
Applied Mathematics Letters 21 (2008) 4–9
www.elsevier.com/locate/aml

Solution of nonlinear Volterra–Fredholm–Hammerstein integral
equations via a collocation method and rationalized Haar functions
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Abstract

Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra–Fredholm–Hammerstein
integral equations. The properties of rationalized Haar functions are first presented. These properties together
with the Newton–Cotes nodes and Newton–Cotes integration method are then utilized to reduce the solution of
Volterra–Fredholm–Hammerstein integral equations to the solution of algebraic equations. The method is computationally
attractive, and applications are demonstrated through illustrative examples.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Several numerical methods for approximating the solution of Hammerstein integral equations are known. For
Fredholm–Hammerstein integral equations, the classical method of successive approximations was introduced in [1].
A variation of the Nystrom method was presented in [2]. A collocation type method was developed in [3]. In [4],
Brunner applied a collocation-type method to nonlinear Volterra–Hammerstein integral equations and integro-
differential equations, and discussed its connection with the iterated collocation method. Guoqiang [5] introduced and
discussed the asymptotic error expansion of a collocation-type method for Volterra–Hammerstein integral equations.

The orthogonal set of Haar functions is a group of square waves [6] with magnitude of +2
i
2 , −2

i
2 , and 0,

i = 0, 1, 2, . . . . The use of Haar functions comes from the rapid convergence feature of Haar series in expansions
of functions compared with that of Walsh series [7]. In [8–10] the authors offered a numerical method for solving
linear differential equations and its application to function evaluation. The method used was based on the stair step
approximation using Haar functions and on mathematical manipulation using quasi-binary numbers. However, there
are some difficulties for practical use in [8–10]. This is because of the magnitude of the Haar functions, and an
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operating system dealing with quasi-binary numbers is required for speedy manipulation. Lynch and Reis [11] have
rationalized the Haar transform by deleting the irrational numbers and introducing the integral power of two. This
modification results in what is called the rationalized Haar (RH) transform. The RH transform preserves all the
properties of the original Haar transform and can be efficiently implemented using digital pipeline architecture [12].
The corresponding functions are known as RH functions. The RH functions are composed of only three amplitudes
+1, −1 and 0. In [13–15], the authors applied the RH functions to solve differential equations.

In [16], Yalcinbas used Taylor series to the following nonlinear Volterra–Fredholm integral equation:

y(t) = f (t) + λ1

∫ t

0
κ1(t, s)[y(s)]pds + λ2

∫ 1

0
κ2(t, s)[y(s)]qds, 0 ≤ t, s ≤ 1,

where p and q are nonnegative integers and λ1 and λ2 are constants. Moreover, f (t) and the kernels κ1(t, s) and
κ2(t, s) are assumed to have nth derivatives on the interval 0 ≤ t, s ≤ 1. In the present work, we are concerned with
the application of RH functions to the numerical solution of a nonlinear Volterra–Fredholm–Hammerstein integral
equation of the form

y(t) = f (t) + λ1

∫ t

0
κ1(t, s)g1(s, y(s))ds + λ2

∫ 1

0
κ2(t, s)g2(s, y(s))ds, 0 ≤ t, s ≤ 1, (1)

where f (t) and the kernels κ1(t, s) and κ2(t, s) are assumed to be in L2(R) on the interval 0 ≤ t, s ≤ 1. We assume
that Eq. (1) has a unique solution y(t) to be determined. The method consists of expanding the solution in RH functions
with unknown coefficients. The properties of RH functions together with the Newton–Cotes nodes and Newton–Cotes
integration method [17] are then utilized to evaluate the unknown coefficients and find an approximate solution
to Eq. (1). It is known that spectral projection methods provide highly accurate approximations for the solutions
of operator equations in function spaces, provided that these solutions are sufficiently smooth [18]. Moreover, the
uniform convergence under suitable conditions using the spectral methods is established in [19] and [20] for nonlinear
Fredholm–Hammerstein [19] and nonlinear Volterra–Hammerstein [20] integral equations.

This work is organized as follows. In Section 2, we describe the basic formulation of RH functions required for our
subsequent development. Section 3 is devoted to the solution of Eq. (1) by using RH functions. In Section 4, we report
our numerical findings and demonstrate the accuracy of the proposed scheme by considering numerical examples.

2. Properties of rationalized Haar functions

2.1. Rationalized Haar functions

The RH function RH(r, t), r = 1, 2, 3, . . ., are composed of three values +1, −1 and 0 and can be defined on the
interval [0, 1) as [15]

RH(r, t) =

1, J1 ≤ t < J1/2
−1, J1/2 ≤ t < J0
0, otherwise

where

Ju =
j − u

2i , u = 0,
1
2
, 1.

The value of r is defined by two parameters i and j as

r = 2i
+ j − 1, i = 0, 1, 2, 3, . . . j = 1, 2, 3, . . . , 2i .

RH(0, t) is defined for i = j = 0 and is given by

RH(0, t) = 1, 0 ≤ t < 1.

The orthogonality property is given by∫ 1

0
RH(r, t)RH(v, t)dt =

{
2−i , r = v

0, r 6= v
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where

v = 2n
+ m − 1, n = 0, 1, 2, 3, . . . , m = 1, 2, 3, . . . , 2n .

2.2. Function approximation

A function f (t) defined over the interval [0, 1) may be expanded in RH functions as

f (t) =

+∞∑
r=0

ar RH(r, t), (2)

where ar are given by

ar = 2i
∫ 1

0
f (t)RH(r, t)dt, r = 0, 1, 2, . . . ,

with r = 2i
+ j − 1, i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . . , 2i and r = 0 for i = j = 0. The series in Eq. (2) contains

infinite terms. If, we let i = 0, 1, 2, . . . , α, then the infinite series in Eq. (2) is truncated to its first k terms as

f (t) =

k−1∑
r=0

ar RH(r, t) = ATΦ(t),

where

k = 2α+1, α = 0, 1, 2, 3, . . . .

The RH function coefficient vector A and RH function vector Φ(t) are defined as

A = [a0, a1, . . . , ak−1]
T, Φ(t) = [φ0(t), φ1(t), . . . , φk−1(t)]

T, (3)

where

φr (t) = RH(r, t), r = 0, 1, 2, . . . , k − 1.

3. Nonlinear Volterra–Fredholm–Hammerstein integral equations

Consider the nonlinear Volterra–Fredholm–Hammerstein integral equations given in Eq. (1). In order to use RH
functions, we first approximate y(t) as

y(t) = ATΦ(t), (4)

where A and Φ(t) are defined like in Eq. (3). Then from Eqs. (1) and (4) we have

ATΦ(t) = f (t) + λ1

∫ t

0
κ1(t, s)g1(s, ATΦ(s))ds + λ2

∫ 1

0
κ2(t, s)g2(s, ATΦ(s))ds, (5)

and we now collocate Eq. (5) at k points tp as

ATΦ(tp) = f (tp) + λ1

∫ tp

0
κ1(tp, s)g1(s, ATΦ(s))ds + λ2

∫ 1

0
κ2(tp, s)g2(s, ATΦ(s))ds. (6)

For a suitable collocation points we choose Newton–Cotes nodes as

tp =
2p − 1

2k
, p = 1, 2, 3, . . . , k.

In order to use the Newton–Cotes integration formula for Eq. (6), we transfer the k interval [0, tp] to interval [0, 1] by
means of the transformation s = tpτ, letting

ζ1(tp, s) = κ1(tp, s)g1(s, ATΦ(s)), ζ2(tp, s) = κ2(tp, s)g2(s, ATΦ(s)).



Y. Ordokhani, M. Razzaghi / Applied Mathematics Letters 21 (2008) 4–9 7

Eq. (6) may then be restated as

ATΦ(tp) = f (tp) + λ1tp

∫ 1

0
ζ1(tp, tpτ)dτ + λ2

∫ 1

0
ζ2(tp, τ )dτ.

By using the Newton–Cotes integration formula we get

ATΦ(tp) = f (tp) + λ1tp

k1∑
j=1

ω1 jζ1(tp, tpτ1 j ) + λ2

k2∑
j=1

ω2 jζ2(tp, τ2 j ), p = 1, 2, . . . , k, (7)

where τ1 j and τ2 j are k1 and k2 Newton–Cotes nodes respectively in interval [0, 1), and w1 j , w2 j are the
corresponding weights given in [17]. Eq. (7) gives k nonlinear equations which can be solved for the elements of
A in Eq. (4) using Newton’s iterative method.

4. Illustrative examples

4.1. Example 1

In this example RH function approximation is used to solve the integral equation reformulation of the nonlinear
two-point boundary value problem

d2 y(t)

dt2 − ey(t)
= 0, t ∈ [0, 1]; y(0) = y(1) = 0, (8)

which is of great interest in hydrodynamics [21, p. 41]. This problem has a unique solution given in [8] as

y(t) = − ln(2) + ln

(
c

cos( 1
2 c(t −

1
2 ))

)
.

Here, c is the root of [
c

cos( c
4 )

]
2

= 2. Eq. (8) can be reformulated as the integral equation

y(t) =

∫ 1

0
κ(t, s)ey(s)ds, (9)

where

κ(t, s) =

{
−s(1 − t), for s ≤ t
−t (1 − s), for t ≤ s.

We applied the proposed method to approximate the solution of Eq. (9) with λ1 = 0, λ2 = 1, k1 = 8, and k = 8, 16
and 32. In [3], the above problem was solved with the collocation points chosen to be ti =

i−1
N−1 , i = 1, . . . , N , and

the basis functions as piecewise-linear functions, in which a rather large system of nonlinear equations have to be
solved to obtain accuracy of comparable order. Table 1 represents the error estimates using the method of [3] together
with the results obtained for maximum errors by the present method.

4.2. Example 2

Consider the nonlinear Volterra–Fredholm integral equation given in [16] by

y(t) = exp(t) −
1
3

exp(3t) +
1
3

+

∫ t

0
[y(s)]3ds, (10)

which has the exact solution y(t) = exp(t). We applied the RH function approach and solved Eq. (10). Table 2
presents values of y(t) obtained using the present method with k2 = 8, and k = 8 and k = 16 together with the exact
values.
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Table 1
Error estimates for Example 1

Methods ‖y − ŷ‖

Method of [3]
N = 5 7.81 × 10−3

N = 17 5.61 × 10−4

N = 65 3.66 × 10−5

Present method,
k1 = 8, and
k = 8 <10−5

k = 16 <10−6

k = 32 <10−7

Table 2
Estimated and exact values of y(t)

t Present k2 = 8 and k = 8 Present k2 = 8 and k = 16 Exact

0 1 1 1
0.2 1.221341 1.221400 1.221403
0.4 1.491758 1.491821 1.491825
0.6 1.822086 1.822116 1.822119
0.8 2.225467 2.225538 2.225541
1 2.718199 2.718278 2.718282

Table 3
Estimated and exact values of y(t)

t Present k1 = k2 = 8 and k = 8 Present k1 = k2 = 8 and k = 16 Exact

0 −1.998431 −1.999992 −2
0.2 −1.958019 −1.959996 −1.96
0.4 −1.839764 −1.839989 −1.84
0.6 −1.640501 −1.640013 − 1.64
0.8 −1.360513 −1.360014 − 1.36
1 −1.005901 −1.000014 − 1

4.3. Example 3

Consider the nonlinear Volterra–Fredholm–Hammerstein integral equation given in [16] by

y(t) =
−1
30

t6
+

1
3

t4
− t2

+
5
3

t −
5
4

+

∫ t

0
(t − s)[y(s)]2ds +

∫ 1

0
(t + s)[y(s)]ds, 0 ≤ t, s ≤ 1. (11)

We applied the RH function method and solved Eq. (11) with k1 = k2 = 8, and k = 8 and k = 16. The computational
results together with the exact solution y(t) = t2

− 2 are given in Table 3.

5. Conclusion

In the present work the RH functions are developed to solve the nonlinear Volterra–Fredholm–Hammerstein
integral equations. The properties of the RH functions together with Newton–Cotes nodes and the Newton–Cotes
integration method are used to reduce the problem to the solution of algebraic equations. Illustrative examples are
given to demonstrate the validity and applicability of the proposed method.
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