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Abstract. We show that a modat mu-c’~kulus with label set ( 1. . . . , rt) can deline the Rabin 
rfcognizable tree languages up to an quik,rfence similar to the ot9servattonal equivalence of Milner. 

In [l l] it was shown that the temporal logic ETL [ 101 can define exactly the class 
of w-regular languages. In [7] it was shown that a fixed-point calculus whose 

signature, apart from maximal and minimal fixed points and disjunction, includes 
the usual operators on trees, can define exactly the sets of infinite trees recogmzed 
by Rabin tree automata [8]; this class of sets corresponds to the class of structures 
definable in the second-order monadic theory of n successors, SnS. 

It would be nice if one could show that a branching time temporal logic has the 
same expressive power as SnS; after all, branc ing time temporal Iogics are inter- 

preted on computation trees. In [4] it is shown that a restricted version of SnS with 
set quantification restricted to paths is expressively equivalent to CTL* for binary 
tree modeis. However, as -*as shown in [4], the fu!I Sr?S can express properties that 

have no correlate in branching time temporal logic, such as counting nodes in a 
tree which are tr?~,?rm~~Prable to a node x with respect to the ancestral ordering, c: 

A(x)ef 3x,, . . . ,x,,,. /\ (x$x, A x+xX). 
I I 

In this paper we show that a modal fixed-point calculus that incor 

of counting descendants characterizes the Rabin reco 
up to an equivalence of parental information. 

The paper is organized as follows: we fi 

SnS and the fixed-point calculus, here refer 
is at least as expressive as CIVIL. Finally wc use in’s tree theor 
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the result by showing how to encode the acce 
in CML such that a w of trees equivalent tot 

acceptance encoding formula. Our notio 
unvalence of [6] and the tree equivalence of [3]. 

2. t;rx an its 0 nS a 

2.I. sns 

onadic theory .G I,+ successors, SnS, has its set of terms, 

abstract syntax 

T ::= _Y)FI 7-i 

where id (1,. . . , cl) and _Y ranges over a set of first- er variables, Var, . Ets formulae, 

F~RAk\, by the abstract syntax 

/IF ::= T,= T21T,< r,(l-EX 

for atomic formulae. Here X ranges over a set of secor -order variables, Var: and 

c ranges over a set of atomic pre icates. For corn formulae the syntax is 

F *.- **- AFI F, v F,I~FlhrxFIVX.F 

SfiS is interprete in rhe structures in STRUCTs,,s. are structures of the form 
.#=({O ,..., n-l)*,succ,, ,.‘., succ,,-,,<, P I,..., ete E is the empty string. 

SUCC{), . . . , SUCC,, _ I are the successor functions defined by succi( W) = wi, i.e. by 
concatenation. < is the prefix order on (0, . . . , n - l)* and P, , . . . , P,,, are subsets 
of(O,...,n-I)*. 

The semantics of SrtS is defined relative to two variable assigments, (+E 
Ass, : Var, + (0, . . . , it - I}* and p E Ass~: Var,+2’0....-‘1-“‘. The semantics of 
TER~JI~,,~ is given by [ 1 :TE Ms,,s+A~~l+{Q ,..., n-l)* as de 

’ 11 &iv = E, T&7 = ([Tjcr)i. 

The semantics of FORM s,,s is defined by I= G ST’RUC’Y’,,,, x ASS, x Ass-, x FORMsrlS. 
The clauses are:’ 

’ U{P/X) is the assignment in Ass, that 

is the assignment in Ass, that maps .Y to 



n the atomic predicates are explicitly chosen from amon P,, . . . , y ,,,, we sh:i 

to the language as SnS I’, . .Ia,,, . 

We now introduce a modal logic, CML, for descri 
its formulae, FORM, ktl t is given by 

F ::== P(F J F(++( Vz.F(@F 

whkrere r’E(O,...,n-- I}, P ranges over a set ATOMIC, hll of atomic predicates on 

(0 ‘) * . ._ 11 - 1)” and z ranges over a set of recursion variables, C LVar. Wc assume 
that all recursions variables are within the scope of ar even iiUUfikXtr’ Of iie” 

this will ensure the well-dehnedness of 11 11 given below. ote that CML can be 

seen as a version of the propositional mu-calculus of [5] wit abel set {(IV . . . , II - 1). 

We interpret CML in STRICT,,,,; we now think of the nodes in a tree as possible 

worlds and succ, as relations between possible worlds. The intende 
the (3 modality in CML is that @F holds if F holds in the ith successor world. 

The semantic function 11 11 a. IS seen relative to an assignment of the recursion 

variables, p E A~s<.~,r_v~~. It therefore has type 11 11 : FORT’4 < kll -+ Ass(.~,~ V,lr -+ 
2”‘..-*“-“*. It is defined relative to a structure 4 by 

!lP II 
II 

I I’ = P,, 

!!F, v Cl!;! = !!F,!!,j’u !!&!!,I’, . 

!!lF!!,!‘=@, . . . , fi- U”\(!!F,!!,i’), 

!!@F!!;[‘={w!w= succ,( w)=3 W’E !! F!!,1’}, 

!!z!!;!’ = p(z) 

!!z~z.F!!;l’=uW! Vc !!F!!;f’cc.,.-)I. 

Here, when the atomic predicates are explicitly chosen from amsng P, , . . . , P,,,, we 

snail refer to our language as FORM~~ML_,,I ,...,P . 
Note that all “superfluous” logical operato& including v, 0 (exclusive or) and 

pz. F (ieast fixed point), are easily derived. The same goes for the temporal operators 

of CTL [2]. For instance, VG is defined by b’GP dzf uz. P n A :’ -,: @z. We shall feel 

free te use al! these derived operators as convenient abbreviations. 

3. 

In what follows we shall often refer to trees. An n-ary infinite labelle 

whose labels are in the alphabet A ca 
we define dom( t) dg’ (0,. . . , n - I>*. 
TX. _A set of n-ary A-labelled trees is 

abelled trees and the structures 

regarded as one and the s2me t 

!YJCC~, . . . , WCC” _, , 
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with t(w) = Pi iff w E P,. And a tree I labelled by 
a structure & = ((0, . . . , n - l}“, succo, . . . , succ,, _, , 

iff t(W) = CYj. 

A = (q, . . . , a,) determines i 

<t p*,,**-a Pam) with w E P,, 
I 

herefore natural to talk about the tree languages definable in SnS and CML. 
efinable iff there is an SnS-formula whose models are 

a&ion 3.1. An A-labelled tree language L is SnS-definable if there is a formula 

cb E FORMS~.-G with me free first order variable, x, and closed with respect to 

second-order variables such th;it 

L = 0 1 J% h{P: \-).&I 9w. 

The single free first-order variable is to denote the root of the tree, E. PutGng all 

this slightly differently with a slight abuse of notatio . we can define 

Il~(x,f~ def WJ& +01,,\-I.0 W-G* 

Then L is SnS-definable just in case there is a formula 4(x) in SnS such that 

L = Iltn(x,ll= 
We say that t is C L-definable if there is a forml.la in CML which is true in 

the roots of the trees in L and none others. 

Definition 3 .2. An A-labelled tree language I. is CML-definable if there is a closed 
formula Q E FORM (‘klL such that’ L = {t 1 E E ll#ll :,I(}. 

Again, putting all this slightly differently, we can define 

l$+ii T&T (rjeE IIq!I[l “‘}. 

Since the metalanguage used in defining the semantics of Ch4L is not far from SnS. 
it is easy to see that any tree language definable in @ML is also definable in SnS. 

31 X3. For any closed FE FORMcM,+, 
-. -pm 

there is a O(F) E FORMsnsp,. ,p,,, 

Proof. We exhibit a direct translation 0: FORKcML, .p + FORMS,,+. .9,, that 
i “’ gives us a formula in SnS with one free variable x: 

;i”(p+_.11;t .y, 

O(F, /\ F2)= OCF,, r\ O(F,), 

O(l F) = %I( F), 

O(@F) = (O( F))[xi/x], 

O(z) = Y:, 

O( LJZ. F) = 3.x E S A (Vy.y E S ---i i @( F))[y/x][S/ Y:]) 

~V’(VZ.ZE T*@(F)) z/‘x][ T/ Y,]+ T c_ S. 

’ The assignment p is inessential, since 4 is &x,~d, a~i d v:i!l henceforth he omitted for closed formulae. 



SnS can he modally charcrterked 243 

([xi/x] denotes a uniform substitution of xi for x.) Note that atomic predicates are 
carried over and that recursion variables become second-order variables. The transla- 

tion of fixed-points is just a formulation of Tarski’s fixed-point induction principle. 
Induction in the structure of CML-formulae shows that this translation always gives 

a formula with one variable and that fl F! = 11 O(F)ll. 

Since CML by the above lemma can be embedded in SrlS, and since the latter is 
decidable ES] and since the translation is effectively constructible we also see that 

CML is decidable (cf. [9]). 

ML is as expressive as SnS modulo zA 

We now establish that CML is as expressive as SnS up to an “observational” 
equtva!ense of tree languages. We here use the tree theorem of [83. 

Definition 4.1. A Rabin automaton on n-ary A-labelled trees is a quadruple cc;8 = 
(Q, 9n, A, C!), where Q is the finite set of states, a0 is the start state, Li 5 Q x A x Q” 
is the finite transition relation and 0 c 2o x 2’ is a finite collection of finite acceptance 

pairs. 

Definition 4.2. A run of the Rabin automaton .c4 = (Q, 90, 4, 0) on an A-labelled 
tree t is any Q-labelled tree r such that r(E) = qo, r(s) = 9 and r(si) = 9,, 15 id n 

with (9,t(s),9,,...,9,)4. 

Definition 4.3. A run r of & is accepting if for all paths 7~ there is an acceptance 

pair (L;, Ui) E aA such that” 

in(r17r)nLi=0 and In(rln)n UiZ0. 

Definition 4.4. A tree language L is Rabin-recognizable if there is a Rabin automaton 

.!$ such that t E k iff t admits an accepting run of .& 

Theorem 4.5 (Rabin [g!). A tree !anguage is SnS-definable ifit is Rabin recognizable 
in that 

@ for any 4 E FORMs,s, there exists a Rabin automaton J&, over the alphabet 
C’, . . . . . p,,, such that t,If a&n% an accepting run on A, if4 I= 4; 

for any Rabin automaton & over the alphabet A = ((Y, , . . . , a,> there exists a 

+A E FORMSnS, ,._., I’,,,,, such that J@, /= &)A if t admits an accepting run on -4. 
I 

’ In( rlr) denotes the set of states occurring infinitely often along 7~. 
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ln what follows, the first half of Theorem 4.5 will be essential. For a given 

6 E FQRMs,,s, .p we express the Rabin acceptance con 

utomaton .&,‘*in”‘CML. The accepta ce condition ass 

states assigned to a node. However, we do not have the icaltcs available 

in our structures, only labelling pre tomaton alphabet A, so we 

must find a wa_v of overcoming this. g the product of a tree and 

its run on 3&., t’rc T&c,3 as a tree where the stat assumed in the run can be 

recovered from the position of t e nodes in the encodin , using the @-operator. 

In what follows we assume w.1.o.g. that n = 2. 

Definition 4.6. A CO~~M~~~~~~ histov (p;, S) for the Rabin automaton ti = 

( Qt qO, d,fi ) is any function p : S --* A and its domain S c_ ((0, I>* Q)+ which satisfy 

gof S and ~(9~;) = a for some z E ( 39’, 9”: (9(,, a, 9*, 9”) E d}, 

s9,ES * 3(qL,9,9,,9+J: 
S9,0009LO9, E S 
S9,0009~ 192 c s 

and p( ~9~ ) ;-L a. 

There is an obvious isomorphism H between T’“,,, and the set of computation 

histories, and we shall feel free to speak of the corn ion history associated with 

a given tree. Also, given a history ( p, S) it is easy to fi unique run r( P-s F : { 0, 1 }* + 

A to which it corresponds. 
We now code all computation histories of XI as fuil inary trees labelled by 

Au (71, where r is a dummy letter which signifies that the node in the encoding 
does not correspond to a node in the original computation history. The coding 
consists of taking the homomorphic extension K* of the node-coding 

K(9;)=10’1, 16i+p* K(w) = IV, M’ E {O, 1)“. 

and defining the associated tabelhng #*( p, S) : {O, 1)” --+ A u {T) by 

These encoded computation histories correspond to those A-labelled trees admitting 

a run on d via the =A equivalence to be defined below. 
The state assumed in a node is thus reflected in the path to its descendants in the 

coding. Using this fact we can now define t e state predicates in CM 

a predicate P’ for every a E A u {T). We describe the possible paths in the coding 
from one node labeiied by r to the next; the state information is contained in the 
shape of the path. We must also describe that a des on the path between two 
non-dummy nodes and all subtrees thereof are d by 7. Letting (i)F denote 
the formula @(F A PT) A A+; @VG. P, and letting (i)’ denote this iterated j times, 
we define 



A node in a coded computation history satisfies t derived state predicate exactly 
if the run corresponding to the history is labelled q, at the corresponding no 

3. For any tree t and associated compu:ation himwy ( p, S) any node s in 
the run r, p*s) with associated Q-tabelhg predica tes satr.s fies ( 

hat the coded computation history contains the s ncestral information as 
the original tree with respect to non-r-labels will be e preeise by the definition 
of ‘A (Definition 4.10). 

We also need to express a next-time operator with respect to coded histories, 

X8.F, which is to denote that the ith proper descendant has property F. (B 

descendant of a node s we mean any descendant not labelled by 7 sue 

nodes between it and .f are labelled by r, see Definition 4.9). This only makes sense 
in non-dummy nodes, so we obtain 

Xi.Fdgf --/Pr A 

The CTL branching time operators can now be redefined with respect to X,.F so 
we obtain e.g. VGP def VZ. P A A: -_(, Xi.z. 

Rabin acceptance is now formulated as a conjunction of two CML formulae 

interpreted over A u (r)-labelled trees, namely Act d dsf Ate, A _Acc2 where Act, 
describes that the A LJ { ~3 -labelled tree indeed is a coded computation history and 
Acq describes the Rabin acceptance condition itself. 

Acq includes a description of the transition function of the automaton: 

The first conjunct in Acq states that on every path, some state in the U-compone 

of an acceptance pair occurs infinitely often. The second conjunct states 
no acceptance pair is there a path such that obth a state in th 
a state in the U-component occur infinitely often. Thus we 
theorem. 

c For any Rabin automaton & over 
,p7-formula P~cc.,.~ such thatfor any tree I” there is a correspo 

tiot? h?iG”ip, S) with K *( p, S) E 11 Acc,,.~ 11 ,“I ijL54 accepts 1. 
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d. Apparent frc;;;l ibe above diseussio 

s1 and .s2 are ed the s. 

(S;, S;).&S’, S;, d) A 6(S”, S;, ST)). 



f we extend I nition of ==A to es over alp s 

as “after an action by component number i, 

of an equivalence identifying only a n 
CabeE nodes ( -process states) accord 

then rPA describes equivalence with respect to the action capabilities that we are 

interested in, namely those found in A. 

I would like to thank Colin Stirling for mmy illuminating discussions on the 

contents of this paper. I would also like to thank ees PJom3sens for a caref 

of-reading of the paper. 
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