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Abstract. We show that a modal mu-ealculus with label set {1..... n} can define the Rabin
recognizable tree languages up to an equivilence similar to the abservational equivalence of Milner.

1. Iintroduction

In [11] it was shown that the tempora! logic ETL [10] can define exactly the class
of w-regular languages. In [7] it was shown that a fixed-point calculus whose
signature, apart from maximal and minimal fixed points and disjunction, includes
the usual operators on trees, can define exactly the sets of infinite trees recogmzed
by Rabin tree automata [8]; this class of sets corresponds to the class of structures
definable in the second-order monadic theory of n successors, SnS.

It would be nice if one could show that a branching time temporal logic has the
same expressive power as SnS; after all, branching time temporal logics are inter-
preted on computation trees. In [4] it is shown that a restricted version of SnS with
set quantification restricted to paths is expressively equivalent to CTL* for binary
iree modeis. However, as was shown in [4], the full SnS can express properties that
have no correlate in branching time temporal logic, such as counting nodes in a
tree which are 1:comnzrable to a node x with respect to the ancestral ordering, <:

m

A) ¥ 3x,, ..., x,. N (XEx A X =X).
i1

In this paper we show that a modal fixed-point calculus that incorporates a notion
of counting descendants characterizes the Rabin recognizable tree languages of [8]
up to an equivalence of parental information.

The paper is organized as follows: we first outline the syntax and semantics of
SnS and the fixed-point calculus, here referred to as CML. We then show that Sn§
is at least as expressive as CML. Finally we use Rabin’s tree thecrem to establish
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the result by showing how to encode the acceptance condition of Rabin automata
in CML such that a set of trees equivalent tot he SnS-recognizable set satisfies the
acceptance encoding formula. Our notion of equivalence resembles the observational
equivalence of [6] and the tree equivalence of [3].

2. Syntex and semantics of SuS and CML

2.1. SaS

The second-order monadic theory f u successors, SnS, has its set of terms,

TERMy, ., given by the abstract syntax

T = x|e|Ti
where i€ {1, ..., n}and x ranges over a set of first-order variables, Var, . Its formulae,
FORMy,,«, are giten by the abstract syntax

AF := T\=T|T\<T.|TeX|TeP,
for atomic formulae. Here X ranges over a set of second-order variables, Var. and
P, ranges over a set of atomic predicates. For composite formulae the syntax is

F == AF|F,v F,|F|Vx.F|VX.F
SaS is interpreted in the structures in STRUCT,, s, which are structures of the form
M=({0,...,n—1}* succ,, ..., succ, , <, Py,..., P,). Here ¢ is the empty string.
succy, ..., succ, , are the successor functions defined by succ,(w)= wi, i.e. by
concatenation. < is the prefix orderon {0,... ,n—1}* and P,,..., P,, are subsets
of {0,..., n—1}*

The semantics of SaS is defined relative to two variable assigments, o€
Ass,;:Var,>{0,....,n—1}* and peAss,:Var,—»2'%""""  The semantics  of
TERMy, is given by [ ]: TERMg,s—> Ass; > {0, ..., n—1}* as defined by

[xlo=o(x), [elo=¢, [Tijo=([T]o)i '
The semantics of FORMj, s is defined by = < STRUC T,,5 X Ass, X Ass, X FORMg, 5.
The clauses are:'

"{ "E:'f.u TI = T'_‘ & [ITlﬂthﬁTZHGQ

Me=,,T\<T, © [TJoe<[T.]o,

Me=,, TeX & [Tlecp(X),

ME=,,TeP & [TloeP,

Me,,F & not.llk, ,F

ME=, , FvF, & 1 FeopFror L=, F,,

M, ,YxF & forall vel{0,...,n—1}*: M,/ , F,

M=, YXF & forall ver! ™ "= .\, F

''o{v/x} is the assignment in Ass, that maps x to ¢ and otherwice agrees with . Similarly, p{V/ X}
is the assignment in Ass, that maps X to V and otherwise agrees with o
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When the atomic predicates are explicitly chosen from among P,, ..., v, we shall
refer to the language as SnS,, .

2.2. CML

We now introduce a modal logic, CML, for describing tree properties. The syntax
ot its formulae, FORM  , is given by

F = P|FyF|~F|z| V:.Fl@F
{

where i {0

,n—1}, P ranges over a set ATOMIC ;; of atomic predicates on
{0, ..., n—1}* and z ranges over a set of recursion variables, CMLVar. W¢ assume
that all recursions variables are within the scope of an even nuinber of ncgations;
this will ensure the well-definedness of || || given below. Note that CML can be
seen as a version of the propositional mu-calculus of [5] with label set {0,...,n—1}.
We interpret CML in STRUCT,s; we now think of the nodes in a tree as possible
worlds and succ, as relations between possible worlds. The intended semantics of
the (D modality in CML is that @F holds if F holds in the ith successor world.

The semantic function | || is seen relative to an assignment of the recursion
variables, p€ Asscmiva- It therefore has type | ||: FORMay = AsScnmivar=
21°-""W 1t is defined rclative to a structure .# by

N
Pl = P,

HFIVF:H}: =||F|l, i

I=Fl, ={0,....n— 1}*\(||F= 1),

IQ@F, ={w|w=succ,(w)=>w'e | F|,"},

Izl = p(2)

“VZ-F”' U{V|VC"FH;»{V/:)}-
Here, when the atomic predicates are explicitly chosen from among Py, ..., P, we
shall refer to our language as FORM¢ MUp, P,

Note that all “superfluous” logical operators including v, @ (exclusive or) and

pz.F (ieast fixed point), are easily derived. The same goes for the temporal operators

of CTL [2]. For instance, VG is defined by YGP % vz P A \! , (D2 We shall feel
free to wse all these derived operators as con’ venient abbreviations.

3. SuS is at least as expressive as CML

In what follows we shall often refer to trees. An n-ary infinite labelled tree ¢
whose labels are in the alphabet A can be seen as a function 1:40,...,n—-1}*=A;
we define dom(1) & {0, ..., n—1}*. The set of all A-labelled trees is denoted by
T%. A set of n-ary A-iabelled trees is called a tree language over A.

Labelled irees and the structures in STRUCTs,s can in an obvicus way be
regarded as one and the same thing. For z structure /= ({0 R |
succg, . ..,succ,,,<,P,...,P,) can be seen as an infinite #-ary tree
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14:40,..., n—1}*>2P P} with ((w)=P, iff we P,. And a tree t labelled by
A={a,,...,a,} determines a structure %, =({0,..., n—1}* succ,,...,succ,_,,
<,P,,...,P, ) with we P, iff t(w)=a,.

1t is therefore natural to talk about the tree ianguages definabie in SnS and CML.
A tree language L is SaS-definable iff there is an SnS-formula whose modeis are
the trees in L.

Definition 3.1. An A-labelled tree language L is SnS-definable if there is a formula
¢ € FORMg,,; with one free first order variable, x, and closed with respect to
second-order variabies such thut

L = {“A{I?Oh,’x}.ﬁ d’(x)}
The singie free firsi-order variabie is io denoie the root of the tree, £. Putiing all
this slightly differently with a slight abuse of notation, we can define
Hd’(x)" - {t] 4, Eote/ v d(x)}.
Then L is SaS-definable just in case there is a formula ¢(x) in SaS such that

L={a(x)|.
We say that L is CML-definable if there is a formula in CML which is true in
the roots of the trees in L and none others.

Definition 3.2. An A-labelled tree language L is CML-definable if there is a closed
formula y € FORM¢,, such that’ L={t|ec |4’}
Again, puttinﬂ all this slightly differently, we can define
ol = {rjecllvl "}

Since the metalanguage used in defining the semantics of CML is not far from SnS,

it is easy to see that any tree language definable in CML is also definable in SnS.

Lemma 3.3. For any closed F € FORM Mip, there is a O(F)e FORMS,,SPI_“_,,,
with | F|| = || O(F)|.

Proof. We exhibit a direct translation @:FORM.cpmy,

. », > FORMg,s,
gives us a formula in SnS with one free variable x:

that

1Py

O{P)=xe B,

O(F, A F,)=0O(F))A O(F,),

O(—F)="0(F),

O(@F)=(0(F))[xi/x],

O(z)=Y,

O(vzF)=3Sxe SA(VyyeS = (O(F))ly/xUS/ Y. 1)
AVT.(VNzze T=(O(F)z/x][T/Y.]=>TcS.

3 - . - . . - » - .
~ The assignment p is inessential, since ¢ is civscd, and will henceforth he omitted for closed formulae.
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([xi/x] denotes a uniform substitution of xi for x.) Note that atomic predicates are
carried over and that recursion variables become second-order variables. The transla-

tion of fixed-points is just a formulation of Tarski’s fixed-point induction principle.

Induction in the structure of CML-formulae shows that this translation always gives
a formula with one variable and that |Fl = |@(F)|. O

Since CML by the above lemma can be embedded in S1S, and since the latter is
decidable {8] and since the translation is effectively constructible we also see that
CML is decidable (cf. [9]).

4. CML is as expressive as SnS modulo =,

We now establish that CML is as expressive as SnS up to an ‘‘observational™
equiva'ence of tree languages. We here use the tree theorem of [8].

Definition 4.1. A Rabin automaton on n-ary A-labelled trees is a quadruple o =
(Q, g0, 4, 2), where Q is the finite set of states, q, is the start state, 4 = Qx Ax Q"
is the finite transition relation and 2 = 2° x 29 is a finite collection of finite acceptance
pairs.

Definition 4.2. A run of the Rabin automaton & =(Q, q,, 4, £2) on an A-labelled
tree ¢ is any Q-labelled tree r such that r(e)=gq,, r(s)=gq and r(si)=gq;,, 1sis<n
with (g, 1(s), q,,...,9,)€A.

Definition 4.3. A run r of & is accepiing if for all paths = there is an acceptance
pair (L;, U;) € 2, such that’

in(rlm)nL;i=0 and In(riw)n U, #0.

Definition 4.4. A tree language L is Rabin-recognizable if there is a Rabin automaton
o such that re L iff + admits an accepting run of .

Theorem 4.5 (Rabin [81). A tree language is SnS-definabie iff it is Rabin recognizable

in that

e for any ¢ € FORM SnSp._p there exists a Rabin automaton s, over the alphabet
2P such that t admn':s‘ an accepting run on A, iff Ml = @,

® for any Rabin automaton s over the alphabet A={a,,..., a,} there exisis a
dac FORMS,,SPG‘ ..... p, such that M, = ¢, iff t admits an accepting run on oA

m

* In(r|w) denotes the set of states nccurring infinitely often along 7.
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In what follows, the first half of Theorem 4.5 will be essential. For a given
¢ € FORMs,s, . weexpress the Rabin acceptance condition of the corresponding
automaton &fd, in CML. The acceptance condition assumes a knowledge of the
staies assigned to a node. However, we do not have the state predicates available
in our structures, only labelling predicates for the automaton aiphabet A, so we
must find a way of overcoming this. We do sn by coding the product of a tree and
its run on A, t"re T, as a tree where tize states assumed in the run can be
recovered from the position of the nodes in the encoding, using the (D -operator.
In what follows we assume w.l.o.g. that n=2.

Definition 4.6. A computation history (p,S) for the Rabin automaton & =
(Q, g0, 4, ) is any function p: S A and its domain S < ({0, 1}*Q)" which satisfy

gu€S and p(q,)=a forsome ze{a|3q’, q": (g, a,q'.q")c A},

5, 000g,0q,€ S

' ,a,q;,g-)€A:
sg. €8S = 3(qi,a, g9, g-)€ {sq,-\OOOCIquZCS

and p(sgq.)=a.

There is an obvious isomorphism H between T, and the set of computation
histories, and we shall feel free to speak of the computation history associated with
a given tree. Also, given a history ( p, S) it is easy to find the unique run r, , 5,:{0, 1}* >
A to which it corresponds.

We now code all computation histories of s/ as fuil vinary trees labelled by
Au {7}, where 7 is a dummy letter which signifies that the node in the encoding
does not correspond to a node in the original computation history. The coding
consists of taking the homomorphic extension K* of the node-coding

K(g)=101, 1<i<|Q|, K(w)=w, we{0,1}*

K*(p, S)w)={ % ¥ ¥=

’ iT otherwise.
These encoded computation histories correspond to those A-labelled trees admitting
a run on & via the =, equivalence to be defined below.

The state assumed in a node is thus reflected in the path to its descendants in the
coding. Using this fact we can now define the state predicates in CML, assuming
a predicate P, for every ae Au {r}. We describe the possible paths in the coding
from one node labeiied by 7 to the next; the state information is contained in the
shape of the path. We must also describe that ali nodes on the path between two
non-dummy nodes and all subtrees thereof are labelied by 7. Letting (i)F denote
the formula @ (F A P,) A /\j# . DVG.P, and letting (i) denote this iterated j times,
we define

Q,E Py /\ (OXOXOX1X0Y (B (XY D(— P,).

GLO =
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A node in a coded computation history satisfies the derived state predicate exactly
if the run corresponding to the history is labelled by g; at the corresponding node.

Lemma 4.7. For any tree t and associated compu:ation histoiy (p, S) any node s in
the run r, , 5, with associated Q-labelling predicates satisfies {Q, }s€ [|Q, | " if K¥(s)e

Q5.

(That the coded computation history contains the same ancestral information as
the original tree with respect to non-7-labels will be made precise by the definition
of =, (Definition 4.10).

We also need to express a next-time operator with respect to coded histories,
X,.F, which is to denote that the ith proper descendant has property F. (By a proper
descendant of a node s we mean any descendant not labelied by 7 such that all
nodes between it and < are labelled by 7, see Definition 4.9). This only makes sense
in non-dummy nodes, so we obtain

X.FE=Pn V 00000"0®ODD"“OF

aky gk Q

The CTL branching time operators can now be redefined with respect to X,.F so
we obtain e.g. VGP <y Pa /\::O X;.z.

Rabin acceptance is now formulated as a conjunction of two CML formulae
interpreted over Au {7}-labelled trees, namely Acc , % Acc, A Acc. where Acc,
describes that the Au {7]-labelled tree indeed is a coded computation history and
Acc, describes the Rabin acceptance condition itself.

Acc, includes a description of the transition function of the automaton:

Acc, ¥ P.AQ@(VG.P,) nDO(VYG.P,)

A@@(Q%/\ Vz.(@ Qr & (Q,,/\P,,D /‘\ X,(Qq‘,/\z)))
q¢ Q

(g.a.qy.qg2)e 3 £-0

Acc. is given as follows:

Acc, & (VF.(vz. V Q,,Avr.z))
q L /

L Ju,

(a1, A(38ue( 1 0rnarieuea)

U, QU
The first conjunct in Acc, states that on every path, some state in the U-component
of an acceptance pair occurs infinitely often. The second conjunct states that for
no acceptance pair is there a path such that obth a state in the L-component and
a state in the U-component occur infinitely often. Thus we have the following
theorem.

Theorem 4.8. For any Rabin automaton o over A={P,,...,P,, } there is a
CMLp, P, P, -formula Acc., such that for any tree t thereis a correspondmg computa-
tion hxstory ( p, S) with K*(p, S)€ [|Acc.,|| " iff 4 accepts t.
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Proof. Apparent from ilie above discussion. [J

Definition 4.9. For any coded computation history K*(p, §), 86<{0,1}*x
{0, 1}* x {0, 1}* is defined by

8(s, 5,,87) iff K*(p, S)(s)#7aIw:s,=swlas,=swl
AV ((sw<sw)) D> K*(p, SHw)=17

s, and s, are called the proper lefi and right descendants of s.

For A-labelled trees & clearly reduces to the normal ancestral relation. Our
equivalence of nodes in coded compuiation histories/ A-labelled trees is essentially
the equivalence on trees of [3].

Definition 4.10. The relation =, < {0, 1}* x {0, 1}* is the maximai relation such that
s’ =, s” whenever K*(p, $)(s’)= K*(p, S)(s") and

(1) 8(s’,s7,83)=>3s].s3: 8(s", s7,53) with s; =, s7 and s} =, 3,

(2) 8(s", sy, s3)=>3sy, s3: 8(s", 51, 55) with 57 =, 5} and s =, s5.

Thus, = , identifies two trees labelled »y alphabets containing A if their ancestral
information with respect tc A is the same.

Inherent in the definition of = 4 is a functional & ; on binary relations on {0, 1}*.
This functional is seen to be monotonic on the lattice (2! 1" ). =, is its
maxima! fixed point and therefore the union of all post-fixed points of & ;. Thus
the proof that this a well-defined equivalence relation is analogous to the proof for
the observational equivalence of [6].

We now formally state the correspondence beiween trees and coded computation
histories. The root of a tree is equivalent to the first node not labelled by 7 in the
coded computation hisiory, namely the node 11.

Theorem 4.11. Forany A-labelled tree t and any of its corresponding coded computation
lustories K*(H(t"r)) where r is some run of t we have that £, =, 11+, 50,11,

Proed. Itis enough to show that the set of pairs of corresponding proper descendants
of e, and 11 g+ e, i-€. the least set D such that

D={e,, 1 xesis v}
U {(sy, s7)[3(s', s") e D.A(s5, s5).8(s", 51, s3) A 8(s”, 57, s5)}
U {(ss, s3)|3(s’, s") € D3(sy, 57).8(s', 51, s5) A 8(s", 57, s%)}.

is a post-fixed point of the above-mentioned . So take any (s}, s/)e D. By the
isomorphism H and the definition of K* we have that 1(s)=
K*(H{t"r)(K*(H(s))); it is immediately seen that the pairs of proper descendants
also belong to D. O
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If we extend the definition of =, to tree languages over alphabets including A as

L - :;’ (Vee Ly3r et =1
Poam iVl‘ELgBEGL;.!'mAE,

we obtain the following corellary from Theorems 4.8 and 4.11.

Corollary 4.12. If L is SuS;, _ p, -definable, there exists a C ML, . p, -definable
language L' such that L =, L". '

§. Cencluding remarks

We have in this no ¢ established that a modal mu-calculus CML defines tree
languages up to an equivalence, = ,. Readers feeling uneasy about the extra lavel
7 can think of K* as defining a partial labelling function; the labelling predicate
P. should then be seen as a definedness predicate, and = 4 should therefore be secn
as a “Kleene equality’” on such partially labelled trees.

A potential application of CML might be the description of concurrent systems
consisting of a fixed number of asynchronous components. If we regard our trees
as unravelled transiticn diagrams of such systems, (WF could then be interpreted
as “‘after an action by component number /, F holds". In the same context, the idea
of an equivalence identifying only a number of labels also makes sense. For we can
label nodes (=process states) according to which actions they can perform, and
then =, describes equivalence with respect to the action capabilities that we are
interested in, namely those found in A.
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