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Abstract Gut microbiota of higher vertebrates is host-specific. The number and diversity of the

organisms residing within the gut ecosystem are defined by physiological and environmental factors,

such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have

added a new dimension to the study of gut microbiota and the challenge to analyze the large volume

of sequencing data is increasingly addressed by the development of novel computational tools and

methods. Interestingly, gut microbiota maintains a constant relative abundance at operational tax-

onomic unit (OTU) levels and altered bacterial abundance has been associated with complex diseases

such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the

study of gut microbial population has emerged as an important field of research in order to ulti-

mately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interac-

tion among different bacterial species residing in the gut. Thus, predicting the influence of perturbed

microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we

summarize the population abundance of gut microbiota and its variation in different clinical states,

computational tools available to analyze the pyrosequencing data, and gut microbe–microbe inter-

action networks.
Introduction

Metagenomics is the study of genetic material retrieved
directly from environmental samples including the gut, soil,

and water. Typically, human gut microbiota behaves like a
multicellular organ, which consists of nearly 200 prevalent bac-

terial species and approximately 1000 uncommon species [1].
Several factors, such as diet and genetic background of the
host and immune status, affect the composition of the micro-

biota [2,3]. It is also shown that early environmental exposure
and the maternal inoculums have a large impact on gut micro-
biota in adulthood [4]. Gut microbiota complements the biol-

ogy of an organism in ways that are mutually beneficial [5].
Gut microbiota can be studied using different approaches.

For instance, descriptive metagenomics can reveal community
structure and variation of the microbiome and microbial rela-

tive abundance is estimated based on different physiological
nces and
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Box 1 Glossary

Microbiome: the ecological community of commensal, symbiotic,

and pathogenic microorganisms that literally share our body space.

Metagenome: all the genetic material present in an environmental

sample, consisting of the genomes of many individual organisms.

Metagenomic sequencing: the high-throughput sequencing of

metagenome using next-generation sequencing technology.

Metagenomics: the study of genetic material or the variation of

species recovered directly from environmental samples.

Descriptive metagenomics: estimation of microbial relative

abundance based on different physiological and environmental

conditions to reveal community structure and variation of the

microbiome.

Functional metagenomics: the study of host–microbe and

microbe–microbe interactions toward a predictive dynamic

ecosystem model to reflect a connection between the identity of

a microbe or a community.
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and environmental conditions [6,7]. On the other hand, func-
tional metagenomics is the study of host–microbe and
microbe–microbe interactions toward a predictive, dynamic

ecosystem model. Such studies reflect connections between
the identity of a microbe or a community and their respective
functions in the environment (terms are defined in Box 1) [8,9].

However, a major challenge in the study of gut microbiota is
the inability to culture most of the gut microbial species [10].
Several efforts have been previously made in this regard.

Gordon et al. identified 86 culturable species in human colonic
microbiota from three healthy adults (http://www.genome.
gov/Pages/Research/Sequencing/SeqProposals/HGMISeq.
pdf). Gut ecosystems are currently being studied in the native

state using 16S rRNA gene amplicon sequencing or whole
genome sequencing (WGS) techniques [11]. 16S rRNA gene
sequencing is widely used for phylogenetic reconstruction,

nucleic acid-based detection, and quantification of microbial
diversity. In contrast, WGS additionally explores the functions
of the metagenome. The gut microbial community structure

and function have been studied in different host species,
including mouse [12], human [13], canine, [14], feline [14],
cow [15], and yak [15]. Despite inter-species differences in com-

munity structure and function, gut microbiota frequently play
a beneficial role in host metabolism and immunity across
different species [16].

Large numbers of metagenomic sequence datasets have

been generated, thanks to the advances in WGS and 16S
rRNA pyrosequencing techniques [17]. These datasets are
available in different repositories including the National

Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra), the
Data Analysis and Coordination Center (DACC) under the

Human Microbiome Project (HMP) (http://hmpdacc.org) sup-
ported by the National Institutes of Health (NIH), metage-
nomic data resource from the European Bioinformatics

Institute (EBI) (https://www.ebi.ac.uk/metagenomics/) and
the UniProt Metagenomic and Environmental Sequences
(UniMES) database (http://www.uniprot.org/help/unimes).
All these sequence archives also provide different tools for

the analysis of metagenomic sequences. Starting with the
first-generation Sanger (e.g., Applied Biosystems) platforms
to the second-generation 454 Life Sciences Roche (e.g., GS

FLX Titanium) and Illumina (e.g., GA II, MiSeq, and
HiSeq) platforms and finally, the recently developed Ion
Torrent Personal Genome Machines (PGM) and Single-

Molecule Real-Time (SMRT) third generation sequencing
techniques introduced by Pacific Bioscience have evolved
according to the need for generating cost-effective and faster
metagenomic sequencing techniques. The Roche-454

Titanium platform generates consistently longer reads com-
pared to the latest PGM platform. Whereas the MiSeq plat-
form from Illumina produces consistently higher sequence

coverage in both depth and breadth, the Ion Torrent is unique
for its speed of sequencing. However, the short read length,
higher complexity, and inherent incompleteness make metage-

nomic sequences difficult to assemble and annotate [18]. The
sequences obtained from metagenomic studies are fragmented
(lies between 20 and 700 base pairs) and incomplete, because of

the limitations in the available sequencing techniques. Each
genomic fragment is sequenced from a single species, but
within a sample there are many different species, and for most
of them, a full genome is absent. It becomes impossible to
determine the species of origin of a particular sequence.
Moreover, the volume of sequence data acquired by environ-
mental sequencing is several orders of magnitude higher than

that acquired by sequencing of a single genome [19].
It is well established that gut microbes constantly interact
among themselves and with the host tissues. Different types

of interactions are present, but most are of commensal nature.
The composition of the microbial community varies signifi-
cantly between and within the host species. For example, there

is similarity of the microbiota between humans and mice at the
super kingdom level, but significant difference exists at the
phylum level [20]. In this review, we focus on different gut

microbial communities residing within various host species,
different software used for metagenomic data analysis, clinical
importance of metagenomic studies, and importance of the
microbial network toward predicting ecosystem structure and

relationship among different species.
Gut microbiota studied in mammals

The gut microbial composition of only a few host species has
been investigated with respect to diet, genetic potential, and

disease conditions (Table 1). It was reported that human gut
microbial communities were transplanted into gnotobiotic ani-
mal models, such as germ-free C57BL/6J mice, to examine the
effects of diet on the human gut microbiome [3,21]. Diet plays

a vital role in determining the composition of the resident gut
microbes [3]. Turnbaugh et al. found that the human gut
microbiome is shared among family members, who have simi-

lar microbiota even if they live at different locations [4]. In a
study, Tap et al. identified 66 dominant and prevalent opera-
tional taxonomic units (OTUs) from human fecal samples,

which included members of the genera Faecalibacterium,
Ruminococcus, Eubacterium, Dorea, Bacteroides, Alistipes,
and Bifidobacterium [22]. Another study in mice showed that
host genetics along with diet is important in shaping the gut

microbiota [23]. Using 16S rRNA sequencing, common
microbes that belong to the Cytophaga-Flavobacterium-
Bacteroides (CFB) phylum had been identified in the intestines

of mice, rats, and humans [24]. Diversity in the fecal bacterial
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Table 1 Gut microbiota studies in different species using pyrosequencing technology

Host Sample source Sequencing method Amount of data retrieved GenBank ID Ref.

Mouse Cecum 16S rRNA-based sequencing 5088 16S rRNA sequences DQ014552�DQ015671;

AY989911�AY993908

[20]

Mouse Cecum and feces 16S rRNA-based sequencing 2878 16S rRNA sequences GQ491120�GQ493997 [3]

Mouse Feces 16S rRNA-based sequencing 4172 16S rRNA sequences FJ032696�FJ036849 ;
EU584214�EU584231

[23]

Mouse and

zebrafish

Zebrafish intestine

and mouse cecum

16S rRNA-based sequencing 5545 16S rRNA sequences DQ813844�DQ819377 [35]

Human Colonic mucosa and

feces

16S rRNA-based sequencing 11,831 16S rRNA sequences AY916135�AY916390;

AY974810�AY986384

[13]

Human Feces 16S rRNA-based sequencing 9773 16S rRNA sequences FJ362604�FJ372382 [4]

Human Feces 16S rRNA-based sequencing 2064 16S rRNA sequences DQ325545�DQ327606 [36]

Cat Feces 454 pyrosequencing 187,396 reads SRA012231.1 [37]

Dog Feces 454 pyrosequencing 201,642 reads SRA012231.1 [37]

Cow Rumen Whole genome sequencing 268 G of metagenomic DNA HQ706005�HQ706094;

SRA023560

[38]

Yak Rumen 454 pyrosequencing 88 Mb genomic DNA NA [15]
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and fungal communities was also reflected in studies on canine
and feline gut samples [25]. The most abundant phyla in canine

gut microbiota were found to be Firmicutes, followed by
Actinobacteria and Bacteroidetes, whereas the most common
orders were Clostridiales, Erysipelotrichales, Lactobacillales

(Firmicutes), and Coriobacteriales (Actinobacteria). In rumi-
nants, the common rumen microbes are Fibrobacter succino-
genes, Ruminococcus albus, Ruminococcus flavefaciens,

Butyrivibrio fibrisolvens, and Prevotella [26].
Gut metagenomics and disease: implications, scopes

and limitations

Commensal microbiota of the intestine play a key role in nor-
mal anatomical development and physiological function of

the human intestine as well as other organs or systems, such
as the brain [27] and the metabolic [28] and immune systems
[29]. Gut microbiota exerts a major impact on an organism’s

health by providing essential nutrients like vitamins and short
chain fatty acids, digesting complex polysaccharides, harvest-
ing energy and metabolizing drugs and environmental toxins

[30–34]. Although microbiota composition is relatively stable
in the adult, permanent changes in terms of diversity of the
community and/or abundance of individual phylotypes (dys-
biosis) may occur due to dietary and environmental alter-

ations and genetic mutation of the host [30,31]. This has
been associated with the development of various diseases
related to the digestive system, such as inflammatory bowel

disease (IBD) [39,40], irritable bowel syndrome (IBS) [41],
and non-alcoholic hepatitis; obesity and obesity-related meta-
bolic diseases like atherosclerosis [42] and type 2 diabetes

(T2D); neurological disorders like Alzheimer’s disease [43–
45]; atopy and asthma [46]; and cancer [47,48]. The number
of publications in PubMed could reflect the importance of

gut microbiota in different diseases to some extent. As shown
in Figure 1, association of gut microbiota is highest with obe-
sity followed by cancer. Bacterial species that were reported
with increased abundance under certain disease conditions

are mentioned in Table 2. It is interesting to note that in dif-
ferent disease conditions, distinct types of bacterial species
become abundant.
It is critical to define healthy microbiota and the deviations
related to etiopathogenesis of diseases. This would allow us to

predict the development and/or progression of diseases and fos-
ter the idea of microbiota-targeted therapy. Metagenomic
sequencing has revealed that bacteria constitute the over-

whelming majority of gut microbiota in health and there is
remarkable inter-individual conservation at the phylum level.
For example, in more than 90% of healthy individuals, gut bac-

teria belong to two major phyla, Bacteroides and Firmicutes
[54]. However, efforts to define a core microbiome resulted in
mixed outcomes. Qin et al. analyzed 3.3 million non-
redundant microbial genes from intestinal samples of 124

Europeans [55]. They found that 18 species were present in all
individuals, while 57 and 75 species were detected in >75%
and >50% of the population, respectively [55]. In contrast,

Turnbaugh et al. reported that a functional core microbiome
exists in human gut [4], since gut microbiota serves critical
metabolic and immunological functions to maintain homeosta-

sis. In fact, studies with discrete population groups have indi-
cated that the super-kingdom level conservation rapidly
disappears lower in the phylogenetic hierarchy, giving rise to
a ‘‘microbiota fingerprint’’ of an individual at the levels of

genus, species, and strain. This is underscored by the sharing
of only approximately 40% species by monozygotic twins
[12]. Interestingly, the individual gut microbiota is more unique

under healthy conditions than during disease, when the diver-
sity generally decreases. It is believed that the ratio of poten-
tially pathogenic to beneficial commensal microbes, rather

than the presence of a specific organism or a group, is more cru-
cial for disease development [56]. However, a single pathobiont
(commensal turned into a pathogen) has also been reported to

cause disease under specific genetic and environmental condi-
tions. Bloom et al. demonstrated that commensal Bacteroides
isolates induce disease in genetically-modified (il10r2�/� with
dominant-negative TGF-betaR2 expression in T cells) IBD-

susceptible mice, but not in IBD-nonsusceptible mice [57].
Importantly, metagenomic sequencing has unearthed a sep-

arate kingdom of resident viral species, many of which were

unknown so far, constituting the ‘‘gut virome’’ [58]. Reyes
et al. sequenced the viromes isolated from fecal samples of
monozygotic twins and their mothers, and compared them

with the total fecal DNA. This experiment revealed that the



Figure 1 Association of gut microbiota with disease in PubMed publications

PubMed publications on different diseases involving gut microbiota were searched on February 09, 2015. IBD, inflammatory bowel

disease; T2D, type 2 diabetes; CD, Crohn’s disease.
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bacterial community present in the mother and the twins was

highly similar, whereas individual viromes were unique despite
their genetic similarity. They also performed a longitudinal
study for one year on the fecal samples collected from the same

individuals at different time points and found that >95% of
virotypes were constant, but the abundance of bacterial popu-
lation changed over time [58]. Although the role of viral species
in human diseases is far from fully appreciated, inter-kingdom

interactions between bacteria, viruses, and eukaryotes in the
intestine have been shown to influence virulence of the organ-
isms and pathogenesis [59].

Altered diversity and abundance of the so-called ‘normal
flora’ during disease development and progression were
unknown before the introduction of metagenomic sequencing,

since most of these organisms are non-culturable. 16S rRNA
sequencing has indicated a decrease in Bacteroides and
Firmicutes numbers in the colon and an increase in

Enterobacteriaceae, such as adherent-invasive E. coli and other
Proteobacteria in Crohn’s disease [60]. In contrast, obesity is
associated with fermenting bacterial species, such as
Bacteroides and Firmicutes, which can harvest energy from

complex polysaccharides [54]. Although the association of bac-
terial flora with etiopathogenesis of disease is not fully estab-
lished, development of colitis and obesity following transfer

of disease-associated microbiota to gnotobiotic mice strongly
suggests disease association [61,62]. Animal models indeed
have emerged as invaluable tools to establish the underlying

mechanisms related to altered microflora in disease develop-
ment. Altered flora may be the consequence of inflammation,
which may be demonstrated by reconstitution of germ-free
mice or piglets with the human disease flora. Furthermore,

study of temporal changes in the microbiota by metagenomic
sequencing of genetically-predisposed individuals or their
first-degree relatives may be helpful. Such information may

be therapeutically important, since an early intervention
appears to be critical to restore normal flora [63].

Although various sequencing techniques have been used to

map the diversity of microbial communities that exist during
health and disease, microbiota-associated genes and gene
products that may protect from or predispose to disease

remain largely unknown. Metagenomic sequencing data pro-
vide genetic composition of the whole microbiome, but give lit-
tle information about functioning of gene expression.

Functional metagenomics may be useful, but currently the
objective of sequencing is to identify functionally-important
non-abundant genes. Insights into the cellular and molecular
interactions between the host and the microbiota necessitate

integration of metagenomics with metatranscriptomics (gene
expression profile), metaproteomics (protein mapping profile),
and metabolomics (metabolic profile) data. For example, com-

bination of metagenomics and metabolomics identified the role
of microbiota in dietary phospholipid metabolism, contribut-
ing to atherosclerosis [64]. Multiple omics platforms integrat-

ing metabolic changes in the host, including the metabolism
of drugs and environmental toxins, with microbiota diversity
have highlighted the necessity of personalized medicine. Gut

microbial enzymes for the metabolism of commonly-
prescribed drugs, such as acetaminophen and cholesterol-
lowering agent simvastatin, were identified [65,66]. In addition,
microbiota plays a critical role in the generation of more- (e.g.,

sulfasalazine) or less-active (e.g., digoxin) drug metabolites
[58]. Therapeutically active metabolite 5-aminosalicylate is
released from the prodrug sulfasalazine, while digoxin may

be converted to less active reduced derivatives by the action
of colonic microflora [34,67]. This implies that there may be
significant inter-individual variability in the drug response

and/or adverse events. Similarly, toxin exposure may have very
different outcomes due to the variability in the microbiota
composition of the exposed individuals. Several neurotoxins
and carcinogenic metabolites may be generated by resident

microbes such as E. coli [68]. Identification of individual
microbial species or the specific enzymes they produce with
the metabolites generated would make it possible to target

the microbiota for therapeutic purposes. This is best exempli-
fied by the successful treatment of chemotherapy-associated
diarrhea following administration of CPT-11, a drug used in

colon cancers, by the use of bacterial b-glucuronidase enzyme
inhibitor [69].



Table 2 Highly-abundant bacterial species under different disease

conditions

Disease Name of prevalent bacteria Ref.

Symptomatic

atherosclerosis

Escherichia coli [42]

Eubacterium rectale

Eubacterium siraeum

Faecalibacterium prausnitzii

Ruminococcus bromii

Ruminococcus sp. 5_1_39BFAA

Type 2 diabetes Akkermansia muciniphila [49]

Bacteroides intestinalis

Bacteroides sp. 20_3

Clostridium bolteae

Clostridium ramosum

Clostridium sp. HGF2

Clostridium symbiosum

Colstridium hathewayi

Desulfovibrio sp. 3_1_syn3

Eggerthella lenta

Escherichia coli

Obesity/IBD/CD Acidimicrobidae ellin 7143 [50]

Actinobacterium GWS-BW-H99

Actinomyces oxydans

Bacillus licheniformis

Drinking water bacterium Y7

Gamma proteobacterium DD103

Nocardioides sp. NS/27

Novosphingobium sp. K39

Pseudomonas straminea

Sphingomonas sp. AO1

Colorectal cancer Acinetobacter johnsonii [47,51–53]

Anaerococcus murdochii

Bacteroides fragilis

Bacteroides vulgatus

Butyrate-producing bacterium A2-166

Dialister pneumosintes

Enterococcus faecalis

Fusobacterium nucleatum E9_12

Fusobacterium periodonticum

Gemella morbillorum

Lachnospira pectinoschiza

Parvimonas micra ATCC 33270

Peptostreptococcus stomatis

Shigella sonnei

Note: IBD, inflammatory bowel disease; CD, Crohn’s disease.
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Intestinal microbiota is emerging as the target for next-
generation therapeutics. On the one hand, it may be considered

as a repository of potential drugs or drug-like molecules, such
as antimicrobial peptide bacteriocin or thuricin CD, and
anti-inflammatory molecules like the cell wall polysaccharide

(Bacteroides fragilis) and peptidoglycan (Lactobacillus) [34].
Metagenomics coupled with bioinformatics may spearhead
the ‘bugs to drugs’ research. On the other hand, ‘disease micro-

biota’ may be targeted for treatment. Current therapies are
limited to non-specifically targeting the microbiota with probi-
otics, prebiotics, and synbiotics to restore the ‘healthy flora’
[70–73]. Probiotics therapy has shown promise in the treatment

of acute diarrhea and prophylaxis against necrotizing entero-
colitis [74]. Although the exact mechanism of action remains
unknown, these organisms may render the host resistant to

colonization by pathogens through competing with them for
the intestinal niche, in addition to their bactericidal function,
thus creating an environment for the lost flora to re-
establish. Fecal transplantation of the healthy flora has been

successfully employed for the treatment of drug-resistant or
recurrent Clostridium difficile-associated diarrhea [24].
However, the results are less-encouraging in obesity and

chronic diseases like diabetes mellitus, IBD, and IBS [53]. In
these conditions, early institution of therapy before an altered
flora is established in the affected individuals or treatment of

the high-risk groups, such as first-degree relatives of the
patients, may be more helpful. It is unlikely that a single pro-
biotic or a specific combination would be effective in all condi-
tions and subjects. Therefore, a more personalized treatment

may be required based on the microbiota composition to
ensure a predicted outcome.

A major bottleneck to the specificity of microbiota-targeted

therapies is our limited knowledge about the resident organ-
isms and their interactions with the host. Moreover,
microbe–microbe cross-talk may influence the disease out-

come. Naturally, members of the microbiota with known gen-
ome sequences or biochemical functions will be the initial
targets for drug or vaccine development. However, non-

specificity of the effects, which potentially results in removal
of beneficial flora and development of resistance, may be issues
that will require further attention. A systems biology approach
may be required with a therapeutic goal to restore the

biochemical, proteomic, and metagenomic profiles of an
individual.

Importance of microbial interaction network

Gut microbiota is an example of a complex ecological commu-

nity involving interactions with the host cells as well as among
hundreds of bacterial species. These interactions may be of five
different types including (i) mutualism, where both the partic-
ipants are benefited; (ii) amensalism, where one organism is

inhibited or destroyed and the other is unaffected; (iii) com-
mensalism, where one partner gets the advantage without
any help or harm to the other; (iv) competition, where both

the participants harm each other; and (v) parasitism, where
one gets benefited out of the other [8].

Establishing a model of the gut microbial interaction net-

work is a major challenge for the scientific community and lit-
tle progress has been made in this area. Predictions of
microbial associations may include a simple binary mode or

complex relationship, where more than two species are
involved in an absence–presence relationship (1 or 0 mode)
or abundance data (quantitative values obtained from OTU).
It is possible to predict the simple binary or pair-wise microbial

relationship using a similarity-based network inference, while
the complex microbial relationship can be predicted using
regression and a rule-based modeling approach. The

similarity-based network inferences are based on co-
occurrence and/or mutual exclusion pattern of two species
over different sampling conditions. Pair-wise relationship

scores are computed and further compared with the random
co-occurrence scores using a similar sampling approach.
Faust et al. recently built a gut microbiota network with co-
occurrence relationship using Spearman rank correlation

method. Here, 16S rRNA marker genes were used for compro-
mised gut in children with anti-islet cell autoimmunity [75].
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This network established a strong association between micro-
biota and their body niches. The dominant species at a specific
body site emerged as a ‘‘hub’’ in the network and was found to

act as the signature taxa, which was responsible for the compo-
sition of each microcommunity. Examples for hubs include
Bacteroides in the gut and Streptococcus in the oral cavity.

This microbial association is also reflected in their phyloge-
netic and functional relatedness. Especially, phylogenetically
related microbes have been found to co-occur at environmen-

tally similar body sites [75]. However, this type of approach
cannot be applied to complex, nonlinear, and evolving sys-
tems, where more than one dominant species are present at
any point of time and the abundance changes over time. In

such cases, the regression model and rule-based model are
used, where the abundance of one species is predicted from
combined abundances of the organisms in the system [76].

Generalized Lotka–Volterra (gLV) equations are used to study
these complex types of dynamic microbial community interac-
tions [77]. Few examples are present where gut microbiota is

used to develop diet-induced predictive models [63]. In this
model, a linear equation connects microbiota changes to given
concentrations of each of the four dietary ingredients (Casein,

Starch, Sucrose, and oil). There is still limited knowledge
about the gut microbial interactions and interactions between
the microbes and the host. In-depth investigation is required to
model these interactions in a better way and predict the out-

come of community-level microbial interactions after external
disturbance of the gut system due to diseases or the use of
drugs.

Whole genome sequencing of gut microbiota

16S rRNA-based sequencing of metagenomes is an established
approach for the identification of known bacteria, based on
the reference sequences. However, most bacterial species of
the gut microbiota are novel, for which no reference sequence

is available. Moreover, 16S sequencing does not provide any
functional input about the community, since the sequence is
not strain-specific. Gene contents may differ between bacterial

strains with identical 16S rRNA gene sequence and underlie
their functional difference related to genes responsible for tox-
icity and pathogenesis [78]. WGS of the microbiota (e.g.,

Human Microbiome Project Consortium, 2012) is preferred
over 16S rRNA-based analysis to elucidate taxonomic classifi-
cation and bacterial diversity within members of the microbial

community. WGS is also useful for a detailed understanding of
the functional potential of the microbiome. For example, fecal
metagenomic data obtained from WGS of 124 unrelated indi-
viduals along with six monozygotic twin pairs and their moth-

ers were analyzed by the construction of community level
metabolic networks of the microbiome. It was observed that
gene-level and network-level topological differences are

strongly associated with obesity and IBD [79]. WGS of 252
fecal metagenomic samples in another study showed huge vari-
ations at the metagenomic level, in which authors identified

107,991 short insertions/deletions, 10.3 million single nucleo-
tide polymorphisms (SNPs) and 1051 structural variants. In
addition, they found that despite considerable changes in the
composition of the gut microbiota, the individual specific

SNP variation pattern showed a temporal stability. This
further suggests that every individual carries a unique
metagenome, which can be exploited further for personalized
medicine or dietary modifications [80]. Many 16S rRNA-
based studies have reported a connection between the gut

microbiota and health [24,39,59]. A detailed WGS based anal-
ysis of the gut metagenome may help to better understand the
disease pathogenesis and identify new targets for therapy,

because it may reveal minor genomic variations within species
that cause altered phenotypes, leading to pathogenesis. For
instance, WGS studies with Citrobacter spp. showed that geno-

mic variations within species altered their phenotype and envi-
ronmental adaptation [81].

Currently, Illumina shotgun sequencing of stool samples is
widely used for WGS studies of the gut microbiome. Since the

gut contains diverse microbial species, a deep sequencing
(20 · coverage) is required to study individual communities
with low abundance [81]. However, analyzing the large volume

of WGS data (short reads) is very challenging, as there may be
from hundreds to thousands of bacterial species present with
different abundances, especially as there is no taxonomic iden-

tification available for most of the species.

Tools/web-servers related to gut microbiota studies

To overcome the challenges in metagenomic data analysis, sev-
eral standalone software, web servers, and R packages have
been developed and are available in the public domain
(Table 3). Here, we focus on the popular software, which can

be used in studying gut microbiota. There are many standalone
tools, which may be used for the analysis of 16S rRNA marker
gene sequencing data and the WGS data. Quantitative Insights

Into Microbial Ecology (QIIME), investigates microbial diver-
sity using 16S rRNAs data. It provides the users with taxon-
omy assignments to phylogenetic analysis along with

demultiplexing and quality filtering of the raw reads generated
from Illumina or other platforms. But the installation of
QIIME needs some expertise in Linux and Windows systems,

and it lacks parallel processing at the OTU picking step [82].
mothur is a software package with several functions, including
identification of OTUs and description of alpha (within a
specific sample) and beta (between different samples) diversity

between different samples [83]. RAMMCAP is a GUI-based
tool, which performs metagenomic sequence clustering and
analysis and can process a huge number of sequences in a very

short time compared to other tools and software. RAMMCAP
also includes protein family annotation tool and a novel GUI-
based metagenome comparison method based on statistical

analysis [84]. For WGS-based sequencing data analysis
(mainly for taxonomy binning), several approaches are avail-
able, which integrates Basic Local Alignment Search Tool
(BLAST) for species identification. The tool MEtaGenome

ANalyzer (MEGAN) uses BLAST search against a reference
sequence database like non-redundant sequence database from
NCBI NR database and provides results in a graphical user

interface (GUI). It allows large datasets to be dissected with-
out further assembly or the targeting of specific 16S rRNA
marker gene. It can also compare different datasets based on

statistical analysis and provides graphical output [85].
Metagenomic Phylogenetic Analysis (MetaPhlAn) is another
tool that provides faster taxonomic assignments by removing

redundant sequences [86]. Short reads need to be assembled
into contigs, which are similar in length to a gene, so that they



Table 3 Tools/webservers related to gut microbiota studies

Name Platform Website Main features Ref.

QIIME Stand alone http://qiime.sourceforge.net/ Network analysis, histograms of within- or between-sample

diversity

[82]

mothur Stand alone http://www.mothur.org/ Fast processing of large sequence data [83]

RAMMCAP Stand alone http://weizhonglab.ucsd.edu/rammcap/cgibin/rammcap.cgi Ultra fast sequence clustering and protein family annotation [84]

MEGAN Stand alone http://www-ab.informatik.unituebingen.de/software/megan/ Laptop analysis of large metagenomic shotgun sequencing data

sets

[85]

MetaPhlAn Stand alone http://huttenhower.sph.harvard.edu/metaphlan Faster profiling of the composition of microbial communities using

unique clade-specific marker genes

[86]

MetaVelvet Stand alone http://metavelvet.dna.bio.keio.ac.jp/ High quality metagenomic assembler [87]

SOAPdenovo2 Stand alone http://soap.genomics.org.cn/soapdenovo.html Metagenomic assembler, specifically for Illumina GA short reads [88]

MOCAT Stand alone http://vmlux.embl.de/~kultima/MOCAT/ Generate taxonomic profiles and assemble metagenomes [89]

SmashCommunity Stand alone http://www.bork.embl.de/software/smash/ Performs assembly and gene prediction mainly for data from

Sanger and 454 sequencing technologies

[90]

HUMAnN Stand alone http://huttenhower.sph.harvard.edu/humann Analysis of metagenomic shotgun data from the Human

Microbiome Project

[91]

FANTOM Stand alone http://www.sysbio.se/Fantom/ Comparative analysis of metagenomics abundance data integrated

with databases like KEGG Orthology, COG, PFAM and

TIGRFAM, etc.

[92]

MetaCV Stand alone http://metacv.sourceforge.net/ Classification short metagenomic reads (75–100 bp) into specific

taxonomic

[94]

Phymm Stand alone http://www.cbcb.umd.edu/software/phymm/ Phylogenetic classification of metagenomic short reads using

interpolated Markov models

[97]

PhyloPythiaS Web server http://binning.bioinf.mpiinf.mpg.de/ Fast and accurate sequence composition-based classifier that

utilizes the hierarchical relationships between clades

[96]

TETRA Web server http://www.megx.net/tetra Correlation of tetranucleotide usage patterns in DNA [93]

METAREP Web server http://www.jcvi.org/metarep/ Flexible comparative metagenomics framework [98]

CD-HIT Web server http://weizhonglab.ucsd.edu/cd-hit/ Identity-based clustering of sequences [99]

METAGENassist Web server http://www.metagenassist.ca/ Performs comprehensive multivariate statistical analyses on the

data from different host and environment sites

[100]

CoMet Web server http://comet.gobics.de/ ORF finding and subsequent Pfam domain assignment to protein

sequences

[101]

WebCARMA Web server http://webcarma.cebitec.unibielefeld.de/ Unassembled reads as short as 35 bp can be used for the taxonomic

classification with less false positive prediction

[102]

MG-RAST Web server https://metagenomics.anl.gov/ High-throughput pipeline for functional metagenomic analysis [103]

CAMERA Web server https://portal.camera.calit2.net/gridsphere/gridsphere Provides list of workflows for WGS data analysis [104]

WebMGA Web server http://weizhonglilab.org/metagenomic-analysis/ Implemented to run in parallel on local computer cluster [105]
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may be annotated for function inference. Such assembly can be
performed using tools such as MetaVelvet [87] and Short
Oligonucleotide Analysis Package (SOAPdenovo2) [88].

Moreover, simultaneous assembly and annotation are also
possible with some software packages, such as MOCAT, which
assembles metagenomic short reads into contigs along with

quality control and performs gene prediction from contigs
[89]. For functional analysis of the metagenomic reads, pre-
dicted genes from the assembled contigs or raw sequence reads

with long read length may be used. To annotate functions to
the sequences or genes, Kyoto Encyclopedia of Genes and
Genomes (KEGG) organizes genes into KEGG enzymes,
pathways, and orthologs appropriate for the elucidation

of metabolic potential of the community. Certain pipelines,
such as SmashCommunity [90], Microbiome Project Unified
Metabolic Analysis Network (HUMAnN) [91], and

Functional Annotation and Taxonomic Analysis of
Metagenomes (FANTOM) [92], which are easy-to-use GUIs
for metagenomic data analysis, are also available to automate

the process of assembly and annotation.
Most of the aforementioned tools use known 16S rRNA

reference sequence databases like RDP (http://rdp.cme.msu.

edu/) and Greengenes (http://greengenes.lbl.gov) to assign tax-
onomy information to the unknown sequence. Nonetheless,
some WGS-based unsupervised tools, such as TETRA [93],
MetaCV [94], and PhyloPythia [95], are also available. They

use different sequence features for taxonomy binning.
TETRA is a DNA-based fingerprinting technique for genomic
fragment correlation based on tetranucleotide usage pattern,

while MetaCV is an algorithm based on composition and
phylogeny to classify short metagenomic reads (75–100 bp)
into specific taxonomic and functional groups. Similarly,

PhyloPythiaS web server [96] is also is a fast and accurate clas-
sifier based on sequence composition utilizing the hierarchical
relationships between clades. Among these composition-based

classification methods, Phymm [97] is another classifier for
metagenomic data that has been trained on 539 complete,
curated bacterial and archaeal genomes, and can accurately
classify reads as short as 100 bp. Along with TETRA and

PhyloPythiaS web servers, several other online web-servers
are also available for metagenomic analysis. METAREP is a
web 2.0 application, which provides graphical summaries for

top taxonomic and functional classifications. It also provides
Gene Ontology (GO), NCBI Taxonomy and KEGG
Pathway Browser-based comparison of multiple datasets at

various functional and taxonomic levels [98]. Another online
tool, CD-HIT, can be used in identification of non-
redundant sequences and gene-families by clustering raw reads
[99]. METAGENassist, a web server for comparative metage-

nomics, can be used for comprehensive multivariate statistical
analyses on the bacterial census data from different environ-
ment sites or different biological hosts selected by the users

[100]; CoMet, another web-based comparative metagenomics
platform is used for the analysis of metagenomic short read
data resulting from WGS-based studies. It integrates ORF fin-

der, Pfam domain detection software and statistical analysis
tools to a user-friendly web interface for functional compar-
ison of metagenomic data from multiple samples [101].

WebCARMA is a web application for taxonomic classification
of ultra-short reads as 35 bp [102]. MG-RAST (the
Metagenomics RAST) server is an automated platform for
the analysis of microbial metagenomes to get the quantitative
insights of the microbial populations . Modularity of MG-
RAST allows new analysis steps or comparative data to be
added during the analysis according to the user’s need. It

enables the user to annotate multiple metagenomes at a time
and also to compare the metabolic data [103].

CAMERA [104] and WebMGA [105] are also frequently

used web servers for metagenomic data analysis. CAMERA
offers a list of workflows, but many useful tools are missing,
such as Filter-HUMAN, RDP-binning, FR-HIT-binning,

and CD-HIT-OTU, which are otherwise available with
WebMGA. Filter-HUMAN is a tool for filtering human
sequences from human microbiome samples. RDP-binning
uses the binning tool from Ribonsomal Database Project

(RDP) to classify rRNA sequences. FR-HIT-binning first
aligns the query metagenomic reads to NCBI’s Refseq data-
base and then classifies reads to the specific taxon, which is

the lowest common ancestor (LCA) of the hits. CD-HIT-
OTU is a clustering program able to process millions of
rRNAs in a few minutes. Moreover, both MG-RAST and

CAMERA require user registration and login, so it is difficult
to access their web servers using scripts. However, WebMGA
has resolved these issues and allows a fast, easy and flexible

solution for metagenomic data analysis. The user can perform
data analysis through customized annotation pipeline and it
does not require any login information. In addition, metaphor
package is also available for users having expertise in R statis-

tical language (http://CRAN.R-project.org/package=meta-
for). Although these programs are widely used for
metagenomic data analysis, there is still a bottleneck to iden-

tify novel bacteria, as a majority of them are unknown.
Conclusion and future prospects

We have reached a level of saturation regarding 16S rRNA
sequence catalogs of gut microbiota from the Western popula-
tion. This is exemplified by the fact that we are fairly close to

identifying all gene families encoded by the human gut micro-
biota of the Western population. It has been observed that the
bacterial phylogeny obtained from the gut microbial DNA

sequencing of 124 individuals is not much different from that
of the first 70 individuals [55]. While the above findings need
to be extended to diverse phenotypes (populations, diseases,

age, etc.), more efforts should be directed to compile reference
genomes, which will require WGS, and perhaps, culturing indi-
vidual organisms. In addition, there are multiple ecosystems

along the length of the gut, which remain unexplored in terms
of metagenomic diversity. An increasing number of studies in
the future will be directed toward understanding the functions
of the microbiome and RNA-seq may play a critical role.

However, preparing high quality representative RNAs for
sequencing to generate metatranscriptome is a challenge.

As opposed to the sequencing data, functional annotations

of the genes are grossly incomplete due to the unavailability of
suitable computational tools and we have only limited knowl-
edge about the metabolic functions of the microbiota. Germ-

free animals are valuable tools for functional assessment of
the microbiota and their association with diseases, but high
variability between facilities is a major problem for data inter-
pretation. Microbiota has great potential for the identification

of genetic biomarkers of disease, but proper statistical analysis
is extremely difficult.

http://rdp.cme.msu.edu/
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Finally, the association of gut microbiota with human dis-
eases has obliterated the boundary between infectious and
non-infectious diseases. While the manipulation of microbiota

has immense therapeutic potential, techniques need to be
developed to manipulate individual bacteria within a commu-
nity and for targeted therapy, such as designer probiotics.

There is an urgent need for novel approaches toward the con-
struction of gut ecosystem-wide association networks to
develop global models of gut ecosystem dynamics. Such mod-

els may then, predict the outcome of perturbation effects in the
gut and eventually aid in therapeutic intervention.
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