixgﬁ#]lil) _+_Sixfk+l.'2) + 7‘[ (133)
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Fig. 1. Explicit computational molecule for the (k — §)th sweep.
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Fig. 2. Explicit computational molecule for the (k + 1)th sweep.

and
XU = B G e R 4 S, x4 T,
where
Pi=—x_af, Q=-x.8f, R=cB.f,
S;=cicinfi and T, =(x,.,b,—c¢b.,))f.
and

P:+l=aia:+lf;" Q_"ﬂ:anlﬁxﬁv wa’—'—"iﬁnl ir
~§1+|=—°‘icx+|fi and T,u:(-aiﬂbi'*'“;bfﬂ)ﬁ
fori=2,4,...,n-2; with i =0,

P,=O, Q—l=0’ Rl=‘ﬂl/°‘1a §1=_C|/1| and 7--|=b|/9‘|
and i = n,

Pn= _an/anv Qn= _ﬁn/am R,,=0, Sn=0 and T,,=b,,/d,,.

(13b)

(14a)

(14b)

In a similar manner, a similar set of equations can be obtained if n is odd. Thus the
AGE algorithm can be completed explicitly by using equations (1la, b) and (13a, b) in
alternate sweeps until a suitable convergence to a specific level of accuracy ¢ is achieved.

3. NUMERICAL RESULTS
Solve the linear system,

4x1—-xz=b,
—X,-_|+4.\’,~—X,~,,=b,. i=2,3,...,n—l
—X,_; +4x,=b,

when the constant vector b is given random values.

Table |
Order of matrix  [teration parameter No. of iterations
n 14 k
10 1.43-1.96 b
20 1.43-1.777 5
30 1.43-1.776 5
40 1.47-1.739 5

(15)
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A Fortran program which solves this problem using the subroutine (AGE) is given in
the Appendix and Table | shows the results obtained. the convergence test used was the
absolute test | x'*~ " — x®| <¢, with ¢ =107"

t

4. THE COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

The computational complexity for the sequential algorithm can be easily shown from
the above method to be 8 multipiications and 8 additions per point per AGE iteration with
an additional 2 multiplications and 3 additions before the first iteration for the evaluation
of f.

Hence, for the above (model) problem, the total number of arithmetic operations
required for a solution is

40n + 2 multiplications and 40n + 3 additions (16)

However, it is well-known that a direct tridiagonal system solver applied to the given linear
system (15) requires [5]

Sn multiplications and 3n additions (17)

Further, for non-linear problems, it is not so easy to apply direct methods and the
application of the AGE iterative algorithm is of immense practical importance. Also, the
AGE method becomes extremely competitive if a good previous approximation is used as
a starting guess, i.€. as in parabolic problems in which case only 2-3 iterations are required
to produce the solution.

For parallel computers, it is well-known that the direct method consists of non-linear
recurrences that must be evaluated sequentially, so there is little parallelism in the direct
algorithm and therefore it is not an ideal algorithm for use on parallel computers.

However, the AGE algorithm is suitable for parallel computers as it possesses separate
and independent tasks, i.e. (2 x 2) groups which can be executed concurrently. Thus, from
equations (10a, b) the total number of arithmetic operations required for a solution on a
synchronous SIMD computer can be verified to be 16 multiplications and 16 additions per
iteration if n/2 processors are available taking all the odd points followed by the even
points, and on asynchronous MIMD computers it requires 8 multiplications and 8
additions per iteration if n processors are available.
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APPENDIX

**%kx To solve a system Ax=b when A 1s a tridiagonal ***#
RARKRRRRRRRA matrix by the (a.g.e.)method. AkkRRARRR

age ~ Tridlagonal equation solver.
the order of the system

the iteration counter

the sub diagonal of A

the super diagonal of A

half the diagonal of A

the constant vector

NONOONODOODNODODODNDDNDDOD
ganesad s

dimension a(4l),b(41),c(41),d(41),x(41)

read (5,*)r,n,eps
do 10 i=],n
a(i)=-1.
d(1)=2.
c(l1)=-1.
b(1i)=rand ()*10.
10 continue
a(l)=0.
c(n)=0.
write(6,20)(b(1),1=1,n)

call age(a,b,c,d,m,n,eps,x,r)

write(6,15)n,eps,n,r
write(6,20)(x(1),1i=1,n)
15 format(/5x,"n =7 ,13,5¢x, eps =7,£9.6,
1 /5x,”No. of iterations =",14,5x,"r =" ,£7.3/5,
2 “The solution vector is”/5,22("""))
20 format(1x,10f8.4)
stop
end

subroutine age(a,b,c,d,m,n,eps,x,r)
dimension a(41),b(41),c(41),d(41),x(41),x1(0:41),x2(0:41),£(41)
nl=n-1
n2=n-2
do 25 i=],n+}
x(1)=0.1 .
£(1)=1./(Cd{L)+r)*(d(i+1)+r)-a(i+1)*c(1))
25 continue
n=0
30 continue
mom+]
do 35 i=1,n
35 x1(1)=x(1)
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*hh® first sweep RRA*

LA R AR N R I AT LS

1f(mod(n,2).eq.0)go to 40
x2(1)=(b(1)=(d(1)=r)*x1(1)=c(1)*x1(2))/(d (1) +r)
i=2
go to 45

=1
do SO i=j,nl,2

1l=1{+]

122142

k=i-1

dl=d({)+r

d2=d({1)+r
pl=b(1)-a(i)*x1(k)~(d(L)-r)*x1(1)
p2=b(11)=(d (11)=r)*x1(11)=c(11)*x1({12)
x2(1)=(d 2% pl-c(1)*p2)*£(4)
x2(11)=(-a(11)*pl+d 1*p2)*£(1)

continue

*kkk gecond sweep A¥kk

1f(mod(n,2).ne.0)go to 55
x(1)=(b(1)=(d(1)=r)*x2(1)=c(1)*x2(2))/(d(1)+r)
=2
go to 60
j=1
do 65 i=j,n2,2
11=i+]
12=1+2
k=1-1
dl=d(i)+r
d2=d (1]1)+r
plab{1)-a(1)*x2(k)=(d (1)~r)*x2(1)
p2=b(11)=(d(11)=r)*x2(11)-c(11)*x2(12)
x(1)=(d2*pl—c(1)*p2)*£f (1)
x(11)=(=a(11)*pl4d 1*p2)*£({)
continue
x(n)=(b(n)-a(n)*x2(n1)=(d(n)-r)*x2(n))/(d(n)+r)
do 70 i=1,n
if(abs(x(1)~x1(1)).gt.eps)go to 30
return
end



