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0. Introduction

The problem of extension of functors from the subcategory of spaces with the homotopy type of “good” spaces to the
category of topological spaces is one of the important problems of algebraic topology [5,6,8,9,13,14,17]. The achievements
in the solution of this problem have interesting applications in different branches of modern topology and algebra.

The coshape theory [2,7,11,15] is closely connected with the problem of extension of functors from the category of
spaces with the homotopy type of polyhedra to the category of topological spaces. In particular, the spectral (co)homotopy
groups [11] and the spectral singular (co)homology groups [6] of spaces are invariant functors of coshape theory. Besides,
the (co)homotopy and (co)homology, inj-groups and pro-groups of spaces [3,11,16] also induce important coshape invariant
functors because they contain much more information about direct and inverse systems than their limits, even if these
limits exist.

The main aim of the present paper is to study the extension problem of functors. To achieve this aim, a coshape theory
of pairs of topological spaces is developed. Obtained results lead to a construction of coshape invariant and continuous
extensions of group-valued covariant and contravariant functors from the homotopy category of pairs of spaces with the
homotopy type of a pair of finite CW-complexes to the homotopy category of pairs of topological spaces (cf. [1,3,7,8,10,11,
14,15,18]).

1. Preliminaries

We use the notation of [2,11,12,14,16]. A space and a map considered here mean a topological space and a continuous
map, respectively.

Let Top2 (Top2∗) be the category of pairs (pointed pairs) of spaces. By CW2
f (CW2

f ∗ ) we denote the full subcategory of

Top2 (Top2∗) consisting of pairs (pointed pairs) of finite CW-complexes. We write HTop2 (HTop2∗) for the homotopy (pointed
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homotopy) category of the category Top2 (Top2∗). Let HCW2
f (HCW2

f ∗ ) denote the full subcategory of HTop2 (HTop2∗) whose
objects are pairs (pointed pairs) of spaces homotopy equivalent to a pair (pointed pair) of finite CW-complexes.

Write Ssc2 for the category of pairs of semisimplicial complexes (ssc) and semisimplicial maps (ssm) and Gr for the
category of groups and homomorphisms.

First, we recall some results from the theory of semisimplicial complexes [12].
Let Sn(X) be the collection of all continuous maps σ : �n −→ X of the standard n-simplex �n into a topological space X .

Let S(X) = {Sn(X) | n = 0,1,2, . . .} and let d∗
i : �n −→ �n+1 and s∗

j : �n −→ �n−1 be the maps given by formulas:

d∗
i (t0, . . . , tn) = (t0, . . . , ti−1,0, ti, . . . , tn), (t0, . . . , tn) ∈ �n,

s∗
j (t0, . . . , tn) = (t0, . . . , t j−1, t j + t j+1, t j+2, . . . , tn), (t0, . . . , tn) ∈ �n.

Let di : Sn(X) −→ Sn−1(X) and s j : Sn(X) −→ Sn+1(X) be the maps sending xn ∈ Sn(X) into xnd∗
i and xns∗

j , respectively. It
is clear that S(X) is ssc. If f : X −→ Y is a continuous map, then it induces an ssm S( f ) : S(X) −→ S(Y ). By definition,
S( f )(σ ) = f ·σ , σ : �n −→ X . If f : (X, X0) −→ (Y , Y0) is a continuous map of pairs of topological spaces, then S( f ) is the
ssm S( f ) : (S(X), S(X0)) −→ (S(Y ), S(Y0)) of pairs of ssc’s.

Now, we associate to a given ssc X and ssm f : X −→ Y their geometric realizations, a CW-complex |X | and a continuous
map | f | : |X | −→ |Y |, respectively.

Let M(X) be the topological disjoint union of all copies (�n, xn), xn ∈ Xn , i.e. M(X) = ⊔∞
n=1(�

n × Xn). Let E be an
equivalence relation on M(X) given by the following conditions

(
d∗

i t, xn
)

E(t,di xn), t ∈ �n−1,(
s∗

j t, xn
)

E(t, s j xn), t ∈ �n+1.

We say that the pairs (t, x) and (u, y) of M(X) are E equivalent, (t, x) E(u, y), if there exists a finite chain of such type
equivalences beginning at (t, x) and ending at (u, y). Let |X | = M(X)/E and η : M(X) −→ |X | be the quotient map given by
the formula:

η
(
(t, x)

) = [
(t, x)

]
, (t, x) ∈ M(X).

Each ssm f : X −→ Y induces a map M( f ) : M(X) −→ M(Y ). By definition,

M( f )(t, xn) = (
t, f (xn)

)
, xn ∈ Xn, t ∈ �n.

There exists a continuous map | f | : |X | −→ |Y | defined by

| f |([(t, xn)
]) = [(

t, f (xn)
)]

, xn ∈ Xn, t ∈ �n.

Note that the semisimplicial subcomplexes of an ssc X are in a one-to-one correspondence with the subcomplexes of the
CW-complex |X | (see [12, Lemma III.4.10]).

Let S : Top2 −→ Ssc2 and R : Ssc2 −→ Top2 be the singular functor and the geometric realization functor given by formu-
las:

S
(
(X, X0)

) = (
S(X), S(X0)

)
, (X, X0) ∈ Top2,

S( f ) : (S(X), S(X0)
) −→ (

S(Y ), S(Y0)
)
,

(
f : (X, X0) −→ (Y , Y0)

) ∈ Top2,

R
(
(X, X0)

) = (|X |, |X0|
)
, (X, X0) ∈ Ssc2,

R( f ) = | f | : (|X |, |X0|
) −→ (|Y |, |Y0|

)
,

(
f : (X, X0) −→ (Y , Y0)

) ∈ Ssc2.

For each pair (X, X0) ∈ Top2 define a map

j(X,X0) : (∣∣S(X)
∣∣, ∣∣S(X0)

∣∣) −→ (X, X0).

By definition,

j(X,X0)

([
(t,σ )

]) = σ(t), t ∈ �2, σ : �n −→ X .

Let f : (X, X0) −→ (Y , Y0) be a continuous map of pairs of spaces. The following diagram is commutative:

(|S(X)|, |S(X0)|) |S( f )|

j(X,X0)

(|S(Y )|, |S(Y0)|)
j(Y ,Y0)

(X, X )
f

(Y , Y ).
0 0



1398 V. Baladze / Topology and its Applications 158 (2011) 1396–1404
Consequently, j = { j(X,X0) | (X, X0) ∈ Top2} is a natural transformation of the composition R · S of the singular and
geometric realization functors to the identity functor 1Top2 : Top2 −→ Top2.

Now, we recall some notions and facts on the inj-category whose detailed description was given in [2].
Let T be an arbitrary category. A direct system in T is a covariant functor X from the category determined by a directed

set (A,�) to the category T , i.e. a direct system X in T is a family X = (Xα, pαα′ , A), where Xα , α ∈ A is an object of T
and pαα′ : Xα −→ Xα′ , α � α′ is a bonding morphism with properties pαα = 1Xα : Xα −→ Xα , α ∈ A and pα′α′′ · pαα′ = pαα′′ ,
α � α′ � α′′ . For every object X ∈ T by (X) we denote the direct system indexed by a singleton and having only one term X .

A morphism ( fα,ϕ) : X = (Xα, pαα′ , A) −→ Y = (Yβ,qββ ′ , B) of dir-T , called a mapping of direct systems, consists of
a function ϕ : A −→ B and a collection of morphisms fα : Xα −→ Yϕ(α) , α ∈ A, such that for each pair α � α′ there is an
index β � ϕ(α), ϕ(α′) with qϕ(α)β · fα = qϕ(α′)β · fα′ · pαα′ .

The composition (hα, ζ ) of morphisms ( fα,ϕ) : X −→ Y and (gβ,ψ) : Y −→ Z is defined in the usual manner. The
mapping of direct systems (hα, ζ ) : X −→ Z consists of the function ζ = ψ · ϕ and the collection of morphisms hα =
gϕ(α) · fα : Xα −→ Zh(α) . The family (1Xα ,1A) is the identity mapping of the direct system X .

The direct systems of the category T and their morphisms form a category dir-T .
Two mappings of direct systems ( fα,ϕ), (gα,ψ) : X −→ Y are said to be equivalent, ( fα,ϕ) ∼ (gα,ψ), if for each index

α ∈ A there is an index β � ϕ(α), ψ(α) such that qϕ(α)β · fα = qψ(α)β · gα .
The relation ∼ is an equivalence on the set of morphisms of X to Y .
Let f = [( fα,ϕ)] : X −→ Y and g = [(gβ,ψ)] : Y −→ Z be the equivalence classes of morphisms in dir-T . The compo-

sition g · f is well defined:

g · f = [
(gβ,ψ)

] · [( fα,ϕ)
] = [

(gβ,ψ)
] · [( fα,ϕ)

]
.

Note that 1Y · f = f = f · 1X and h · (g · f ) = (h · g) · f for each equivalence classes f : X −→ Y , g : Y −→ Z and
h : Z −→ W .

Consequently, there is a quotient category

inj-T = dir-T /∼
whose objects are objects of dir-T and whose morphisms are equivalence classes f = [( fα,ϕ)] of morphisms ( fα,ϕ) from
dir-T . The category inj-T is dual to the pro-category pro-T [14].

Let P be a full subcategory of the category T . Let X be an object of the category T . A T -coexpansion of X is a morphism
p : X = (Xα, pαα′ , A) −→ (X) in inj-T of a direct system X in the category T to a direct system (X) with the condition:

For each direct system Y = (Yβ,q
ββ′ , B) in the subcategory P and each morphism g : Y −→ (X) in inj-T there exists a

unique morphism f : Y −→ X in inj-T such that p · f = g .
If X and f are an object and a morphism of inj-P , then we say that p is a P-coexpansion of X . In this case we also say

that X is coassociated with X .
Note that if p : X −→ (X) and p′ : X ′ −→ (X) are two P-coexpansions of an object X ∈ T , then there is an isomorphism

i : X −→ X ′ of the category inj-P .
The following theorem gives necessary and sufficient conditions for p : X −→ (X) to be a T -coexpansion (P-coexpan-

sion).

Theorem 1. Let X = (Xα, pαα′ , A) ∈ inj-T (inj-P). A morphism p = [(pα)] : X −→ (X) is a T -coexpansion (P-coexpansion) if
and only if the morphisms pα : Xα −→ X, a ∈ A, satisfy the following conditions:

CAE1) For any morphism h : P −→ X in T , P ∈ P , there exist an index a ∈ A and a morphism f : P −→ Xα in T (in P) for which
h = pα · f .

CAE2) If for morphisms f , f ′ : P −→ Xα the equality pα · f = pα · f ′ holds, then there exists an index α′ � α such that pαα′ · f =
pαα′ · f ′ .

For a proof we refer the reader to [4].
A subcategory P ⊂ T is called a codense subcategory of the category T provided each object X ∈ T admits a P-coex-

pansion.
Now, we define the coshape category for an arbitrary category T and its full codense subcategory P . Let p : X −→ (X),

p′ : X ′ −→ (X) and q : Y −→ Y , q′ : Y ′ −→ (Y ) be P-coexpansions of X and Y , respectively. Then there are isomorphisms
i : X −→ X ′ and j : Y −→ Y ′ . We say that morphisms f : X −→ Y and f ′ : X ′ −→ Y ′ are equivalent if f ′ · i = j · f . The
equivalence class of f : X −→ Y we denote by F and call a coshape morphism from X to Y . The composition G · F : X −→ Z
of two coshape morphisms F : X −→ Y and G : Y −→ Z we can define as the equivalence class of the morphism g · j · f ,
where f : X −→ Y and g : Y ′ −→ Z are representatives of F and G , respectively. Let I X be the equivalence class of the
identity morphism 1X : X −→ X . It is clear that IY · F = F · I X = F and H · (G · F ) = (H · G) · F for each coshape morphisms
F : X −→ Y , G : Y −→ Z and H : Z −→ W . We have obtained the abstract coshape category CSH(T ,P) , whose objects are
all objects of the category T and whose morphisms are all coshape morphisms.
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For each morphism f : X −→ Y of the category T and for any P-coexpansions p : X −→ (X) and q : Y −→ (Y ) there
exists a unique morphism f : X −→ Y in inj-P such that f · p = q · f . Let CS( f ) denote the equivalence class of the
morphism f . If we put CS(X) = X for each object X ∈ T , then we obtain a functor CS : T −→ CSH(T ,P) called the coshape
functor. For any morphism f : X −→ Y in inj-P there exists a unique coshape morphism F : X −→ Y such that q · f = F · p.
If the objects X and Y are isomorphic in the coshape category CSH(T ,P) , then we say that they have the same coshape and
write csh(X) = csh(Y ).

2. The topological coshape category of pairs of spaces

This section contains results which play an essential role in the construction of coshape theory and in the whole paper.
We have the following proposition (cf. [12, Proposition III.4.12]).

Proposition 2. Let (K , K0) be a pair of ssc’s. For each map g : (|K |, |K0|) −→ (X, X0) of (|K |, |K0|) to the pair (X, X0) ∈ Top2 there
exists an ssm g : (K , K0) −→ (S(X), S(X0)) such that g = j(X,X0) · |g|.

Proof. Indeed, let g : K −→ S(X) be an ssm defined in [12]. Let |σ | be any n-cell of |K | and ϕn : �n −→ |σ | its characteristic
map, the restriction of η to (�n, σ ) in M(K ). By the definition of g ,

g(t) = η
(
ϕ−1

σ (t), gϕn
) ∈ ∣∣S(X)

∣∣, t ∈ |σ |.
It is easy to see that g : K −→ S(X) is a well-defined ssm, which induces the ssm of pairs g : (K , K0) −→ (S(X), S(X0))

and satisfies the condition g = j(X,X0) · |g|. �
Now, we construct the coshape category CSH2 = CSH(T ,P) , where T = HTop2 and P = HCW2

f . To achieve this aim we
establish the following main theorem.

Theorem 3. The homotopy category HCW2
f is a codense subcategory of the homotopy category HTop2 .

The proof of this theorem is based on Theorem 1 and on the following two lemmas.

Lemma 4. Let f : (P , P0) −→ (X, X0) be a map of the pair (P , P0) ∈ HCW2
f to the pair (X, X0) ∈ Top2 . Then it factorizes through a

pair of finite CW-simplicial complexes of a small subcategory of the category HCW2
f .

Proof. By assumption there is a pair (K , K0) of a finite CW-complex K and its subcomplex K0 and maps u : (P , P0) −→
(K , K0) and v : (K , K0) −→ (P , P0) such that v · u 	 1(P ,P0) and u · v 	 1(K ,K0) . Consider the following diagram:

(|S(K )|, |S(K0)|)
j(K ,K0)

ζ
χ

(K , K0)
v

k
(P , P0)

f

u
(X, X0)

(|S(|S(X)|)|, |S(|S(X0)|)|) j(|S(X)|,|S(X0)|)
(|S(X)|, |S(X0)|),

j(X,X0)

where j(K ,K0) , k, ζ and χ are maps such that

j(K ,K0) · k = 1(K ,K0), j(X,X0) · χ = f · v · j(K ,K0), j(|S(X)|,|S(X0)|) · ζ = χ.

The existence of these maps follows from Proposition 2. Let h = ζ · k · u : (P , P0) −→ (|S(|S(X)|)|, |S(|S(X0)|)|) and j =
j(X,X0) · j(|S(X)|,|S(X0)|) : (|S(|S(X)|)|, |S(|S(X0)|)|) −→ (X, X0). Note that

j · h = j(X,X0) · j(|S(X)|,|S(X0)|) · ζ · k · u = j(X,X0) · χ · k · u

= f · v · j(K ,K0) · k · u = f · v · 1(K ,K0) · u = f · v · u 	 f · 1(P ,P0) = f .

Thus, f 	 j ·h. It is clear that the pair (|S(|S(X)|)|, |S(|S(X0)|)|) is a pair of CW-simplicial complexes (see [12, Lemma III.4.10
and Corollary IV.3.6]).

Let P ′ = {(Xα, X0α) | α ∈ A} be the set of all pairs of finite CW-simplicial subcomplexes of the pair (|S(|S(X)|)|,
|S(|S(X0)|)|).
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We have the following inclusion:

h
(
(P , P0)

) = (ζ · k · u)
(
(P , P0)

) ⊂ ζk
(
u(P , P0)

) ⊂ ζk
(
(K , K0)

) = (
ζk(K ), ζk(K0)

)
.

The compact pair (ζk(K ), ζk(K0)), and hence the pair h((P , P0)), is contained in some pair (Xα, X0α) ∈ P ′ .
Let jα = j|(Xα,X0α) : (Xα, X0α) −→ (X, X0) and let hα = h|(Xα,X0α) : (P , P0) −→ (Xα, X0α). Clearly, f 	 jα · hα . This is the

desired factorization. �
Lemma 5. Let (X, X0) ∈ HTop2 , (P , P0), (P ′, P ′

0) ∈ HCW2
f and let f ′ : (P ′, P ′

0) −→ (X, X0), h1,h2 : (P , P0) −→ (P ′, P ′
0) be maps

such that f ′ ·h1 	 f ′ ·h2 . Then there exist a pair (P ′′, P ′′
0) ∈ HCW2

f and maps f ′′ : (P ′′, P ′′
0) −→ (X, X0) and h : (P ′, P ′

0) −→
(P ′′, P ′′

0) such that f ′′ ·h = f ′ and h · h1 	 h · h2 .

Proof. Let H : (P , P0) × I −→ (X, X0) be a homotopy between f ′ · h1 and f ′ · h2. Let f ′
0 = f ′

|P ′
0

: P ′
0 −→ X0, h01 = h1|P0 :

P0 −→ P ′
0, h02 = h2|P0 : P0 −→ P ′

0. Note that H |P0×I = H0 : f ′
0 · h01 	 f ′

0 · h′
02. Consider the pair (S, S0) = (P × I ∪ Cyl(g),

P0 × I ∪ Cyl(g0)), where Cyl(g) and Cyl(g0) are the mapping cylinders of maps g = h1 ⊕h2 : P 1 ⊕ P 2 −→ P ′ , P 1 = P , P 2 = P
and g0 = h01 ⊕ h02 : P 1

0 ⊕ P 2
0 −→ P ′

0, P 1
0 = P0, P 2

0 = P0, respectively.
Consider the following relation on S:

(p,1) ∼ [
(p,0)

]
, (p,1) ∈ P × I,

[
(p,0)

] ∈ Cyl(g), p ∈ P 1;
(p,0) ∼ [

(p,0)
]
, (p,0) ∈ P × I,

[
(p,0)

] ∈ Cyl(g), p ∈ P 2;
(p,1) ∼ [

(p,0)
]
, (p,1) ∈ P0 × I,

[
(p,0)

] ∈ Cyl(g0), p ∈ P 1
0;

(p,0) ∼ [
(p,0)

]
, (p,0) ∈ P0 × I,

[
(p,0)

] ∈ Cyl(g0), p ∈ P 2
0 .

Let P ′′ = S/ ∼ and P ′′
0 = S0/ ∼ and let q : S −→ P ′′ be the quotient map.

It is clear that q maps the pair (S, S0) onto the pair (P ′′, P ′′
0). Now define maps h : P ′ −→ P ′′ and f ′′ : P ′′ −→ X . By

definition,

h
(

p′) = [
p′], p′ ∈ P ′;

f ′′(z) =

⎧⎪⎪⎨
⎪⎪⎩

H(p, t), z = q([(p, t)]), p ∈ P , 0 � t � 1,

f ′h1(p), z = q([(p, t)]), p ∈ P 1, 0 � t � 1,

f ′h2(p), z = q([(p, t)]), p ∈ P 2, 0 � t � 1,

f ′(p′), z = q([(p′, t)]), p′ ∈ P ′.
It is clear that h(P ′

0) ⊆ P ′′
0 and f ′′(P ′′

0) ⊆ X0, i.e. h and f ′′ are maps of pairs. The pair (P ′′, P ′′
0) and maps f ′′ : (P ′′, P ′′

0) −→
(X, X0) and h : (P ′, P ′

0) −→ (P ′′, P ′′
0) satisfy the conditions of the lemma. �

Let HTop2∗ be the pointed homotopy category of pointed pairs and let HCW2
f ∗ be the pointed homotopy category of pairs

with the homotopy type of pointed pair of finite CW-complexes. Similarly, we can prove the pointed versions of Lemma 4
and Lemma 5. Consequently, we have the following theorem.

Theorem 6. The pointed homotopy category HCW2
f ∗ is the codense subcategory of the pointed homotopy category HTop2∗ .

The pointed coshape category CSH2∗ of pairs of spaces is the abstract coshape category CSH(T ,P) , where T = HTop2∗ and
P = HCW2

f ∗ .
By csh(X, X0) (csh(X, X0,∗)) we denote the coshape (the pointed coshape) of the pair (X, X0) (the pointed pair

(X, X0,∗)).

Remark 1. Applying Lemma 4 we can conclude that for each pair (X, X0) ∈ HTop2 ((X, X0) ∈ HTop2∗) there exists a coasso-
ciated with (X, X0) ((X, X0,∗)) direct system consisting of pairs (pointed pairs) of finite CW-simplicial complexes.

3. On extensions of functors

The purpose of this section is to construct the coshape invariant and continuous extensions of covariant (contravariant)
functors from the category HCW2

f (HCW2
f ∗) to the category HTop2 (HTop2∗).

Let T : HCW2
f −→ Gr be a covariant (contravariant) functor of the category HCW2

f to the category Gr. Let (X, X0) =
((Xα, X0α), pαα′ , A) be a direct system in HCW2 . The covariant (contravariant) functor T forms a direct (inverse) system
f
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T(X, X0) = (T(Xα, X0α),T(pαα′ ), A) in the category Gr. Let ( fα,ϕ) : (X, X0) −→ (Y , Y 0) be a morphism of the cate-
gory dir-HCW2

f . Then we have the morphism (T( fα),ϕ) : T(X, X0) −→ T(Y , Y 0) ((T( fα),ϕ) : T(Y , Y 0) −→ T(X, X0)) of
the category dir-Gr (inv-Gr). It is clear that if ( fα,ϕ) ∼ ( f ′

α,ϕ′), then (T( fα),ϕ) ∼ (T( f ′
α),ϕ′) in the category dir-Gr

(inv-Gr). Consequently, a morphism f = [( fα,ϕ)] : (X, X0) −→ (Y , Y 0) of the category inj-HCW2
f induces the morphism

T( f ) = [(T( fα),ϕ)] : T(X, X0) −→ T(Y , Y 0) (T( f ) = [(T( fα),ϕ)] : T(Y , Y 0) −→ T(X, X0)) of the category inj-Gr (pro-Gr).
Thus, we have defined a covariant (contravariant) functor, which for simplicity we again denote by

T(−,−) : inj-HCW2
f −→ inj-Gr

(
T(−,−) : inj-HCW2

f −→ pro-Gr
)
.

Let (X, X0) ∈ HTop2 and let p = [(pα)] : (X, X0) −→ (X, X0) be an HCW2
f -coexpansion of (X, X0). Note that for each

other HCW2
f -coexpansion p′ = [(p′

α′ )] : (X, X0)
′ −→ (X, X0), the isomorphism i : (X, X0) −→ (X, X0)

′ induces the iso-
morphism T(i) : T(X, X0) −→ T(X, X0)

′ (T(i) : T(X, X0)
′ −→ T(X, X0)). The equivalence class of T(X, X0) is denoted by

inj-T (X, X0) (pro-T (X, X0)).
Let F : (X, X0) −→ (Y , Y0) be a coshape morphism and let f : (X, X0) −→ (Y , Y 0) be its representative. For another

representative f ′ : (X, X0)
′ −→ (Y , Y 0)

′ we have f ′ · i = j · f . Consequently,

T
(

f ′) · T(i) = T( j) · T( f )
(
T( f ) · T( j) = T(i) · T

(
f ′)).

The morphisms T( f ) : T(X, X0) −→ T(Y , Y 0) and T ( f ′) : T(X, X0)
′ −→ T(Y , Y 0)

′ ((T( f ) : T(Y , Y 0) −→ T(X, X0)) and
T( f ′) : T(Y , Y 0)

′ −→ T(X, X0)
′) coincide. Thus, the coshape morphism F : (X, X0) −→ (Y , Y0) induces the morphism

inj-T (F ) : inj-T (X, X0) −→ inj-T (Y , Y0)(
pro-T (F ) : pro-T (Y , Y0) −→ pro-T (X, X0)

)
.

Thus, we have defined the covariant (contravariant) functor

inj-T(−,−) : CSH2 −→ inj-Gr(
pro-T(−,−) : CSH2 −→ pro-Gr

)
.

By definition,

(inj-T)
(
(X, X0)

) = inj-T (X, X0), (X, X0) ∈ CSH2,

(pro-T)
(
(X, X0)

) = pro-T (X, X0), (X, X0) ∈ CSH2,

(inj-T)(F ) = inj-T (F ), F ∈ CSH2,

(pro-T)(F ) = pro-T (F ), F ∈ CSH2.

Analogously, we can define the covariant (contravariant) functor

inj-T(−,−) : CSH2∗ −→ inj-Gr(
pro-T(−,−) : CSH2∗ −→ pro-Gr

)
.

The objects of the category inj-Gr are called inj-groups [3,16] and the objects of the category pro-Gr are called pro-
groups [14].

We have obtained the following propositions.

Proposition 7. Let (X, X0), (Y , Y0) ∈ HTop2 and csh(X, X0) = csh(Y , Y0). Then inj-T (X, X0) = inj-T (Y , Y0) and pro-T (X, X0) =
pro-T (Y , Y0).

Proposition 8. Let (X, X0,∗), (Y , Y0,∗) ∈ HTop2∗ and csh(X, X0,∗) = csh(Y , Y0,∗). Then inj-T (X, X0,∗) = inj-T (Y , Y0,∗) and
pro-T (X, X0,∗) = pro-T (Y , Y0,∗).

For each pair (X, X0) and each coshape morphism F : (X, X0) −→ (Y , Y0) define spectral groups

∧
T (X, X0) = lim−→ inj-T (X, X0)

(∨
T (X, X0) = lim←− pro-T (X, X0)

)

and homomorphisms
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∧
F = lim−→ inj-T (F ) : ∧

T (X, X0) −→ ∧
T (Y , Y0)

(∨
F = lim←− pro-T (F ) : ∨

T (Y , Y0) −→ ∨
T (X, X0)

)
.

Thus, the covariant (contravariant) functor T : HCW2
f −→ Gr induces the covariant (contravariant) functor

∧
T : CSH2 −→ Gr

(
∨
T : CSH2 −→ Gr). By definition,

∧
T
(
(X, X0)

) = ∧
T (X, X0), (X, X0) ∈ CSH2

(∨
T
(
(X, X0)

) = ∨
T (X, X0), (X, X0) ∈ CSH2),

∧
T(F ) = ∧

F , F ∈ CSH2

(∨
T(F ) = ∨

F , F ∈ CSH2).
Analogously, the covariant (contravariant) functor T : HCW2

f ∗ −→ Gr induces the covariant (contravariant) functor
∧
T :

CSH2∗ −→ Gr (
∨
T : CSH2∗ −→ Gr).

The composition
∧
T ·CS (

∨
T ·CS) of the constructed functor

∧
T (

∨
T) with the coshape functor CS is a coshape invariant

extension of the functor T. For simplicity we again denote it by
∧
T (

∨
T). Hence, we have the following propositions.

Proposition 9. If (X, X0), (Y , Y0) ∈ HTop2 and csh(X, X0) = csh(Y , Y0), then
∧
T (X, X0) = ∧

T (Y , Y0) and
∨
T (X, X0) = ∨

T (Y , Y0).

Proposition 10. If (X, X0,∗), (Y , Y0,∗) ∈ HTop2∗ and csh(X, X0,∗) = csh(Y , Y0,∗), then
∧
T (X, X0,∗) = ∧

T (Y , Y0,∗) and
∨
T (X, X0,∗) = ∨

T (Y , Y0,∗).

Theorem 11. Let p = [(pα)] : (X, X0) −→ (X, X0) be an HTop2-coexpansion of a pair (X, X0) ∈ HTop2 and let
∧
T (p) :

∧
T (X, X0) −→ ∧

T (X, X0) (
∨
T (p) : ∨

T (X, X0) −→ ∨
T (X, X0)) be the induced morphism of inj-Gr (pro-Gr). Then the homomorphism

∧
p = lim−→

∧
T (p) : lim−→

∧
T (X, X0) −→ ∧

T (X, X0)

(∨
p = lim←−

∨
T (p) : ∨

T (X, X0) −→ lim←−
∨
T (X, X0)

)

induced by
∧
T (p) (

∨
T (p)) is an isomorphism.

Proof. For simplicity, we denote the object
∧
T (X, X0) by T (X, X0) for each object (X, X0) ∈ T , the homomorphism

∧
T ( f )

by
∧
f for each morphism f : (X, X0) −→ (Y , Y0) in T and the direct system

∧
T (X, X0) = (T (Xα, X0α),

∧
pαα′ , A) in Gr by

T (X) for each direct system (X, X0) in T . Analogously, we denote by
∧
p = (

∧
pα) the morphism T (X, X0) −→ T (X, X0) given

by homomorphisms
∧
pα : T (Xα, X0α) −→ T (X, X0), α ∈ A. Finally, by

∧
p we denote the homomorphism lim−→ T (X, X0) −→

T (X, X0) for which
∧
p ·πα = ∧

pα , α ∈ A, where πα : T (Xα, X0α) −→ lim−→(X, X0) is the injection homomorphism. Besides, also

note that for each pair α � α′ the equality πα′ · ∧
pαα′ = πα holds.

Let q : (Y , Y 0) = ((Yβ, Y0β),qββ ′ , B) −→ (X, X0) be a P-coexpansion of (X, X0). It is clear that
∧
q = (

∧
qβ) : T (Y , Y 0) −→

T (X, X0) is a direct limit and there exists a morphism f : (Y , Y 0) −→ (X, X0) of the category inj-T such that p · f = q. Let

( fβ,ϕ) be some representative of f . The homomorphisms
∧
f β : T (Yβ, Y0β) −→ T (Xϕ(β), X0ϕ(β)), β ∈ B induce a morphism

of inj-groups
∧
f = (

∧
f β,ϕ) : T (Y , Y 0) −→ T (X, X0). Note that

∧
f = ∧

p · ∧
q and

∧
f induces a homomorphism of groups

∧
f :

T (X, X0) −→ lim−→ T (X, X0) for which π ·
∧
f = ∧

f · ∧
q, where π : T (X, X0) −→ lim−→ T (X, X0) is a morphism induced by (πα).

For each index β ∈ B we have πϕ(β) · ∧
f β = ∧

f · ∧
qβ . Besides,

∧
p · ∧

f · ∧
qβ = ∧

p ·πϕ(β) · ∧
f β = ∧

pϕ(β) · ∧
f β = ∧

qβ, β ∈ B.

Thus,
∧
p · ∧

f · ∧
q = ∧

q. Note that
∧
q : T (Y , Y 0) −→ T (X, X0) is a direct limit of T (Y , Y 0). Consequently,

∧
p · ∧

f = 1T (X,X0) .
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Now, we prove
∧
p · ∧

f = 1lim−→ T (X,X0) . Let r = (rγ ) : (Z , Z 0) = ((Zγ , Z0γ ), rγ γ ′ , C) −→ (Xα, X0α) be an HCW2
f -coexpansion

of (Xα, X0α). Since q : (Y , Y 0) −→ (X, X0) is an HCW2
f -coexpansion of (X, X0) and (Zγ , Z0γ ) ∈ HCW2

f there is an index
β ∈ B and a morphism g : (Zγ , Z0γ ) −→ (Yβ, Y0β) for which pα · rγ = qβ · g holds. Note that qβ = pϕ(β) · fβ , β ∈ B and
there exists an index α′ � α,ϕ(β) such that

pα′ · pαα′ · rγ = pα′ · pϕ(β)α′ · fβ · g.

By the condition CAE2) there also exists an index α′′ � α′ such that

pα′α′′ · pαα′ · rγ = pα′α′′ · pϕ(β)α′ · fβ · g,

i.e. pαα′′ · rγ = pϕ(β)α′′ · fβ · g . Besides,

∧
f · ∧

pα · ∧
rγ = ∧

f · ∧
pα′′ · ∧

pαα′′ · ∧
rγ = ∧

f · ∧
pϕ(β) · ∧

f β · ∧
gβ = πϕ(β) · ∧

f β · ∧
g = πα′′ · ∧

pϕ(β)α′′ · ∧
f β · ∧

g

= πα′′ · ∧
pαα′′ · ∧

rγ = πα · ∧
rγ .

Since
∧
r = (

∧
r γ ) : T (Z , Z 0) −→ T (Xα, X0α) is a direct limit, we have

∧
f · ∧

pα = πα , α ∈ A. Hence,
∧
f · ∧

p ·πα = πα , α ∈ A, i.e.
∧
f · ∧

p = 1lim−→ T (X,X0) .

Analogously, we can prove that
∨
T (X, X0) and lim←−

∨
T (X, X0) are isomorphic objects of the category Gr. �

Similar arguments prove the pointed version of Theorem 11.

Theorem 12. Let p = [(pα)] : (X, X0,∗) −→ (X, X0,∗) be an HTop2∗-coexpansion of a pair (X, X0,∗) ∈ HTop2∗ and let
∧
T (p) :

∧
T (X, X0,∗) −→ ∧

T (X, X0,∗) (
∨
T (p) : ∨

T (X, X0,∗) −→ T (X, X0,∗)) be the induced morphism of inj-Gr (pro-Gr). Then the homo-
morphism

∧
p = lim−→

∧
T (p) : lim−→

∧
T (X, X0,∗) −→ ∧

T (X, X0,∗)

(∨
p = lim←−

∨
T (p) : ∨

T (X, X0,∗) −→ lim←−
∨
T (X, X0,∗)

)

induced by
∧
T (p) (

∨
T (p)) is an isomorphism.

Let L : CW2
f −→ Gr be a covariant (contravariant) functor satisfying the homotopy axiom, i.e. if f 	 g , f , g : (X, X0) −→

(Y , Y0), then L( f ) = L(g). Let T : HCW2
f −→ Gr be the covariant (contravariant) functor defined by

T(X, X0) = L(X, X0), (X, X0) ∈ HCW2
f ,

T
([ f ]) = L( f ),

([ f ] : (X, X0) −→ (Y , Y0)
) ∈ HCW2

f .

Consider the following commutative diagram:

Top2 H
HTop2 CS

CSH2

∧
T(

∨
T )

CW2
f H|CW2

f

HCW2
f T

CS|HCW2
f

Gr,

where H : Top2 −→ HTop2 is the homotopy functor.
The covariant (contravariant) functor

∧
L = ∧

T ·CS ·H : Top2 −→ Gr
(∨
L = ∨

T ·CS ·H : Top2 −→ Gr
)

satisfies the homotopy axiom and is a coshape invariant extension of the covariant (contravariant) functor L : CW2 −→ Gr.
f



1404 V. Baladze / Topology and its Applications 158 (2011) 1396–1404
It is clear that such type of extensions exists for a covariant (contravariant) functor L : CW2
f ∗ −→ Gr which satisfies the

relative homotopy axiom, i.e. if f 	 g rel{∗}, f , g : (X, X0,∗) −→ (Y , Y0,∗), then L( f ) = L(g).

Remark 2. Let K : Top2 −→ Gr be a covariant (contravariant) functor satisfying the homotopy axiom. If each HTop2-
coexpansion p : (X, X0) = ((Xα, X0α), pαα′ = [παα′ ], A) −→ (X, X0) induces a direct (an inverse) limit K (p) : K (X, X0) =
(K (Xα, X0α), K (παα′ ), A) −→ K (X, X0) (K (p) : K (X, X0) −→ K (X, X0) = (K (Xα, X0α), K (παα′ ), A)), then the restriction

functor L of the functor K to the subcategory CW2
f has an extension

∨
L (

∧
L) such that K and

∨
L (

∧
L) are naturally equiva-

lent.

Remark 3. The technique developed here may be used to construct the coshape invariant and continuous extensions
∧
T :

T → C (
∨
T : T → C) of covariant (contravariant) functors T : P → C from a codense subcategory P of the category T in a

category C with direct limits and inverse limits.
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[14] S. Mardešić, J. Segal, Shape Theory—The Inverse System Approach, North-Holland, Amsterdam, 1982.
[15] T. Porter, Generalised shape theory, Proc. Roy. Irish Acad. Sect. A 74 (1974) 33–48.
[16] T. Sanders, A Whitehead theorem in CG-shape, Fund. Math. 53 (1981) 131–140.
[17] E.H. Spanier, Algebraic Topology, McGraw–Hill Book Co., New York–Toronto, ON–London, 1966.
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