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ABSTRACT A previous communication described the peculiar motion of the
plasma trapped between erythrocytes in a capillary (bolus flow). In this paper
the effect of this motion on capillary resistance to flow, as well as on dissipative
effects associated directly with the cells, are described. The resistance that would
be associated with plasma in bolus flow at high Reynolds numbers (relative to
a capillary value of 0.01) was studied in a model, in which air bubbles, sepa-
rated by short segments of water, passed along a glass tube. The resistance to
flow, especially with short boluses, was at least ten times greater than that asso-
ciated with Poiseuille flow. In a second series of experiments at lower Reynolds
numbers, a single bolus of liquid was forced by air pressure along a glass tube.
In these latter experiments, which more closely simulate biological conditions,
the mean resistance to flow was only 30 per cent greater than that associated
with Poiseuille flow. In the final series of experiments human blood and plasma,
diluted in acid-citrate dextrose (A.C.D.) in varying degrees, were forced
through glass micropipettes of capillary dimensions. The mean apparent vis-
cosity of whole blood was found to exceed that of plasma by only about 5 per
cent, thus verifying a conjecture to this effect made by Fahraeus and Lindqvist
in 1931.

1. INTRODUCTION

In the first paper (1) of this series the peculiar eddy-like motion of plasma trapped
between two red cells in a capillary and the effect of this motion on the equilibration
of gases in the capillary were discussed. In bolus flow (i.e. red cells in single file)
the velocity distribution in the plasma is not parabolic, so that it cannot be assumed
a priori that Poiseuille's law is at all applicable. In addition to the resistance to flow
associated with the trapped plasma there will be 'friction' between the walls of
the red cells and the endothelial lining of the capillary. A third possible contribution
to resistance to flow exists if the contents of the red cell are set in motion in bolus
flow. Finally, energy is required to deform the discoid red cell in order that it may
enter a capillary of smaller diameter. This last factor is the subject of the final paper
(2) in the series.
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It is well known from the work of Landis (3) that the pressure drop in the capil-
lary circulation represents 20 to 30 per cent of the total pressure drop across a vascu-
lar bed. On the other hand it has been known since the work of Fahraeus and Lind-
qvist (4) that the apparent viscosity of blood decreases as the radius of the vessel
decreases. Thus the pressure drop in the capillary circulation depends jointly upon two
quantities, namely the cross-sectional area of the capillary bed and the apparent
viscosity of blood. Landis (5) postulated that the apparent viscosity is greater in
the capillaries than in the arteries, whereas Fahraeus and Lindqvist (4) postulated
a smaller apparent viscosity for blood in capillaries than in arterioles. No theoretical
basis for the postulate of Landis has been advanced. But for the opposite postulate
of Fahraeus and Lindqvist, in so far as large tubes (i.e. wide enough for several
cells abreast) are concerned, at least two theories have been advanced (6); one
theory attributes the decreased viscosity to the fact that the "integration" in the
derivation of Poiseuille's law should be replaced by a "summation," the other at-
tributes it to the formation of a cell-free zone near the wall. Evidently neither of
these theories is applicable to flow through those capillaries which permit red cells
to pass only in single file. There is abundant experimental evidence for the decrease
in apparent viscosity of blood as the radius decreases, but only down to radii of
about 25 microns. However, Bayliss (7) has reported a few measurements made in
tubes of about 10 microns diameter.

There has been little discussion (see reference 8) of the general relevance of the
Reynolds number to a discussion of the circulatory system, although the importance
of the Reynolds number as a criterion of the onset of turbulence has been realized
(9). Of greater present interest is the fact that the Reynolds number is an index of
whether inertial or viscous dissipation may be expected to predominate in a given
situation. The Reynolds number associated with flow through the aorta is of the
order of 1,000, whereas that associated with the capillary circulation is certainly less
than 0.01. In the aorta it may be expected that inertial dissipation in blood is of
considerable importance, whereas in the capillary circulation viscous dissipation
may be expected to predominate.

Consider the case of bolus flow. The radial velocity components associated with
the "mixing" motion indicate that the fluid is being accelerated and decelerated
within the trapped plasma. This acceleration will be associated with an inertial loss.
At large Reynolds numbers this inertial loss may be expected to be large, whereas
at small Reynolds numbers it may be expected to be rather small in comparison to
viscous dissipation. Evidently an experimental study of the resistance to flow offered
by the plasma in bolus flow would be valuable, as well as measurements of the re-
sistance to flow offered by whole blood in very small tubes.

2. MODEL EXPERIMENTS

The Reynolds number has a further significance. It may be shown (10) that dynam-
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ical similarity (i.e. same relative importance of inertial and viscous forces) between
the fluid behaviour of the model and that of a prototype is achieved when the
Reynolds number is the same in both cases. Thus dynamical similarity between a
model and the plasma of the capillary circulation is achieved if the Reynolds number
is of the order of 0.01 or less.

In the model experiments to be described it is again desirable to compare the
results obtained with bolus flow to those which would be obtained with Poiseuille
flow (as was done in the first paper (1) for the thermal analogue). In order to make
this comparison it is convenient to express Poiseuille's law in terms of the dimen-
sionless parameters P, L, and R.
The "pressure coefficient" P is given by:

P = 2 AP/puo2 (1)

in which AP denotes the pressure drop along the length I of the tube; the fluid having
density p and average velocity uo. Similarly the axial ratio L is given by:

L = I/a (2)

wherein a is the radius of the tube. The Reynolds number R is given by:

R = 2pauo/l (3)

wherein v1 is the viscosity of the fluid. Poiseuille's law, expressed in terms of P, L,
and R is given by:

P = 32L/R (4)

These same dimensionless parameters may be employed to describe bolus flow.
Thus it is possible to compare the results obtained in bolus flow experiments with
those which would be obtained in Poiseuille flow experiments by expressing the data
in terms of P, and L/R. It is of interest to compute the value of L/R for the capil-
lary circulation. The axial ratio 'L' may be taken as unity, which would correspond
roughly to the average axial ratio of the plasma boluses in a sample of blood having
50 per cent hematocrit in capillaries of 10 microns diameter. Thus, with an axial
ratio of unity and a Reynolds number of 0.01, the parameter L/R has the value 100.
A nominal range then for the capillary circulation may be taken as:

10 < LIR < 1000 (5)

The results of model experiments now to be described will be expressed in terms
of the above formalism.

Method

Two series of experiments were carried out with the apparatus already described
and illustrated in Paper I of this series (1). Water, under constant pressure, was
allowed to flow through a long horizontal glass tube (3 mm in diameter). Bolus flow
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(in which a regular train of air and water bubbles flowed down the tube) was ob-
tained by injecting compressed air into the water through thermometer tubing and
a hypodermic needle. The Reynolds number associated with this flow was relatively
high (order 100).

In the second series the apparatus again consisted chiefly of a horizontal glass
tube. In this case, however, a single bolus of liquid was forced along the tube under
constant air pressure. Alcohol was employed as the liquid phase in order to reduce
surface tension effects. The Reynolds number associated with the flow in this second
series of experiments was much smaller (order 5).

In each series of experiments it was a simple matter to determine the driving
pressure (by the level of a liquid manometer), the average length of the boluses
(by calipers), and the average velocity of the bolus (by timing individual boluses
over a given length). The density and viscosity of the fluid at the given temperature
were taken from standard tables, and the average radius was computed from the
weight of water in a given length of tube. Thus all of the parameters required to
describe bolus flow in terms of P, L, and R could be determined.

Observations

The results of the first series of experiments (Reynolds number about 100) are
shown in Fig. 1 wherein the ratio of the resistance to flow with bolus flow (R) to
the resistance to flow with Poiseuille flow (R') is plotted against the axial ratio
(1/a).
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FiGURE 1 Viscous resistance associated with bolus flow. Data obtained in bolus
flow experiments in which the Reynolds number was of the order of 100. The ratio
of the bolus flow resistance to the Poiseuille resistance is plotted against the axial ratio.
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The combined result of both series of experiments is plotted logarithmically in
Fig. 2. The smooth curve represents Poiseuille's law adjusted to take into account
the kinetic energy correction (i.e. the corrected equation is given by:

P = 32L/R + 1, (cf. reference 11)

A regression line was fitted through the data (i.e., P, a linear function of L/R) over
the nominal range of capillary blood flow. The mean value of P obtained from this
regression line was 30 per cent greater than for the Poiseuille-law flow over the
same range (shown in Fig. 2).

Discussion

In the model experiments with bubbles of air in water, or the single bolus of water
or alcohol in air, the shape of the meniscus at the end of the bolus is affected by
surface tension and by its motion, and may not correspond with the case of red
cells deformed in a capillary. If the pattern of flow between the boluses were suffli-
ciently different, the resistance to flow in the two cases might not correspond. Also
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FIGURE 2 Summary of data obtained in bolus flow experiments. The smooth curve
represents Poiseuille-law flow corrected by a kinetic energy term. The crosses corre-
spond to the experiments at high Reynolds numbers, the circles and triangles to those
at low Reynolds numbers.
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part of the resistance to flow might be attributed to pressure drops across the series
of meniscuses. Early in the work, attempts were made to assess this factor by using
interfaces with different interfacial tensions. For example, the surface tension of
air-alcohol is only 25 per cent of that of air-water. No consistent relation of the
resistance to flow to surface tension was found. We can only hope that this means
that this "end effect," dependent on surface tension and on the shape of the menis-
cus at the ends of a bolus, is not important, and that the results in the models,
scaling down to the dimensions of the capillary by the 'modeling theory,' indicate
reliably the effects in actual blood flow through capillaries.

At the larger Reynolds numbers (smaller values of L/R) the viscous resistance
associated with bolus flow may be as much as ten times that associated with
Poiseuille-law flow. At smaller Reynolds numbers on the other hand the resistance
to flow associated with bolus flow is only 30 per cent greater than that associated
with Poiseuille-law flow. The smallest Reynolds number obtained in the experiments
was still considerably larger (500 times) than those which obtain in the capillary
circulation. However, if data were available at lower Reynolds numbers it is to be
expected that they would fall on the same curve (Fig. 2) as the present data in-
asmuch as the plot depends only on the ratio of L to R (cf. equation 5).

Thus, in so far as the plasma of the capillary circulation is concerned, the de-
parture from Poiseuille's law is 30 per cent or less. This estimate is consistent with
the results of a theoretical calculation of the resistance to flow associated with bolus
flow being carried out with the collaboration of Dr. J. Blackwell of the Department of
Physics and Applied Mathematics. This calculation is based upon a solution to
the Navier-Stokes equations obtained with boundary conditions similar to those of
bolus flow.

3. MICROPIPETTE EXPERIMENTS

When blood flows through the capillaries, dissipation is associated with the motion
of the cells as well as with the motion of the plasma. Thus the resistance to flow may
be appreciably greater than that associated with just the plasma. In order to in-
vestigate this possibility an apparatus was designed to permit blood flow measure-
ments to be made in a tube of capillary dimensions. A few measurements of a
somewhat similar nature have been described by Bayliss (7).

Theory

Fluids may be forced through glass micropipettes (of the type employed for
intracellular electrodes) so that a droplet of gradually increasing radius forms on
the tip (see Fig. 3). The flow may be calculated from the time required for a drop
of given radius (as determined microscopically with an eyepiece reticule) to form
on the tip. This technique permits flow of the order of 10-6 cc/sec. to be determined.
However, this flow rate is still 10 times as great as the flow through capillaries in vivo.
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FIGURE 3 The "drop method" of measuring flow in the micropipette experiments.
The radius of the drop is estimated through the eyepiece reticule. The spacing in the
reticule represents about 100 microns.

There are two corrections to the method, both of which are made possible by
adopting -the method of timing from the start, when the meniscus is on the tip of
the micropipette, to a standard radius of droplet (usually 600 microns). The first
correction is for evaporation of the droplet. This was evaluated by measuring the
shrinkage of a drop, without any flow entering, over the same size range. Evapora-
tion diminished the apparent rate of flow by 3 per cent. The droplet method for
flow was checked against collection of the efflux in a calibrated 0.1 nml pipette, with
very good agreement. The second correction is for the pressure-drop, diminishing
the total driving pressure, across the surface of the droplet. This is large (150 mm
Hg for a tip of 7 microns radius) when the droplet radius approaches that of the
tip, but decreases as the droplet grows (2T/r). The true mean for the correction is a
very complicated function of time, but using the time to a standard size of droplet
ensures that for a given size of micropipette tip, the mean correction is the same for
all the flow determinations made at different driving pressures. Thus, while the
capillarity correction leads to the positive intercept on the graphs (e.g. Figs. 4 and
5), capillarity cannot affect the slope of the flow pressure lines, upon which the
subsequent calculations are based.

The relative viscosity of the fluid may be calculated directly. A pressure-flow
relation is first obtained with a standard solution, (in this case acid-citrate-dextrose
(A.C.D. cf. (12)). The slope (ml) of this line is computed. Then a second pres-
sure-flow relation is obtained with the fluid under study (in this case either diluted
plasma or diluted blood). The slope (M2) of this second line is computed. The rela-
tive viscosity (rel) is given by:

77rel = Ml/M2 (6)

The apparent viscosity (aqpp) is calculated from the relative viscosity by multiply-
ing by the viscosity of the standard solution (A.C.D.) i.e.
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FiGuRE 4 A typical result obtained with diluted human plasma in the micropipette
experiments. The first pressure-flow relation (denoted by mi) was obtained with
A.C.D. Then a pressure-flow relation was obtained with plasma (denoted by Mi).
Finally after cutting a portion off the tip (575 microns in this case) another pressure-
flow relation was obtained with A.C.D. (denoted by me). The plasma had, in this
experiment, a protein concentration of 6.0 gm per cent.

%.. = 100 X 7lrel X I1A.C.D. centipoise (7)
Note that the term "apparent viscosity" includes, in the case of blood, the effects
within the plasma and cells, as well as the effects of friction between the cells and
glass walls. In principle the apparent viscosity is proportional to the mean rate of
shear for a given applied stress.

It is also possible to determine the radius of a relevant portion of the micro-
pipette tip. The first step is to carry out a pressure-flow determination with water,
after which a known length (of the order of 200 microns) is cut from the micro-
pipette tip (by microscissors under microscopic observation). Then another pres-
sure-flow determination with water is carried out. If the slope of the first and third
pressure-flow relations are denoted by ml and m3 (cc/sec. x 106/mm Hg respec-
tively, and the length cut off is denoted by I (microns), then the average radius of
the segment (cf. Appendix I) is given by:

a = 1 microns (8)

ml m3
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Procedure

(a) In the first series of experiments the apparent viscosity of human plasma was
determined. Venous blood, collected into varying amounts of the acid-citrate-
dextrose (A.C.D.) solution was centrifuged, after which the supernatant plasma
was injected into a micropipette. A series of pressure-flow determinations was made
with plasma, and then, after cutting a portion off the tip, another series was made
with A.C.D. Protein determinations were carried out by the Department of Patho-
logical Chemistry, Victoria Hospital, London, Ontario.

Thus a schedule for these experiments consisted in making three pressure-flow
determinations, a first with A.C.D., a second with plasma, and finally, after cutting
a known length from the tip, a third with A.C.D. The two determinations made
with A.C.D. permit one to calculate the radius of a portion of the micropipette tip,
as described above.

(b) The second series of experiments differed from the first in two ways; human
blood (diluted in A.C.D.) was employed rather than plasma and furthermore (with
four exceptions) only two pressure-flow determinations were made, one with
A.C.D. and a second with blood. Thus it was not possible in most cases to calculate
the radius of the tip in this second series. The diameter could however be estimated
microscopically.

Both series of experiments were carried out in a temperature-controlled room.
The temperature was 21.0 + 0.5°C during the experiments with plasma and 23.5
+5°C in the experiments with blood.

Observations

Typical results obtained in an experiment with diluted plasma and in another ex-
periment with diluted blood are shown in Figs. 4 and 5, respectively. All of the
results obtained in both series of measurements are summarized in Fig. 6.
The tips of the micropipettes employed in the first series of experiments (with

plasma) were found to have a mean radius of 6.8 microns with a standard devia-
tion of 2.3 microns. The four pipettes for which the radius was determined in the
experiments with blood were found to have a mean radius of 4.7 + 1.0 microns.

Discussion

The linear relation observed between pressure and flow both for blood and plasma
is of interest. The large intercept on the pressure axis (Fig. 4 and 5) may be attrib-
uted to surface tension ( 13), since the pressure applied to the micropipette is plotted
rather than the true driving pressure.
The straight lines plotted in Fig. 6 represent the regression equations calculated

for the data obtained with plasma and blood. These equations are:

tibl. = 0.020 He + 1.00 (10)
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FIGuRE S A typical result obtained in the experiments with diluted human blood.
In this example the blood had a hematocrit value of 37 per cent.
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FiGURE 6 Apparent viscosities of blood and plasma. A summary of the data obtained
in experiments with human blood and plasma. Note that two axes are plotted along
the abscissa. The results obtained with plasma are to be referred to the upper axis,
those with blood to the lower axis.
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a1pi. = 0.091 Pr + 1.16

Since in the data of Equation (10) the whole blood was diluted, the protein con-
centration Pr is proportional to the hematocrit He. v1pi and lbl represent the viscosi-
ties in centipoise of plasma (at 21°C) and blood (at 23.5°C) respectively, and Pr
and He the corresponding protein concentration (gm per cent) and hematocrit
value. The coefficients of correlation were 0.74 and 0.93, respectively. The reasons
for the poorer correlation coefficient obtained in the experiments with blood are not
understood.

The regression equation may be employed to estimate the excess apparent vis-
cosity which whole blood exhibits over the apparent viscosity of plasma. Let us
take a nominal value of 7.0 gm per cent for the normal protein concentration of
plasma. Then from equation (9) it is found that the apparent viscosity of the plasma
is 1.80 centipoise at 21.0°C (i.e. 1.9 centipoise at 23.5°C). Similarly it is found
that the apparent viscosity of blood at a hematocrit of 50 per cent is 200 centipoise
(at 23.5°C). Thus the apparent viscosity of whole blood as determined in these
experiments exceeds that of the plasma by only about 5 per cent.

CONCLUSIONS

A considerable proportion of the data obtained in this laboratory on the in vitro
behaviour of blood (suspended in A.C.D.) is summarized in Fig. 7. The upper four
curves are taken from the work of Haynes (14). The lowest line of Fig. 7 is another
plot of the regression line (for blood) given in Fig. 5. The data is seen to form a
consistent family of curves, the apparent viscosity increasing both with increasing
hematocrit values and increasing radius.

Both in the model experiments and in the micropipette experiments the Reynolds
numbers were some 500 x greater than those which characterize capillary blood
flow. It is possible that the apparent viscosity of whole blood is even somewhat less
in the capillary circulation than observed in these experiments. This may be the case
in those capillaries where in the red cells do not touch the capillary wall (we have
termed this regimen "slug flow"). In slug flow the dissipation must occur chiefly
in the plasma. However it is considered unlikely that the apparent viscosity figure
for capillary blood will be less than the value for plasma (i.e. 1.9 centipoise at
23.50C) inany case.

It is concluded that human capillary blood has an apparent viscosity of 2.0 centi-
poise (at 23.5°C) with a standard error of estimate of ±0.27 centipoise. Further-
more (see Figs. 4 and 5) the flow is a linear function of the pressure so that a
relation of the same form as Poiseuille's law may be applied to the capillary circula-
tion. Thus if the average velocity of the blood in a capillary of known dimensions is
determined, the above figure for the apparent viscosity may be employed in
Poiseuille's law in order to calculate the pressure drop. However, this is not meant
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Attention has recently been directed (16) to the shear rate dependence of the
viscosity of whole blood and plasma. However the quantitative importance of this
factor in computing the resistance to flow in the capillary circulation remains to be
established.

This research was supported by a grant from the Life Insurance Medical Research Fund.

Note added in press relevant to Paper I of this series: Professor F. J. W. Roughton of Cam-
bridge University (personal communication) has pointed out that in his Ph.D. thesis of 1925
he wrote "The corpuscles being of about the same diameter as the capillary make it almost
certain that turbulent motion of the plasma must occur in the capillaries where indeed it is so
needed." The authors are glad of the opportunity to refer to this evidence of the well known
pioneering by Professor Roughton in the understanding of the physiology of the capillary
exchange of respiratory gases.
Received for publication, October 26, 1961.
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APPENDIX I

One may, given certain information, calculate the average diameter of a portion of the
micropipette tip. This calculation depends upon knowing the resistance to flow associated

J. W. PROTHERO AND A. C. BURTON Blood Flow in Capillaries. 11 211



with the micropipette before and after a known length is cut off the tip. In this case the
change in resistance may be attributed to the segment cut off. The Poiseuille resistance is
a function only of the fluid viscosity and of the tube's length and radius. Therefore, given
the change in Poiseuille resistance, the fluid viscosity, and the segment's length, the
average radius (i.e. fourth root average) of the segment cut off may be calculated. The
appropriate formula is given by:

ml = initial slope cc/sec. X 10'/mm Hg

Ms = final slope cc/sec. X 106/mm Hg

1.333 X 10'3)
ml m3

Where 0.943 is the reticule calibration factor and 1.333 X 10' converts the pressure in
mm Hg to dynes/cm'. The experiments were carried out in a temperature-controlled
room. The average temperature, as determined from continuous temperature recording
charts was 21.0 + 0.5°C. (plasma experiments). The viscosity of A.C.D. at this tem-
perature is 1. 16 centipoise. Equation (1) therefore reduces to:

20.891a= microns (2)

w aMl M3n
where a and I are in microns.
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