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Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral
telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification
digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that
benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the
surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation
using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that
endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling,
characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase
and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the
increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin.
Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase,
extracellular signal–regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of
reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be
prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying
microvascularization in skin pigmentation, a finding that could open new fields of research for regulating
physiological pigmentation and for treating pigmentation disorders such as melasma.
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INTRODUCTION
Pigmentation is a complex and a tightly regulated process.
Microphthalmia-associated transcription factor (MITF) is the
master gene of pigmentation and controls several key
mechanisms in melanocytes such as melanogenesis, dendri-
city, and proliferation in response to environmental factors
including UV radiation and to molecules produced by
other cells in the skin. Activation of MITF induces expression
of the key enzymes of melanogenesis, which are tyrosinase,

dopachrome tautomerase (DCT), and tyrosinase-related
protein 1, leading to the production of melanin. Numerous
factors additionally provide the finer regulation of melanin
pigment production and/or melanocyte growth and differ-
entiation. Alpha-melanocyte-stimulating hormone and ACTH
are the most potent activators of melanogenesis, whereas
nitric oxide (NO) and some growth factors present in the
circulation or secreted by keratinocytes act to varying degrees
on melanogenesis and melanocyte growth, including basic
fibroblast growth factor, KIT ligand, hepatocyte growth factor,
endothelin 1 (Edn1), and some prostaglandins (Hirobe, 2005;
Plonka et al., 2009). Fibroblasts also have a key role in
melanocytogenesis and melanogenesis. Palmoplantar fibro-
blasts express high levels of Dickkopf 1, which reduces
melanocyte proliferation and differentiation by acting on MITF,
explaining (at least partially) the lower pigmentation generally
observed on human palms and soles (Yamaguchi et al., 2007
and 2008). Fibroblasts also produce melanogenesis-associated
factors that differ according to the skin type of the individual.
One of these factors, known as neuregulin-1, is secreted by
fibroblasts in black skin (skin type VI) and significantly increases
the pigmentation of human melanocytes in culture (Choi et al.,
2010). Interestingly, fibroblasts also seem to be involved in
melasma pathophysiology via their secretion of Wnt inhibitor
factor-1 (Kang et al., 2011; Kim et al., 2013; Park et al., 2014b).
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In addition to keratinocytes and fibroblasts, growing evidence
also implicates endothelial cells in pigmentation (Plonka et al.,
2009). Indeed, melanocytes express receptors that can poten-
tially be regulated by several factors secreted by endothelial
cells such as vascular endothelial growth factor (VEGF), Edn1,
NO, and leukotrienes (Kim et al., 2005; Yamaguchi and
Hearing, 2009). In addition, histological studies have clearly
shown a significant increase in vascularization within melasma
lesions compared with that in the surrounding healthy skin
(Kim et al., 2007). These results were subsequently confirmed
by laser confocal microscopy examination (Kang et al., 2010),
although the significance of this increased vascularization in
melasma remains poorly understood. However, a recent
clinical report cited cases presenting with acquired telangi-
ectatic and hyperpigmented macules (Park et al., 2014a), for
which the clinical and histological findings of skin hyper-
pigmentation localized above telangiectasias suggested a close
relationship between melanocytes and endothelial cells.
In the current study, we therefore examined the role of

dermal microvascular endothelial cells in regulating skin
pigmentation.

RESULTS
Vascularization influences skin pigmentation in vivo
A total of 100 benign vascular skin lesions were assessed,
comprising cherry angiomas, botriomycomas, spider angio-
mas, involutive infantile hemangiomas, capillaro-venous
malformation, acquired bilateral telangiectatic macules, and
leg telangiectasias. Using high-magnification digital dermato-
scopy, we observed a mild to marked hyperpigmentation
within and surrounding the vascular lesions compared with
the surrounding skin in 89% of cases (Figure 1; Supple-
mentary table 1 online). The hyperpigmentation was marked
in 22% of cases. The association between the vascular lesions
and the hyperpigmentation of the overlaying skin was
significantly more frequent in dark skin types (III to V)
compared with light ones (I and II; P=0.021) and in photo-
exposed areas compared with those located in photo-
protected areas (Po0.001) (Supplementary Tables 1 and 2
online). No correlation was found between the size of
vascular lesions and the overlying pigmentation (Supple-
mentary Table 3 online). Analysis of the vascular lesions using
laser confocal microscopy confirmed the increased pigmenta-
tion of the skin above the vascular proliferation compared
with the surrounding skin (Supplementary Figure 1 online).
We next analyzed tissue samples of benign vascular lesions of
the skin, available in our biobank. Ten samples from cherry
angiomas, botriomycomas, capillaro-venous malformation,
and acquired bilateral telangiectasia were stained with
hematoxylin eosin and Fontana–Masson staining to assess
the vascularization and pigmentation, respectively. MITF
staining was also performed to identify the melanocytes. For
each sample, histological sections were analyzed in the
center of the lesion and in the borders on the immediately
surrounding, non-affected skin. The lesion sections showed
an increased melanin content in the epidermis compared
with the surrounding skin. However, there was no significant
increase in melanocyte number with a mean ratio of

melanocytes/keratinocytes of 0.128 and 0.122 in lesional
and perilesional areas, respectively (P=0.41; Figure 2).

Microvascular endothelial cells increase the melanogenesis
pathway in melanocytes
To further investigate the role of vascularization in skin
pigmentation, we studied the effects of human dermal
microvascular endothelial cells (HMVECs) on the melano-
genesis pathway in normal human melanocytes (NHMs). In
co-culture experiments with HMVECs and NHMs, we
observed upregulation of the phosphorylated form of MITF
in melanocytes after 30minutes of co-culture (Figure 3a).
After 3 days of co-culture, the expression level of tyrosinase
and DCT was increased by approximately twofold (Figure 3b).
This effect was also specific to the endothelial cells, because
co-culturing of the NHMs with normal human keratinocytes
(NHKs) under the same conditions produced no such effect
(Supplementary Figure 2 online). We then investigated the
potential role of endothelial cells in melanocyte proliferation.
After plating the same number of NHMs for 7 days in a
co-culture with HMVECs or alone, the melanocytes were
counted. After 7 days of co-culture, the HMVECs induced
a slight but a significant increase in melanocytes number
(Figure 3c). Taken together, these results showed that the
microvascular endothelial cells could promote melanogenesis
and, to a lesser extent, enhance melanocyte proliferation.

Endothelin released by HMVECs upregulates melanogenesis
signaling in NHMs
To understand how endothelial cells upregulate the melano-
genesis pathway in melanocytes, we next investigated the
factors released by endothelia by incubating NHMs with
HMVEC-conditioned medium for 30minutes and 3 days
under the co-culture experiment conditions. The NHM
starvation medium conditioned in the presence of endothelial
cells (CM. HMVEC) induced similar phosphorylation of MITF
after 30 minutes to that observed in the co-culture experiment
with HMVECs (Figure 4a) and similarly increased tyrosinase
and DCT expression after 3 days (Figure 4b). Many factors are
produced and secreted by endothelial cells, but herein
we focused on molecules that could potentially act on
melanogenesis and melanocyte proliferation such as NO,
VEGF, endothelin, and leukotriene. In our co-culture experi-
ments, inhibition of NO with L-NG-Nitroarginine methyl ester
and 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide
(PTIO; Supplementary Figure 3a online), VEGF receptor with
VEGF receptor inhibitor IV and CBO-P11 (Supplementary
Figure 3b online), and leukotriene with baicalein (Supple-
mentary Figure 3c online) did not impair the phosphorylation
of MITF. In contrast, inhibition of endothelin receptor with
PD142893 inhibited the phosphorylation of MITF under our
co-culture conditions (Figure 4c). Furthermore, we observed
the same effects, with the same kinetics, on the phosphoryla-
tion of MITF and the levels of DCT and tyrosinase in
melanocytes stimulated with Edn1 (Supplementary Figure 4
online). Analyzes of Edn1 secretion also showed that the
HMVECs cultured in NHM starvation medium secreted
fourfold more Edn1 than NHK, and no secretion was detected
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for NHM (Figure 4d). Finally, to correlate these results in vivo,
we assessed the expression of Edn1 in skin samples of
vascular lesions compared with the perilesional skin and
found increased Edn1 at the basal layers of the epidermis
above vascular lesions (Figure 4e and h).

HMVECs induce melanogenesis via the activation of endothelin
receptor B and the MAPK pathway via ERK1/2 and p38 in
melanocytes
There are two subtypes of the endothelin receptor: EDNRA
and EDNRB. In order to identify the receptor involved in this
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Figure 1. Clinical and epiluminescence dermatoscopy pattern of hyperpigmentation associated with vascularization. (a) Acquired bilateral telangiectatic
macules. (b) Digital epiluminescence dermatoscopy of the lesions (×50). (c) Digital epiluminescence dermatoscopy of the lesions (×200). (d) Superficial
congenital hemangioma in an infant of 2 months of age. (e) Clinical presentation at the age of 5 years with regression of the vascular component and
hyperpigmentation localized only on the area of the hemangioma. (f) Digital epiluminescence dermatoscopy of the lesions (×10). Digital epiluminescence
dermatoscopy (×200) of cherry angiomas (g–m) and leg telangiectasias (n and o).
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process, we used specific inhibitors of EDNRA (BQ123) and
EDNRB (BQ788). The inhibition of EDNRA showed no effect
on MITF phosphorylation induced by endothelial cells,
whereas the inhibition of EDNRB inhibited the effects of
HMVECs on NHMs (Figure 5a). To determine whether Edn1
directly stimulates the melanocytes, we repeated the experi-
ment using conditioned medium of HMVECs with or without
BQ788. Treatment with BQ788 inhibited the phosphorylation
of MITF induced by HMVEC-conditioned medium as
observed for NHMs and HMVECs co-cultured in the presence
of BQ788, showing that Edn1 released by HMVECs directly
stimulates NHM (Figure 5b). The effect of EDNRB in this
mechanism was further confirmed using siRNA knockdown
of EDNRA and EDNRB expression. Specifically, decreasing
EDRNB expression in NHMs inhibited the phosphorylation of
MITF, but also the upregulation of tyrosinase induced by
HMVECs, whereas silencing EDNRA had no effect on these
processes (Figure 5c and d, Supplementary Figure 5 online).
In melanocytes, the stimulation of EDNRB activates protein

kinase C, which, in turn, stimulates extracellular signal–
regulated kinase (ERK)1/2 and p38, mitogen-activated protein
kinases that are implicated in the phosphorylation of MITF
and the upregulation of tyrosinase, respectively. We therefore

also investigated the status of ERK1/2 and p38 in NHMs in
co-culture with HMVECs and found that, after 30 minutes,
ERK1/2 and p38 were phosphorylated (Figure 5e), with the
phosphorylation of ERK also inhibited by siRNA EDNRB
(Supplementary Figure 5 online). Furthermore, inhibition of
the ERK pathway with U0126 inhibited the phosphorylation
of MITF in NHMs co-cultured with HMVECs (Figure 5f),
whereas the inhibition of p38 with SB203580 did not prevent
this phosphorylation (Figure 5g). The increased tyrosinase and
DCT after 3 days of co-culture was inhibited by U0126 and
partially inhibited by SB203580, suggesting a role for both
ERK and p38 activation in this mechanism (Figure 5h and i).
Taken together these results show that the microvascular

endothelial cells secrete endothelin, which activates EDNRB
on melanocytes and stimulates the ERK and p38 pathways.
Activation of ERK leads first to the phosphorylation of MITF,
whereas the activation of both ERK and p38 induces the
subsequent upregulation of tyrosinase and DCT.

Microvascular endothelial cells increase the pigmentation of
reconstructed epidermis through endothelin secretion
On the basis of the stimulation of melanogenesis by endo-
thelial cells under co-culture conditions, we then assessed
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Figure 2. Histological analysis of vascular lesions. Cherry angioma with hematoxylin and eosin (HE) (a), Fontana–Masson (b) and microphthalmia-associated
transcription factor (MITF) (c) staining. Perilesional normal skin of the same cherry angioma with HE (d), Fontana–Masson, (e) and MITF (f) staining. Capillary
venous malformation with HE (g), Fontana–Masson, (h) and MITF (i) staining. Perilesional normal skin of the same capillary venous malformation with HE (j),
Fontana–Masson, (k) and MITF (l) staining. Botriomycoma with HE (m), Fontana–Masson, (n) and MITF (o) staining. Perilesional normal skin of the same
botriomycoma with HE (p), Fontana–Masson, (q) and MITF (r) staining. Acquired bilateral telangiectatic macules with HE (s), Fontana–Masson, (t) and MITF
(u) stainings. Perilesional normal skin of the same lesion with HES (v), Fontana–Masson, (w) and MITF (x) staining. All the pictures were taken with × 200
magnification. Arrows designate MITF-positive cells. Scale bar=50 μM.
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their effect on melanin synthesis in reconstructed epidermis
composed of human keratinocytes and melanocytes cultured
with or without HMVECs. After 3 weeks, the co-culture with
HMVECs induced an increased pigmentation of the recon-
structed epidermis that could be observed clinically (Figure 6a
and b) and using Fontana–Masson staining (Figure 6c).
This HMVEC-induced hyperpigmentation of the epidermis
was prevented by the inhibition of EDNRB with BQ788
(Figure 6c).

DISCUSSION
In 1963 Fitzpatrick and Breathnach formulated the concept
of the epidermal melanin unit, with melanocytes and
keratinocytes working together to produce skin color. Forty
years later, Jim Nordlund expanded this concept to
a cutaneous troika involving keratinocytes, Langerhans
cells, and melanocytes (Nordlund, 2007), with fibroblasts
also recently implicated in regulating skin pigmentation
(Yamaguchi et al., 2007 and 2008; Choi et al., 2010). Here,
we demonstrated that the dermal microvascular endothelial
cells also have a role in the complex regulation of skin
pigmentation. In our experiments, endothelial cells, but not
keratinocytes, could stimulate melanogenesis in melanocytes

without UV stimulation. The absence or low stimulation of
melanogenesis in our co-cultures with keratinocytes is not so
surprising, and indeed all studies demonstrating a stimulating
effect of keratinocytes on melanogenesis were conducted in
the presence of UV stimulation (Duval et al., 2001) or another
pigmentation inducer such as Alpha-melanocyte-stimulating
hormone (Lei et al., 2002). We now show that endothelial
cells have a role, through the secretion of endothelin, in
upregulating key gene regulators of melanogenesis, MITF,
tyrosinase, and DCT, without any UV stimulation. Activation
of melanogenesis through activation of the MAPK pathway
and phosphorylation of MITF is in accordance with previous
reports (Sato-Jin et al., 2008). However, the increased contrast
in pigmentation between photo-exposed areas of the epider-
mis above vascular skin lesions and the perilesional skin led
us to hypothesize that the stimulation of melanogenesis by
endothelial cells might be even stronger after UV radiation.
Further studies are warranted to confirm this hypothesis.
Interestingly, in samples of the benign vascular lesions, the
melanin contain was increased in the epidermis located
above the microvascularization along with an increased
expression of Edn1 in the basal layers of the epidermis,
further confirming that Edn1 is produced in vivo by endo-
thelial cells, reaches the basal layers of the epidermis, and is
capable of stimulating melanogenesis. We additionally
observed in vitro a slight increase in melanocyte proliferation
when co-cultured with endothelial cells, although the number
of melanocytes was not significantly increased in either
reconstructed epidermis experiments or skin samples of
benign vascular lesions. Thus, the proliferative effect of
Edn1 appears limited, at least in vivo. Interestingly, it was
recently reported that choroidal melanocytes could regulate
uveal vascularization through the secretion of fibromodulin
(Adini et al., 2014), emphasizing the constant cross-talk
between melanocytes and endothelial cells. Edn1 is also
produced by proliferating endothelial cells or by cells
involved in inflammatory processes. Thus, on the basis of
the current study, it could be hypothesized that Edn1 also has
a role in post-inflammatory hyperpigmentation. Although
more pronounced in darker skin types and in photo-exposed
area, our clinical and histological data show that the vascular
component of the dermis influences the pigmentation of
the skin in vivo. Clearly, the physiological function that
endothelial cells have in skin pigmentation, beyond their role
in pigmentation disorders, warrants further investigations.
Indeed, the potential impact of vascularization on hyperpig-
mented lesions observed in acquired bilateral telangiectatic
macules was suspected by the authors who reported this
entity (Park et al., 2014a). Now, our results confirm a role for
endothelial cells but also rule out the implicated role of VEGF
as initially hypothesized and show instead the key role of the
released endothelin. The vascular component may also have
a key role in melasma. Histological studies and confocal laser
microscopy studies have clearly shown a significant increase
in vascularization within melasma lesions compared with that
in the surrounding healthy skin (Kim et al., 2007; Kang et al.,
2010). Although the signification of this increased vasculari-
zation was unknown, studies using different therapeutic
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Figure 3. Microvascular endothelial cells increase the melanogenesis
pathway in melanocytes. Normal human melanocytes (NHMs) are incubated
with human dermal microvascular endothelial cells (HMVECs) in the transwell
chamber during 30minutes (a) or 3 days (b). The lysate of NHMs is analyzed
by western blot with indicated antibodies and the relative protein level
quantified (n=6 and 8, respectively). The same number of NHMs is plated
and incubated with HMVECs in the transwell chamber for 7 days (c). The
HMVECs are changed every second day. After 7 days of co-culture, the NHMs
are trypsinized and counted on Malassez cell (n=3). *P⩽0.05; **P⩽0.005.
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approaches, but sharing the same aim of targeting the
vascular component of melasma, have been recently
reported. A prospective comparative split face randomized
study showed that the combination of stabilized Kligman’s
trio and pulsed dye laser (PDL) was significantly more
effective than the stabilized Kligman’s trio alone (Passeron
et al., 2011). Interestingly, the combination approach
prevented, at least partially, the typical relapses after the
summer period, whereas the cream alone did not. In support
of these findings, additional data suggest a preventive role
of targeting vessels in the relapses of melasma (Passeron,

2013). A different kind of approach also assessed the effect
on melasma of tranexamic acid, an anti-fibrinolytic used to
prevent and to treat some hemorrhagic events. The combined
use of this agent topically and orally during 8 weeks
decreased hyperpigmentation in melasma lesions, whereas
histological examinations confirmed a decrease in melanin
content and in vascularization (Na et al., 2013). These pilot
studies underline the potential interest in targeting the
vascular component for treating melasma. However, using
laser approaches to remove the vessels may promote post-
inflammatory hyperpigmentation, especially in darker skin

MITF
a c

e f

g h

db
MITF

1 0.8

2.25

1.58

1

1

Actin

Actin

DCT

Tyr

– +

– –

–

+ +

–

500
450
400
350
300
250
200
150
100
50
0

pg
 E

dn
1 

se
cr

et
ed

/µ
g

pr
ot

ei
n

+

HMVEC CM:

MITF

Actin

Lesional LesionalPerilesional

Edn1 Edn1 Edn1 Edn1

MITF

MITF MITF MITF MITF

MITF MITF MITF

Edn1Edn1 Edn1 Edn1

Perilesional

PD142893

HMVEC NHMNHK

Coc. HMVEC:

HMVEC CM:

Figure 4. Endothelial cells secrete endothelin 1 implicated in the upregulation of the melanogenesis pathway in melanocytes. Human dermal microvascular
endothelial cells (HMVECs) are incubated 24 hours with the normal human melanocytes (NHMs) starvation medium. NHMs are incubated with HMVEC-
conditioned medium (HMVEC CM.) for 30minutes (a) or 3 days and changed every day with new HMVEC CM. (b). NHMs and HMVECs are treated with the
endothelin receptor antagonist PD142893 (5 μM) (c), 2 hours before the start of the co-culture with HMVECs for 30 minutes.The lysate of NHMs is analyzed by
western blot with indicated antibodies. Numbers above the gels indicate levels of intensity compared with actin. The secretion of endothelin 1 by HMVECs,
normal human keratinocytes (NHKs), and NHM in NHM starvation medium is measured using the ELISA method (d). The expression of endothelin 1 and
microphthalmia-associated transcription factor (MITF) is analyzed in microvascular lesional skin sections compared with perilesional skin (e) (cherry angioma),
(f) (botriomycoma), (g) (capillary venous malformation), (h) (acquired bilateral telangiectatic macules)). Arrows designate MITF-positive cells. Scale bar= 50 μM.

C Regazzetti et al.
Vascularization Promotes Pigmentation

www.jidonline.org 3101

http://www.jidonline.org


types (Passeron et al., 2011), and the efficacy of tranexamic
acid has still to be confirmed in a prospective compa-
rative trial. Moreover, its effects are nonspecific and may
induce side effects. By dissecting the pathway involved
in the pigmentation associated with vascularization, we
demonstrate here the key role of the EDNRB. Thus,
developing topical agents to inhibit ENDRB activation on
melanocytes may limit the impact of the underlying
vascularization and provide, in combination with classic

depigmenting agents, a powerful approach to treat melasma
and prevent relapses.

MATERIALS AND METHODS
Patients
Consecutive patients presenting at least one benign vascular proli-
feration on the skin were included. Exclusion criteria were
inflammatory skin disorders, photodermatoses, melasma, acquired
brachial cutaneous dyschromia, post-inflammatory hyperpigmentation,
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and concomitant medication with photosensitizing drugs. Cherry
angiomas, botriomycomas, spider angiomas, involutive infantile
hemangiomas, capillaro-venous malformation, acquired bilateral
telangiectatic macules, and leg telangiectasias were included after
written informed consent was granted. The patient age, gender, and
skin type were noted together with the localization and size of involved
lesions. As only noninvasive examination (epiluminescence dermo-
scopy) was performed and all the data were definitively anonymized,
institutional review board approval was waived.

Assessment of pigmentation
A digital epiluminescence dermatoscope at ×200 magnification
(Dinolite, Naarden, The Netherlands) was used for evaluating the
vascular lesions and the pigmentation above the lesions. The same
physician performed (HHG) all the evaluations. Pigmentation was
assessed using a physician global assessment score that grades the
difference in pigmentation within and in the infra millimeter border
of vascular lesions compared with that in the surrounding skin. The
contrast in pigmentation was scored as none, mild, moderate, or
marked.
Vascular lesions were also assessed using laser confocal micro-

scopy (Vivascope 1500, Caliber ID, Rochester, NY). Optical sections
(Vivablock) of 4-mm width were acquired every 20 microns depth
from the stratum corneum up to the superficial dermis. Confocal
images were exported from the VivaScan Database to analyze using
Confoscan to discern high- (bright) or low- (dark) intensity objects

against circular and fixed-shape models. We thus detected optically
hyperreflective keratinocytes surrounding an angioma cavity and
less-pigmented keratinocytes located on the perilesional skin for the
quantification of pigmentation.

Reagent and antibodies
We obtained antibodies against MITF and β-actin from Abcam
(Cambridge, MA), pERK, and pp38 from Cell Signaling Technology
(Beverly, MA), EDNRA, EDNAB, and GAPDH from Santa Cruz
Biotechnology (Santa Cruz, CA), and tyrosinase and DCT from V.
Hearing.
U0126 and SB203580, baicalein, VEGF receptor inhibitor IV,

CBO-P11, and PTIO were purchased from Millipore (Billerica, MA),
PD142893 from Enzo Life Science (Farmingdale, NY), and LNAME,
endothelin 1, BQ123, and BQ788 from Sigma Aldrich (Saint Quentin
Fallavier, France).

Cell culture
NHMs and NHKs were obtained from the foreskin of skin type IV
children as described previously. Briefly, epidermal cells are
obtained by overnight digestion of the skin in a dispase solution at
4°C followed by incubation of the epidermis in a trypsin/EDTA
solution for 20 minutes at 37 °C. NHMs were isolated in MCDB 153
medium (Sigma Aldrich) supplemented with 2% FBS (Perbio;
Helsingborg, Sweden), 5 μgml− 1 insulin (Sigma Aldrich),
0.5 μg ml−1 hydrocortisone (Sigma Aldrich), 16 nM TPA (Sigma
Aldrich), 1 ng ml− 1 FGF (Promega; Madison, WI), 15 μgml− 1 bovine
pituitary extract (Invitrogen; Carlsbad, CA), 10 μM forskolin (Sigma
Aldrich), and 20 μgml− 1 geneticin (Invitrogen) over 2 weeks. NHKs
were isolated in KGM 2 medium (Promocell, Heidelberg, Germany).
HMVECs were obtained from Invitrogen and grown in Cascade 131
medium supplemented with microvascular growth supplement on
attachment factor-coated plates (Invitrogen). All cells were main-
tained at 37 °C in a 5% CO2 atmosphere.

Co-culture experiments
For the co-culture experiments, NHMs were seeded in six-well
plates, whereas HMVECs and NHKs were seeded separately on
0.4 μM Transwell inserts(Becton Dickinson; East Rutherford, NJ).
Two days before experiments, NHMs were starved in MCDB 153

medium supplemented with 5 μgml−1 insulin, 15 μgml− 1 bovine
pituitary extract, and 2% fetal bovine serum to remove pro-
pigmenting agents. HMVECs and NHKs were also incubated for
2 days in the NHM starvation medium to avoid medium-dependent
effects on pigmentation. The co-cultures were initiated when a
Transwell coated with HMVECs or NHKs was placed in a well
containing cultured NHM.

Reconstructed human pigmented epidermis (RHPE) experiment
RHPE (skin type IV), obtained from SkinEthic (Lyon, France), is
characterized by keratinocytes and melanocytes 3-D culture from
foreskin disposed on a 0.4 μM transwell chamber that allows an
air–liquid interface. According to SkinEthic procedure, RHPE are
incubated 24 hours in RHPE growth medium before experiment.
For the HMVEC/RHPE co-culture experiment, HMVECs are seeded

in 24-well plates and incubated 24 hours with RHPE growth factor
before incubation with the RHPE. HMVECs are changed every
second or third days during the 3 weeks of co-culture.
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Figure 6. Endothelin released by endothelial cells increases the pigmentation
in reconstructed epidermis. Reconstructed human pigmented epidermis in a
transwell chamber is stimulated with EDNRb inhibitor BQ788 (2 μM) and
incubated with human dermal microvascular endothelial cells (HMVECs) at
the bottom of the well for 3 weeks. HMVECs are changed every other days,
and BQ788 added every day. Reconstructed human pigmented epidermis is
photographed in full size (a) or in × 20 magnification (b). Melanin quantity
is determined by Fontana–Masson staining and observed at ×40 (c).
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Histopathology
Each biopsy was fixed in 4% formalin and paraffin embedded.
Morphological examination was carried out on sections (2-μm
thickness) stained by hematoxylin and eosin or Fontana–Masson.
Sections were heated for 20 minutes at 97 °C in low pH buffer
solution for antigen retrieval (PT-link Dako device, Glostrup, Den-
mark). MITF immunolabeling (mouse mAb product code: M3621,
Clone:D5, dilution 1/100, immunogen: Histidine fusion protein of
the amino-terminal Taq-Sac fragment of human MITF cDNA, Dako
France SAS, les Ulis,) and endothelin immunolabeling (goat
polyclonal antibody, product code: ET-1 (N-8) sc-21625, dilution
1/200, Santa Cruz Biotechnology) were performed using a Dako
autostainer according to the manufacturer’s recommendations. After
washing with phosphate-buffered saline, the sections were incubated
with Envision FLEX+mouse (Linker)/HRP (DAKO) for 15 minutes at
room temperature. After washing with phosphate-buffered saline, the
sections were incubated with Envision FLEX/HRP (DAKO) for 20
minutes at room temperature, followed by revelation using the
Envision System according to the manufacturer’s recommendations,
with DAB (diaminobenzidine) for 8 minutes as chromogen. Finally,
the sections were counterstained in Mayer’s hematoxylin and
mounted in glycergel mounting medium (Dako). Melanocytes,
identified by Mitf immunohistochemical staining, and basal kerati-
nocytes were counted along the basement membrane, beside and
away from the vascular lesion, within the entire length of each
biopsy. We then set the ratio of keratinocytes/melanocytes. For each
sample, at least 10 fields at ×400 magnification were studied.

Transient siRNA transfection
A total of 500,000 NHMs are used for reverse transfection. NHMs are
trypsinized, resuspended in starvation medium, and transfected using
INTERFER in (Polyplus Transfection; Illkirch, France) according to the
manufacturer instructions. Briefly, siRNA-negative control, EDNRA
and EDNRB (50 pmol) (#1-Thermo Fisher Scientific; Waltham, MA),
(#2-Ambion; Foster City, CA) are incubated with INTERFER in 15
minutes and lay into the well before the addition of the cells. The
experiments of 30minutes of co-culture were conducted 4 days after
the transfection, and the experiments of 3 days of co-culture were
performed 1 day avec the transfection.

Statistical analysis
Statistical differences between groups were analyzed by Student's t-
test. They were considered significant at Po0.05.
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