View metadata, citation and similar papers at_core.ac.uk brought to you binORE

provided by Elsevier - Publisher Connector

Electronic Notes in Theoretical Computer Science 35 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume35.html 15 pages

Quantales as completions of ordered monoids:
Revised semantics for
Intuitionistic Linear Logic

D. Larchey-Wendling and D. Galmiche

LORIA UMR 7503 — Université Henri Poincaré
Campus Scientifique, BP 239
54506 Vandeeuvre-lés-Nancy, France
e-mail: larchey@loria.fr

Abstract

The aim of this paper is to propose a unified analysis of the relationships between
the notions of order and closure and to relate it to different semantics of Intuitionis-
tic Linear Logic (ILL). We study the embedding of ordered monoids into quantales
and then we propose general constructions and results about such an embedding.
Therefore we obtain a new semantics based on ordered monoids and also new com-
pleteness results for ILL.

1 Introduction

Linear logic (denoted LL) [8] is a powerful and expressive logic with connec-
tions to a variety of topics in computer science as logic programming, con-
currency or functional programming [2]. In this context, Intuitionistic Linear
Logic (ILL) [4,14] and some of its sub-fragments are often used as the underly-
ing logic of logical frameworks. There exists different semantics of ILL based
on phases spaces [8], quantales [20] and Petri nets [15]. The completeness for
ILL with respect to Petri nets as a model has been studied in [6]. For instance,
Petri nets form a sound and complete model for the @-free fragment of ILL
and in the case of the —o-free fragment an extra axiom (of distributivity of &
over @) is necessary for the completeness. In fact with the classical interpre-
tation of [6] one cannot establish the non-distributivity of & over @, namely
that (X @ Y)& ZFH (X @ Z) & (Y @ Z) is not provable in ILL. It is important
to understand if it is due to the nature of Petri nets or to other semantical
reasons. Thus, to have a better understanding of ILL semantics and their re-
lationships with IL semantics, we have developed an analysis of ILL semantics
from the point of view of the relationships between the notions of order and
closure. Then we propose a general construction of quantales from ordered
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Fig. 1. The IMALL sequent calculus

monoids based on a particular analysis of closure. It naturally leads to the
definition of a new closure operator such that the new class of quantales we
define is a complete class of models for ILL. Possible issues would be to derive
a new algebraic semantics as basis of proof search and to propose a calculus
to effectively build counter-models for ILL. Moreover, we could study, from
these semantical considerations, a possible and alternative embedding of ILL
into IL [16] and its consequences on proof search or refutation search in these
logics.

2 Intuitionistic Linear Logic

Linear logic (LL) and its intuitionistic fragment are used in several areas of
computer science. Some works tried to find optimizations in functional pro-
gramming language implementations by using linear logic as a type system
[1,14]. Other applications deal with concurrent logic programming [3,10,11].
From the specification point of view, ILL provides a natural and simple en-
coding of Petri net reachability [15]. The sequent calculus of the propositional
multiplicative and additive fragment of ILL is presented in figure 1. For a
complete presentation of the system we refer to [8].

Our main interest consits of an unified analysis of ILL semantics, having in
mind the relationships between the notions of order and provability through the
soundness theorem. Then, we will consider the provability or non-provability
problems from a semantical point of view. In fact, the phase semantics [9] and
Petri net semantics of ILL [6] will be latter mentioned as important examples
to illustrate our results on the embedding of ordered monoids into quantales.
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3 Ordered monoid extensions

In this section, we describe a method to build quantales [20] from weaker
structures that are ordered monoids. Such structures, compared to quantales,
lack a complete lattice structure, i.e. least upper and greatest lower bounds.
We describe a method to enrich an ordered monoid with a complete lattice
structure. This method is based on the notion of closure and has already been
studied [17,18]. We provide an algebraic characterization of our construction
in a category of completions.

For the sake of clarity, we will start by presenting the partial order case
before we add a monoidal structure. This will lead us to a generalization of
the Mac-Neille construction [5].

3.1 Basic definitions and notations

In this section we recall the notions of poset, embedding, complete lattice,
monoid, ordered monoid and quantale. Here are some notational conventions.

The calligraphic letters IC, P, L, Q, ... usually denote sets with some addi-
tional structure. Uppercase letters X, Y, ... denote subsets of these sets with
usually no additional structure. The symbol P(K) denotes the powerset of the
set IC, i.e. the set of all the subsets of K. Finally, lowercase letters z,v, ...
denote elements of sets K or subsets X.

The symbol N denotes the set of natural numbers, Z the set of integers, Q
the set of rational numbers and R the set of reals.

Definition 3.1 [Poset] A pair (P, <) is called a poset (partially ordered set)
if P is a set and < is an order relation over P, i.e. a relation which is reflexive,
antisymmetric and transitive.

For example, (N, <) where < is the natural ordering on natural numbers is
a poset. By an abuse of language, we will often speak of the poset P, omitting
the order. We will also write X < y for Vo € X,z < y, i.e. when y is an upper
bound of X. Conversely, we write y < X when y is a lower bound of X.

Definition 3.2 [Embedding] Let P and Q be two posets, a function i : P —
Q is an embedding if for any z,y € P we have z < y < i(z) < i(y).

In other words, ¢ is an monotonic function which is also injective. If P is
embedded into Q by ¢ then the image i(P) is isomorphic to P and the isomor-
phism is the restriction of 7. For example, the identity map is an embedding
of (N, <) into (Q, <).

Definition 3.3 [Complete lattice] A pair (£, <) is called a complete lattice if
it is a poset and £ has all least upper bounds, i.e. for any subset X C £, X
has a least upper bound in £ denoted by \/X.

For example, the set of subsets (P(X), C) ordered by inclusion is a complete
lattice where the least upper bound is simply the union of subsets.
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Proposition 3.4 If (L, <) is a complete lattice then any subset X C L also
has a greatest lower bound.

The reader is reminded that greatest lower bounds are obtained by the
following identity: AY = \/{z | 2 < Y}. For a more detailed introduction to
lattices, see [5].

Definition 3.5 [Monoid] A pair (M, e) is called a (commutative) monoid if
e is a binary operator on the set M, which is (commutative,) associative and
has a neutral element denoted by 1.

For example, (N, +) is a (free) commutative monoid with neutral element
0. We remind the reader that the neutral element is unique and is also called
the unit of the monoid. The operation e can be extended to subsets of M by
the following definition: X oY = {rey |2z € X and y € Y'}. This is the same
definition as the concatenation of the set of words in the free non-commutative
monoid.

Definition 3.6 [Ordered monoid] A triplet (M, e, <) is called a (commuta-
tive) ordered monoid if (M, <) is a poset, (M, e) is a (commutative) monoid
and (z,y) — z ey is monotonic in z and y.

For example, (N, +,<) is an ordered monoid. Any monoid may be ex-
tended an ordered monoid by putting the flat order® on it.

Definition 3.7 [Quantale] A triplet (Q, e, <) is called a (commutative) quan-
tale if it is a (commutative) ordered monoid, (M, <) is a complete lattice and
for any a, (b;); in Q, ae\/,b; =\/.(a e b;).

This last condition is called infinite distributivity and expresses a kind of
continuity for e. For example, ({ L} UNU {00}, +, <) and ([0, n], max, <) are
two quantales.

3.2 Closures

In this section we present the notion of closure which is widespread in many
areas of mathematics. It is very simple and general and it will help us in
extending a poset to a complete lattice, a process known as completion.

Definition 3.8 [Closure| Let K be a set, a closure on K is an unary operator
()" : P(K) — P(K) such that for all subsets X, Y and K,

XCY e X CY”

A closed subset is a subset X of the form Y™*.

By an abuse of notation we will often denoted the subset {z}* by 2* iden-
tifying the point = with the singleton {z}. In general it does not lead to

L' By definition # < y & x = y, i.e. = is only comparable to z.
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ambiguities. Closures are very common in different domains; for example we
can mention the transitive closure, logical closure, topological closure, alge-
braic closure, normalization processes, modal operators ...

Proposition 3.9 If ()" is a closure on a set K then for any X and Y, the
following three properties hold: X C X*, X CY = X* CY* and X** C X*.

The proof is trivial. A closed subset is of the form X*. It is then equivalent
to X = X*. The set of closed subsets will be denoted by K*. It is naturally
ordered by inclusion of subsets.

Theorem 3.10 Let K be a set and (-)* be a closure on K, let K* be the set
of closed subsets then (K*,C) is a complete lattice.

Proof. Let (X;); be a family of closed subsets of K. Then \/, X; = (U, Xi)"
is the least upper bound of the X;’s. O

As a remark, the greatest lower bound is the intersection (), X;. The least
element is (* and the greatest is K considered as a closed subset of K.

Definition 3.11 [Compatible closure] Let (P, <) be a poset and (-)* be a
closure on P, (-)* is said to be compatible if for any x € P, z* = {2 | 2 < x}.

We define | X £ {2z | 3z € X,z < z}, the initial segment of the subset
X. It is important to notice that |.X is not the set of lower bounds of X.
Then |(-) is a compatible closure. Moreover, (-)* is compatible if and only if
Jr = 2* and then if and only if for any subset | X C X*.

We can also defined X™ £ {z | Vz € P,X < z = z < z} which is known
as the Mac-Neille closure. See [5] for more details on closures.

Theorem 3.12 The set of compatible closure ordered point-wise by inclusion
is a complete lattice. The least compatible closure is [(-) and the greatest
compatible closure is (-)".

Proof. The point-wise non-empty intersection of compatible closures is a
compatible closure so we have a complete lattice.? |(-) is the least because
WX = Upex 32 € Uyex @ € X*. Let (-)" be any compatible closure, let us
now show that X* C X®. Let x € X* and k be such that X < k. Then
X*CEk*and x € k* i.e. z < k. Consequently z € X", O

Now we consider a central point of the paper. Given a compatible closure,
one can embed a poset into a complete lattice preserving some properties.

Lemma 3.13 Let (P,<) be a poset and (-)* be a compatible closure. Then
the function i : P — P* defined by i(x) £ z* is an embedding of P in the
complete lattice P*. This embedding preserves greatest lower bounds provided
they exist in P.

2 To be precise, we also need a greatest element for the empty intersection but it is provided
a few lines later.
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Proof. For any =,y € P we have 2* C y* & x € y* & x < y. Moreover let
a = /\, bi exist in P, we prove that i(a) = A, i(bx). Let X be a subset of P,
X*C A\ ilby) ©VEX Ch e VEX <b < X <as X*Ci(a). O

Proposition 3.14 The Mac-Neille closure ()" also preserves least upper
bounds which exist.

Proof. Let us suppose a = \/, b;. For any subset X of P, we have ¢ € X" &
VEk b, € X™ — this is not always true for any compatible closure. We suppose
VEk b, € X™ then X < z implies Vk b, < z and we have a < z. Thus a € X"
and finally \/, i(by) C X" & Vk by € X" S a € X" & i(a) C X" O

Let us give an example to compare the Mac-Neille closure and the initial
segment closure. On this example, we can see that |(-) does not preserve the
least upper bound 3 =1V 2.

quant.1 & quant.2 L) quant.3

3.3 The category of \[-completions

In this section we define the notion of \/-completion from an abstract point
of view. We show that the use of closures is a very natural and generic way
to build completions. In this section (P, <) is a fixed poset.

Definition 3.15 [\/-completions and their morphisms] A pair (i, L) is a \/-
completion of P if L is a complete lattice and ¢ : P — L is an poset embedding
such that Vi € £,3X C P, [ = \i(X).

A function f: £y — Ly is a \/-completion morphism f : (i1, Ly) — (i, Lo) if
f is monotonic, preserves least upper bounds and commutes with ¢; and s,
i.e. ’ig = f O’il.

The condition VI € £,3X C P, | = \/i(X) expresses the fact that the
process of extending P does not add unreachable points.

Proposition 3.16 If a morphism f : (iy,Ly) — (ig, L£2) exists then it is
unique.

Proof. Let [ € L, there exist a subset X of P such that [ = \/i;(X). Then
we have f(I) = f(Vii(X)) = Vf oi1(X)) = Via(X). This last value is
independent of f. a
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Theorem 3.17 (Equivalence) \/-completions of P form a category which
15 equivalent to the poset of compatible closures over P.

Proof. We prove the equivalence according to [12]. We define the function
F(i, £)(X) £ {z | i(z) < Vi(X)}. It is easy to show that this is a compatible
closure and therefore we have a map from \/-completions to compatible clo-
sures. If f : (i1, £1) — (i2, L£2) is a morphism then we can easily show that
for any X F(iy, £1)(X) C F(ig, L2)(X) holds. Thus, F is a functor between
two posets (which are a particular case of category). Moreover, this functor
is full and faithfull (always true for posets.) Let (-)* be a compatible closure
and let us consider the embedding i : (P,<) — (P*, <) defined in proposi-
tion 3.13. We have F(i, (P*, C))(X) = X*. Indeed z € F(i, (P*,C))(X) <
i(z) < Vi(X) & 25 C V,ex 2" & 2¢ € X* & 2 € X*. It concludes the proof
that T is an equivalence of categories (in fact of posets in our case). O

As a conclusion, we have provided an algebraic characterization of the
notion of compatible closure in terms of \/-completion. The Mac-Neille closure
corresponds to the terminal element of this category.

We can now extend the notion of completion to ordered monoids and then
deduce an extension of the Mac-Neille construction in that case.

3.4 Completion of ordered monoids
In this section we adapt the previous results to the case of ordered monoids.

Definition 3.18 [Stable closure] A closure on the monoid (M, e) is stable if
for any XY C M, X ¢ Y* C (X @ Y)" holds.

The stability condition can be compared to the condition for X — Y™ to be
closed® that arises in the phase space semantics of linear logic. In fact, both
notions are the same. Moreover, stability can also be related to the continuity
axiom [19]: in this case, continuity is equivalent to stability of (-)" but we will
discuss this point in section 5.4.

Definition 3.19 [Pretopology] A closure on the ordered monoid (M, e, <)
which is compatible and stable is called a pretopology [18].

For example, the initial segment closure |(-) is a pretopology. The Mac-
Neille closure is not a pretopology. A counter example will be provided in
section 4.2. Let us now introduce an extension of the Mac-Neille closure.

Lemma 3.20 Let (-)* be a pretopology on the ordered monoid (M,e, <), the
set of closed subsets (M*, 8, C) is a quantale. If i is defined by i(z) = x* then
1 M — M* is an ordered monoid embedding.

Proof. As (X*eY*)" = X* e Y*, e is a monoidal operation over M* with
unit 1*. Since proposition 3.10, we already know that (M*, C) is a complete

3 Where —o is defined by X =Y 2 {2 |Vz € X,ze2 € Y}.
7
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lattice. It is also clear that e is increasing. Thus, it remains to prove the
infinite distributivity. Let X, Y be arbitrary subsets of M.

X*.V)@*:X*.(Um)*: (XoU}/i)*:(UXolfi)*:\/X*oE*

We already know that ¢ is a poset embedding and ¢ is also a monoid morphism
because i(z e y) = (v oy)" = ({z} o {y})" = {z}" o {y}" = i(x) ®i(y). b

Thus, we can view pretopologies as a convenient way to build quantales.
Examples will be provided later. Is there a structure on the set of pretopologies
as it is the case with posets and compatible closures?

Theorem 3.21 If there is a greatest pretopology, the set of pretopologies or-
dered point-wise by inclusion is a complete lattice. The least element is |(-).

Proof. The (point-wise) non-empty intersection of stable closures is a stable
closure. O

The next result provides us the greatest element. The pretopology which
is introduced has already been presented in previous papers [7,17] but the
following characterization is new.

Theorem 3.22 Let (M,e, <) be an ordered monoid, we define the operator
() by X°={z|Va,beE M, ae X <b=aez<b}. Then (-)° is the greatest
pretopology.

Proof. (-)° is a closure.

If z € 2° then since 1 ez < o we have 1 e 2z < xi.e. z < x. Thus 2° C |x. If
z<rvand aex < bthen aez < aex < b Therefore |x = 2° and the closure
(+)° is compatible.

Let v € X and y € Y°, we show that v ey € (X e¢Y)°. Let a,b be such
that ae (X eY) < b. Then (ceX)eY < bandso (aex)eY < b. Sincey € Y°,
we deduce (aez)ey < bandsoae(rey)<b Thus, XeY°C (XeY)".
The closure (+)° is stable.

We prove now that we have the greatest pretopology. Let (-)* be any
pretopology and x € X*. Let a,b be such that a ¢ X < b. Then a ¢ X* C
(a® X)* C b* because of stability and consequently a @ x € b*. Then by
compatibility, a ¢ x < b. This proves that z € X° and then X* C X°. O

We point out the fact that when the monoidal translation x e () has a
right adjoint 2 —o (+) in the ordered monoid, then X° = X™* for any X. That is
the reason why it is possible to use the Mac-Neille closure in the phase space
completion.

Definition 3.23 [\/-completion| A pair (i, Q) is a \/-completion of the or-
dered monoid M if Q is a quantale and (i, Q) is a \/-completion of the poset
(M, <). Moreover i has to be a monoid morphism, i.e. i(z e y) = i(x) ®i(y).

8
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A morphism [ : (i1, Q1) — (i2, Q2) is a \/-completion morphism for the poset
case which is also a monoid morphism.

This defines a category and a morphism between two completions is unique.
The proof is the same as in proposition 3.16. This category is the algebraic
counterpart of the notion of pretopology.

Theorem 3.24 (Equivalence)  The category of \/-completions of the or-
dered monoid M is equivalent to the poset of pretopologies over M.

Proof. Fisdefined exactely as before. Then F(i, Q)(-) is a compatible closure.
We prove it is also stable. Let x € X and y € F(i, Q)(Y"). Then i(y) < Vi(Y).
i(xeoy) = i(r) ei(y) < i(zx) o \Vi(Y) < Vi(zr) @ i(Y) < \i(X oY). Then
rey € F(i, Q)(X oY) and we have stability X e F(i, Q)(Y) C F(i, Q)(X oY).
The rest of the proof, i.e. proving that F is an equivalence of categories, is the
same as in the proof of theorem 3.17. O

Now from our algebraic characterization, we can study our greatest pre-
topology (+)° in deeper details and analyse if the good properties of the Mac-
Neille closure for posets are inherited by (-)°.

4 Properties of the greatest pretopology

In this section we are going to prove that the greatest pretopology (-)° pre-
serves a lot of the initial structure of the ordered monoid M. From a semanti-
cal point of view, if we interpret ILL-formula then it means that their meaning
can almost be evaluated inside M.

4.1 Preservation properties

Proposition 4.1 Let (M, e, <) by an ordered monoid, we have
(1) If a = A\, b; then a® = A\ b°

(2)1°=1 and (bec)’ =1° e c°

(3) If a =0b—oc then a® = b° —o ¢°

(4) If T exists then L° is the greatest element

Proof. (1) and (4) are straightforward. (2) comes from stability. Now sup-
pose that a = b —o ¢ exist, i.e. for any x, r @ b < ¢ < = < a. Then for any X,
X°ob’ Cc°& (Xeb)’Cc®e Xeb<ce X <ae X° Ca® and then (3)
is proved. O

It only remains the cases of least upper bounds and the greatest element.
As a first observation, we point out the fact that they cannot always be pre-
served because infinite distributivity does not always hold in ordered monoids.
Thus preserved lubs should at least verify infinite distributivity. This neces-
sary condition is in fact a sufficient condition.

9
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Lemma 4.2 If a = \/, b; exists in M and is distributive, i.e. for all x in M
we have v @ a = \/, v ®b; then a® =\/.b;".

Proof. Let us first prove that a € X° < Vi b; € X°. The direct side is trivial.
The reverse is more tricky. Suppose aw @ X < . Then, as b; € X°, we have
aeb; < [ andso \/,aeb < (. By distributivity, we obtain cwe\/,b; <
and we obtain o e ¢ < . This is for any o, and so a € X°. We finally
obtain a®° C X° ©a € X° & Vih € X° < [Jb° C X° &V, b° CX°.
Consequently a® =/, b;°. O

As a remark, we observe that L may not be preserved. We obtain the
condition z e 1. = 1 which is not always true in ordered monoids — but it is
true in quantales.

4.2 Eramples

In this section we apply our greatest pretopology construction to build exam-
ples of quantales. The proofs are not given.
(N,+,<) 2 ({[0,n | n € N}, +,€)

) 7, (R U {—o0, +o0}, +, é)

The case of N is interesting because the least element 0 is not preserved
as an example of what we said in section 4.1.

A trivial method to build ordered monoids is to consider the flat order
structure on any monoid. Even though the order is the same in all cases, the
obtained lattice is not always the same when completed with (+)°.

Proposition 4.3 If the flat monoid M is regular then M° = MU {L, T}
with Lex =1 and forx # L, Tex =T.

A monoid is regular if e is erasable, i.e. a @z = b e x implies a = b. This is
the case for free monoids (multisets) like N or for groups like Z/pZ but there
exist non-regular monoids. The structure obtained by completion is described
by the following figure.

leT =1
quant.4 mel =T
mel = L

As an example of non-regular flat monoid, we can consider for a fixed
natural n the monoid ([0,n], max). It is not regular because max(0,n) =
max(1,n). The structure obtained is described in the next figure for n = 3.
We can show that )° = (), ° = {z} and if X has more than two elements
then X° = [0, max X].

quant.5 ([0, 3], max, flat)®
10



LARCHEY-WENDLING AND GALMICHE

This last example is interesting because the Mac-Neille closure ()" is not
stable on ([0, 3], max, flat). Indeed, {0,1}" = [0, 3] because 0 and 1 have no
common upper bound in the flat order. But {2}max{0,1} = {2}. So

{2bmax{0,1}" = {2,3} ¢ {2} = ({2}max{0,1})"

5 Semantics of ILL

In this section we present completeness results for a semantics based on the
completion-as-pretopology method we have presented. This result and our
methodology are compared to previous results. The important point is that
our methodology generalises other approaches.

5.1 Completeness

We observe that the greatest pretopology has very nice preservation properties.
It partially conserves the initial structure.

Lemma 5.1 If Q is a quantale then it can be viewed as an ordered monoid
and in this case, we can complete it with (-)°. In this case (Q°, C) is isomor-
phic to Q.

The proof is trivial because all the structure is preserved and since anything
in the completion is a lub, the embedding is surjective. This result gives rise
to completeness results for ILL derived from the fact that quantales are a
complete algebraic semantic for ILL.

Theorem 5.2 The classes of ordered monoids, Petri nets, finite ordered mo-
noids and finite Petri nets are all complete classes of models for ILL.*

These results have already been proved in previous papers [7,13]. They
are compared in section 5.3 to the completeness results obtained for Petri
nets in which the semantics is (unfortunately) distributive [6]. In contrast,
our semantics is not distributive as shown by the following proposition.

Proposition 5.3 The quantale (Z/37Z,+,flat)’ obtained by completion of the
flat cyclic group, is a counter-model of (A® B) & CF (A& C) @ (B & C).

Proof. Indeed, as shown in proposition 4.3, this quantale is not distributive as
alattice.® Then let us define [A] £ 0°, [B] £ 1°,[C] £ 2°. Then [A®B] =T
and [(A® B)&C] = 2°. But [A&C] = [B&C] = L and thus [(A®B)&C I
(A& C)J=L. Or2° &« L. a

4 ILL without exponentials.
5 In fact, it is exactly one of the two minimal non-distributive lattices.

11
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5.2 Phase spaces

Phases spaces form the initial complete semantics for ILL[9]. The algebraic
semantics based on quantales [20] appeared later. However the completeness
theorem for phase spaces can be viewed as the construction of a quantale using
the well known Lindenbaum construction.

In the case of (commutative) linear logic, we view the set of contexts
(multisets of formulae) as a (pre)ordered monoid, the order being logical de-
ductibility. Linear implication —o provides a right adjoint to the addition of
contexts (the monoidal operation) and so X° = X" (see section 5.4).

Then it is possible to build a quantale on the top of this ordered monoid
using the Mac-Neille closure as a pretopology. And in this quantale, it is pos-
sible to interpret contexts as themselves (as it is the case for the Lindenbaum
construction) providing a semantics equal to logical deductibility.

Then completeness for phase spaces can be viewed as a particular case of
completion of an ordered monoid of contexts into a quantale.

5.8 Petri nets

In [6], a semantics of ILL based on Petri nets is presented. As explained
in [13], Petri nets can be viewed as a graphical representation of (pre)ordered
monoids if we ignore their operational aspects. A quantale is built on the top
of these Petri nets to provide a semantical interpretation of ILL.

But this semantics is not fully complete because distributivity holds in their
quantales. Therefore completeness is only achieved at the price of removing
one of the two operators @ or & to ILL. One may argue that this feature is
related to the choice of Petri nets as a basis for the semantics. In the light of
our based-on-closure completion, we can prove that this is not founded. Indeed
in [6], the pretopology |(-) is used to build quantales on the top of Petri nets.
Distributivity is inevitable because lubs are unions with this closure. But
choosing another closure, namely (-)°, leads to completeness for all ILL, even
if we start from ordered monoids coming from Petri nets.

5.4 Continuity axiom

The continuity axiom is introduced in [19] to ensure that a quantale can
be obtained as the completion of an ordered monoid using the Mac-Neille
completion. Continuity is a property of an ordered monoid expressed by:

For alla,b,piqu(Vz(aongéz<q):>p<q) then aep < b

Continuity is related to stability by the following lemma.

Lemma 5.4 An ordered monoid is continuous if and only if its Mac-Neille
closure is stable.

12
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Proof. We rewrite continuity in a more readable form. Let us define
Xop = {r|aex <b}

We point out the fact that X, is often written @ —o b. Then continuity can
be read as

For all a,b,p if Vq(X,p < ¢ = p < q) then p € X,

Using the Mac-Neille closure, we rewrite this as Va,b X7, C X,;. Then
continuity corresponds to X, ; being Mac-Neille closed for all a, b.
For any subset X, we also have the identity

XO = Xup | X € Xop}

As an intersection of Mac-Neille closed subsets, X° is Mac-Neille closed, i.e.
X° = X°" which leads to X* C X°" C X°. The converse inclusion being
trivial. And so the Mac-Neille closure is stable if continuity holds.
Conversely, if (-)" is stable then it is a pretopology and as X° C X" and
(-)° is the greatest pretopology, X° = X". Or X7, = X, and so X2, = Xup
which is equivalent to continuity. a

We can then read the semantical developments of [19] as a particular case of
our order monoid completion, i.e. when the Mac-Neille closure is the greatest
pretopology.

6 Conclusion

In this paper, we have considered an alternative and unified analysis of se-
mantics of ILL that leads to new results about completeness and also non-
provability in this logic. It is developed from the point of view of the re-
lationships between the notions of order and closure and leads to a general
construction of quantales from ordered monoids based on a fine analysis of
closure. A new closure operator is defined in such a way we can propose a
complete class of models for ILL. To complete these results, we have proved
in [13] that every ordered monoid can be obtained from a Petri net and that
the finiteness is preserved during the construction. Therefore, as a natural
consequence, Petri nets form a complete class of models for ILL. Moreover
these results can be extended to the case of non-commutative logic.

As consequences, we have shown how ordered monoids or Petri nets can pro-
vide concise counter-examples revealing the non-provability of formulae of ILL
such as the distributivity property that was not feasible with the initial Petri
net semantics [6,7]. In fact, the search of counter-models is a complementary
and powerful tool for proof-search and in this context, the based-on semantics
considerations are important. Possible issues of this revision of the ILL seman-
tics would be to derive a new algebraic semantics as basis of proof-search and
to propose a calculus to effectively build counter-models for ILL. Moreover,

13
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we could study, from these semantical considerations, a possible and alterna-
tive embedding of ILL into IL [16] and its consequences on proof-search or
refutation-search in these logics.
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