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a b s t r a c t

The purpose of this note is to extend the results on uniform
smoothed analysis of condition numbers from Bürgisser et al.
(2008) [1] to the case where the perturbation follows a radially
symmetric probability distribution. In particular, wewill show that
the bounds derived in [1] still hold in the case of distributions
whose density has a singularity at the center of the perturbation,
which we call adversarial.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Condition numbers play a central role in numerical analysis. They occur in error analysis for finite-
precision algorithms (this being historically the reason for their introduction in the late 1940s by
von Neumann and Goldstine [10] and Turing [9]) as well as a parameter in expressions bounding the
number of iterations in a variety of algorithms (a paradigmatic example being the conjugate gradient
method [8, Theorem 38.5]). In practice, however, a difficulty appears: it would seem that to know the
condition number of a given data one needs to solve the problem at hand on this data. An inconvenient
circularity. A way out of it, proposed by Steve Smale (see [5] for a review), is to assume a probability
measure on the space of data and to study the condition number C (a) at data a as a random variable.
In other words, to study the condition number of random data.
In doing so Demmel [2] noticed that most condition numbers could be written as (or at least

reasonably sharply bounded by) the relativized inverse of the distance from the data a ∈ Rn+1 to
a set of ill-posed instancesΣ ⊂ Rn+1. That is, one could write

C (a) =
‖a‖

dist(a,Σ)
. (1.1)
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The simplest example of this phenomenon is given by the condition number for matrix inversion and
linear equation solving. For a non-singular k× kmatrix A it takes the form κ(A) := ‖A‖‖A−1‖, where
‖ ‖ denotes the operator norm. The Condition Number Theorem by Eckart and Young states that
‖A−1‖ = d(A,Σ)−1, where Σ is the set of singular matrices. Then, for n = k2 − 1 and a = A we
obtain (1.1).
In most applications,Σ is a pointed cone. Therefore, one could normalize so that a belongs to the

n-dimensional unit sphere Sn. Note that the usual assumption that a has a Gaussian distribution in
Rn+1 yields a uniform distribution in Sn after this normalization. It is for condition numbers as in (1.1)
– which we shall call conic – with inputs drawn from the uniform distribution on Sn that Demmel
proved in [3] (shortly after [2]) a general result bounding their tail as a function of n and the degree
of an algebraic hypersurface containingΣ .
Very recently, a new paradigm for probabilistic analysis was proposed by Spielman and Teng

[6,7]. Called smoothed analysis, it consists of replacing the idea of ‘‘random data’’ by that of ‘‘random
perturbation of a given data’’ and study the worst case (w.r.t. data a) of the latter. In its original
formulation, and in the case of a condition number C (a), this amounts to study the tail

sup
a∈Rn+1

Prob
z∈N(a,σ 2)

{C (z) ≥ t}

or the expected value

sup
a∈Rn+1

E
z∈N(a,σ 2)

[ln C (z)]

where N(a, σ 2) is a Gaussian distribution centered at a with covariance matrix σ 2Id and σ 2 small
(with respect to ‖a‖). In [1], to obtain general results as in [3], data was again restricted to Sn and the
expressions above replaced by

sup
a∈Sn

Prob
z∈B(a,σ )

{C (z) ≥ t}

and

sup
a∈Sn

E
z∈B(a,σ )

[ln C (z)]

where B(a, σ ) is the open ball (that is, the spherical cap) in Sn centered at a and of radius σ , and z is
drawn from a uniform distribution on this ball.
One of the claimed advantages of smoothed analysis is a smaller dependence on the underlying

distribution. It follows from this claim that the replacement of Gaussian perturbations by uniform
ones should not significantly affect the smoothed analysis of C (a). The goal of this note is to further
pursue this claim by extending the main result in [1], combining it with ideas from [4], to a class of
distributions we call adversarial. The support of such a distribution is, as in the uniform case, the ball
B(a, σ ) and they are radially symmetric as well. But their density increases when approaching a and
has a pole at a.

2. Preliminaries

We assume our data space is Rn+1, endowed with a scalar product 〈 , 〉. In all that follows we
consider problemswhose set of ill-posed inputsΣ is a point-symmetric cone inRn+1. That is, if x ∈ Σ
then λx ∈ Σ for all λ ∈ R. By a conic condition number we understand a function C :Rn+1 → [1,∞]
such that for all a ∈ Rn+1 we have

C (a) =
‖a‖

dist(a,Σ)
,

where ‖ ‖ and dist are the norm and distance induced by 〈 , 〉. Note that for λ 6= 0 we have
C (λa) = C (a). We can therefore work with the n-dimensional real projective space Pn as ambient
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space. If we also denote byΣ ⊂ Pn the image of the ill-posed cone in projective space, then for a ∈ Pn
it follows that

C (a) =
1

dP(a,Σ)
,

where dP(x, y) = sinα, denotes the projective distance between x, y ∈ Pn (α being the angle between
x and y).
The two-fold covering p: Sn → Pn induces a measure ν on Pn by means of ν(B) := 1

2 Voln(p
−1(B))

for B ⊆ Pn, where Voln is the n-dimensional volume on the sphere. Thus ν(Pn) = On/2, where On :=

Voln(Sn) = 2π
n+1
2

Γ ( n+12 )
.

For 0 < σ ≤ 1, we denote by BP(a, σ ) the open ball of projective radius σ around a ∈ Pn. It is
known that

ν(BP(a, σ )) = On−1 · In(σ ),

where

In(σ ) :=
∫ σ

0

rn−1
√
1− r2

dr. (2.1)

The following bounds will prove useful on several occasions:

σ n

n
≤ In(σ ) ≤ min

{
1

√
1− σ 2

,

√
πn
2

}
·
σ n

n
. (2.2)

For a ∈ Pn and σ ∈ (0, 1], the uniform measure on BP(a, σ ) is defined by

νa,σ (B) =
ν(B ∩ BP(a, σ ))
ν(BP(a, σ ))

(2.3)

for all Borel-measurable B ⊆ Pn.

2.1. Uniform smoothed analysis

A reformulation of the main result in [1] in the projective space setting can be written as follows.

Theorem 2.1. Let C be a conic condition number with set of ill-posed inputs Σ ⊂ Pn. Assume that Σ is
contained in the zero set in Pn of homogeneous polynomials of degree at most d. Then, for all σ ∈ (0, 1]
and all t ≥ t0 = (2d+ 1) nσ ,

sup
a∈Pn

Prob
z∈BP(a,σ )

{C (z) ≥ t} ≤ 13 dn
1
σ t
.

and

sup
a∈Pn

E
z∈BP(a,σ )

[ln C (z)] ≤ 2 ln n+ 2 ln d+ 2 ln
1
σ
+ 5,

where Prob and E are taken with respect to νa,σ .

As a consequence of this result, uniform smoothed analysis results for the condition numbers
of a variety of problems are obtained, including linear equation solving, Moore–Penrose inversion,
eigenvalue computation and polynomial system solving. The bounds obtained are consistently of the
same order of magnitude as the best bounds obtained previously by ad hoc methods.
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2.2. Uniformly absolutely continuous distributions

In [4] a general boosting mechanism was developed that allows extending any probabilistic
analysis of a condition number with respect to some chosen probability distribution over the input
data to a more general class of distributions.
Letµ be a νa,σ -absolutely continuous probability measure. Using the convention ln(0) := −∞we

define, for δ ∈ (0, 1),

inf(δ) := inf
{
lnµ(B)
ln νa,σ (B)

: B is Borel-measurable and 0 < νa,σ (B) ≤ δ
}
.

With these conventions, Theorem 2.2 of [4] shows that

ανa,σ (µ) := lim
δ→0
inf(δ) ∈ [0, 1]. (2.4)

Absolute continuity alone ensures that all νa,σ -null-sets must be µ-null-sets, but this does not imply
thatµ(B) is small when νa,σ (B) is small and strictly positive. In contrast, when ανa,σ (µ) > 0 then (2.4)
gives uniform upper bounds on µ(B) in terms of νa,σ (B). Furthermore, the smaller α gets, the larger
the variation of µ in terms of νa,σ . If µ is νa,σ -absolutely continuous and ανa,σ (µ) > 0, we therefore
say that µ is uniformly νa,σ -absolutely continuous and call ανa,σ (µ) the smoothness parameter of µ
with respect to νa,σ .
The following result, which easily follows from (2.4), can be used to boost bounds on tail

probabilities with respect to νa,σ (as those in Theorem 2.1) to obtain similar bounds on any uniformly
νa,σ -absolutely continuous probability measure µ.

Proposition 2.2. ανa,σ (µ) is the largest nonnegative real number α for which it is true that for all ε > 0
there exists δε > 0 such that νa,σ (B) ≤ δε implies µ(B) ≤ νa,σ (B)α−ε .

3. Smoothed analysis for adversarial distributions

In this section we present our main result, namely an extension of Theorem 2.1 to the case where
we have a radially symmetric distribution whose density has a pole at the point being perturbed. We
begin by introducing some notation.
Let a ∈ Pn and σ ∈ (0, 1], and let νa,σ be the uniform measure on BP(a, σ ), as defined in (2.3). Let

µ be a νa,σ -absolutely continuous probability measure on Pn with density f . In other words,

µ(B) =
∫
B
f (x) νa,σ (dx)

for all events B. Assume further that f : Pn → [0,∞] is of the form f (x) = g(dP(x, a)), with a mono-
tonically decreasing function g: [0, σ ] → [0,∞] of the form

g(r) = Cβ,σ · r−β · h(r),

with β < n, where Cβ,σ = In(σ )/In−β(σ ) and h: [0, σ ] → R+ is a continuous function satisfying
h(0) 6= 0 and∫ σ

0
h(r)

rn−β−1
√
1− r2

dr = In−β(σ ),

so that µ is a probability measure on BP(a, σ ). In other words, f is radially symmetric around a with
respect to dP and has a pole of order−β at 0 in case β > 0. The normalizing factor Cβ,σ is chosen to
make h(r) = 1 a valid choice. Set H := sup0≤r≤σ h(r). Note that H ≥ 1, and that H = 1 implies h ≡ 1.
Note as well that the measure µ depends on σ , β and H .
The main result of this note is the following.
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Theorem 3.1. Let C be a conic condition number with set of ill-posed inputs Σ ⊆ Pn, and assume Σ is
contained in a projective hypersurface of degree at most d. Then

E
µ
[ln C ] ≤ 2 ln(n)+ ln(d)+ ln

(
1
σ

)
+ ln

(
13π
2

)
+

1

1− β

n

(
ln
2eH2n
ln(πn/2)

)
.

This result applies to the variety of problems mentioned after Theorem 2.1. The statement
of the theorem follows from calculating the smoothness parameter αν(µ) and the constants in
Proposition 2.2. These are given by the following two lemmas, to be proven later.

Lemma 3.2. The smoothness parameter of µ with respect to νa,σ is given by ανa,σ (µ) = 1− β/n.

For the statement of the next lemma, let ε ∈ (0, 1− β/n), and let

ρε := σ ·

 1
H
·

√√√√1− ( 2
πn

)(1− βn −ε)/(nε)
1
εn (√

2
πn

)(1− βn −ε) 1εn
.

Set δε := In(ρε)/In(σ ).

Lemma 3.3. Let B ⊆ Pn be such that νa,σ (B) ≤ δε . Then µ(B) ≤ (νa,σ (B))1−
β
n −ε .

We are now ready to prove the main result.

Proof of Theorem 3.1. Setting ε = 1
2 (1−

β

n ) and using the bounds (2.2) we obtain

2
πn

 1
H
·

√√√√1− ( 2
πn

) 1
n


2

1− βn

≤ δε ≤

 1
H
·

√√√√1− ( 2
πn

) 1
n


2

1− βn

. (3.1)

From Theorem 2.1 it follows that for all t ≥ t0 := ln[(1+ 2d)n/σ ],

Prob
νa,σ
{ln C > t} ≤

13dn
σ
e−t . (3.2)

Set

tε := ln
(
13dn
σ · δε

)
= ln

(
13dn
σ

)
+ ln(δ−1ε ).

Using (3.1) we obtain

ln
(
13
dn
σ

)
≤ tε −

2

1− β

n

ln

 H√
1−

( 2
πn

) 1
n

 ≤ ln(13π
2
dn2

σ

)
.

The lower bound shows that tε > t0, so that for all t ≥ tε ,

νa,σ ({x : ln C (x) > t}) = Prob
νa,σ
{ln C > t} ≤

13dn
σ
e−t ≤ δε.

Applying Lemma 3.3, it follows that for t ≥ tε ,

Prob
µ
{ln C > t} = µ ({x : ln C (x) > t}) ≤

(
13dn
σ
e−t
) 1
2 (1−

β
n )

,
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and hence,

E
µ
[ln C ] =

∫
∞

0
Prob
µ
{ln C > t}dt

≤

∫ tε

0
1dt +

∫
∞

tε

(
13dn
σ
e−t
) 1
2 (1−

β
n )

dt

= tε +
2δ

1
2 (1−

β
n )

ε

1− β

n

.

Using the bounds on tε and δε we get

E
µ
[ln C ] ≤ 2 ln(n)+ ln(d)+ ln

(
1
σ

)
+ ln

(
13π
2

)

+
2

1− β

n

ln
 H√

1−
( 2
πn

) 1
n

+
√
1−

( 2
πn

) 1
n

H

 .
A small calculation shows that

(
1−

( 2
πn

) 1
n

)−1/2
≤

√
2n

ln(πn/2) . This completes the proof. �

3.1. Proofs of Lemmas 3.2 and 3.3

The content of the following lemma, needed for calculating the smoothness parameter, should be
intuitively clear.

Lemma 3.4. Let 0 < δ < 1. Then among all measurable sets B ⊆ BP(a, σ ) with 0 < νa,σ (B) ≤ δ, the
quantity µ(B) is maximized by BP(a, ρ) where ρ ∈ (0, σ ) is chosen so that νa,σ (BP(a, ρ)) = δ.

Proof. It clearly suffices to show that∫
B
f (x) νa,σ (dx) ≤

∫
BP(a,ρ)

f (x) νa,σ (dx)

for all Borel sets B ⊂ BP(a, σ ) such that νa,σ (B) = δ. Indeed, we have∫
B
f (x) νa,σ (dx) =

∫
B∩BP(a,ρ)

f (x) νa,σ (dx)+
∫
B\BP(a,ρ)

f (x) νa,σ (dx)

≤

∫
B∩BP(a,ρ)

f (x) νa,σ (dx)+ g(ρ) νa,σ (B \ BP(a, ρ))

=

∫
B∩BP(a,ρ)

f (x) νa,σ (dx)+ g(ρ) νa,σ (BP(a, ρ) \ B)

≤

∫
B∩BP(a,ρ)

f (x) νa,σ (dx)+
∫
BP(a,ρ)\B

f (x) νa,σ (dx)

=

∫
BP(a,ρ)

f (x) νa,σ (dx), (3.3)

where we have used νa,σ (BP(a, ρ)) = δ = νa,σ (B) in (3.3). This proves our claim. �

Even though ρ is a function of δ, we will not reflect this notationally in what follows.
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It will be important to have expressions for νa,σ (B) and µ(B) when B = BP(a, ρ) is a projective
ball. In this situation we have

µ(BP(a, ρ)) =
1

ν(BP(a, σ ))

∫
BP(a,ρ)

f (x) ν(dx)

=
1

On−1In(σ )
· Cβ,σ · On−1

∫ ρ

0
r−βh(r)

rn−1
√
1− r2

dr

=
1

In−β(σ )

∫ ρ

0
h(r)

rn−β−1
√
1− r2

dr

≤

(
sup
0≤r≤ρ

h(r)
)
·
In−β(ρ)
In−β(σ )

. (3.4)

Similarly,

µ(BP(a, ρ)) ≥
(
inf
0≤r≤ρ

h(r)
)
·
In−β(ρ)
In−β(σ )

.

In particular,

νa,σ (BP(a, ρ)) =
In(ρ)
In(σ )

. (3.5)

Proof of Lemma 3.2. From (3.4), (3.5) and (2.2) we get the bounds of the form

1
C1
· ρn ≤ νa,σ (BP(a, ρ)) ≤ C1 · ρn, (3.6)

inf
0≤r≤ρ

h(r) ·
1
C2
· ρn−β ≤ µ(BP(a, ρ)) ≤ sup

0≤r≤ρ
h(r) · C2 · ρn−β , (3.7)

where the constants Ci do not depend on ρ.
We thus have (using Lemma 3.4)

ανa,σ (µ) = lim
δ→0
inf
{
lnµ(B)
ln νa,σ (B)

: Bmeasurable, 0 < νa,σ (B) ≤ δ
}

= lim
ρ→0

lnµ(BP(a, ρ))
ln νa,σ (BP(a, ρ))


≤ lim

ρ→0

ln(inf h(r)/C2)+ (n− β) ln ρ
ln (C1)+ n ln ρ

= 1−
β

n

≥ lim
ρ→0

ln(C2 · sup h(r))+ (n− β) ln ρ
− ln C1 + n ln ρ

= 1−
β

n
.

This concludes the proof. �

Proof of Lemma 3.3. Since sets of the form BP(a, ρ)maximize µ(B) among all measurable sets B ⊆
BP(a, σ ) such that νa,σ (B) ≤ δ for any δ, we may w.l.o.g. assume B = BP(a, ρ). By (3.4) and (3.5) our
task amounts to showing

H ·
In−β(ρ)
In−β(σ )

≤

(
In(ρ)
In(σ )

)1− βn −ε
for ρ ≤ ρε . And indeed, using the bounds (2.2), we get

H ·
In−β(ρ)
In−β(σ )

≤ H
1√
1− ρ2

·

(ρ
σ

)n−β
≤ H

1√
1− ρ2

·

((ρ
σ

)n)1− βn −ε (ρε
σ

)εn
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≤

√
1−

( 2
πn

)(1− βn −ε)/(nε)√
1− ρ2

·

(√
2
πn

(ρ
σ

)n)1− βn −ε

≤

√
1−

( 2
πn

)(1− βn −ε)/(nε)√
1− ρ2

·

(
In(ρ)
In(σ )

)1− βn −ε
,

where for the last inequality we use the bounds (2.2) again. Moreover, we have

ρ ≤ ρε ≤

(√
2
πn

)(1− βn −ε) 1εn
.

Therefore,

√
1−

( 2
πn

)(1− βn −ε) 1εn ≤ √1− ρ2, completing the proof. �
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