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Abstract

A complete set of generators for Straubing’s dot-depth-two monoids has been characterized
as a set of quotients of the form A*/~, ., where n and m denote positive integers, A* denotes
the free monoid generated by a finite alphabet A, and ~, ,, denote congruences related to
a version of the Ehrenfeucht-Fraissé game. This paper studies combinatorial properties of the
~mms and in particular the inclusion relations between them. Several decidability and
inclusion consequences are discussed.

1. Introduction

This paper deals with the problem of the decidability of the different levels of the
dot-depth hierarchy and in particular with its second level. The problem is a central
one in language theory. Its study is justified by its recognized connections with the
theory of automata, formal logic and circuit complexity. The method used relies on
a game-theoretical approach that was introduced by Thomas [19] and used in [1-5].

In Section 1.1, we recall the basic definitions and well-known results concerning the
dot-depth hierarchy. Section 1.2 includes the definition of the game that is used in the
proofs of our results and Section 1.3 presents a summary of our main results in this

paper.
1.1. The dot-depth hierarchy

First, notation and basic concepts are introduced in order to define the decidability
problem of the dot-depth hierarchy.
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Let A be a finite set of letters. The regular languages over 4 are those subsets of A*,
the free monoid generated by A, constructed from the finite languages over 4 by the
boolean operations, the concatenation product and the star. The star-free languages
are those regular languages which can be obtained from the finite languages by the
boolean operations and the concatenation product only. According to Schiitzenber-
ger [14], L = A* is star-free if and only if its syntactic monoid M (L) is finite and
aperiodic (or M (L) contains no nontrivial subgroups). General references on the star-
free languages are [9, 10, 12].

Natural classifications of the star-free languages are obtained based on the alternat-
ing use of the boolean operations and the concatenation product. Classes of languages
A*Y, A*Y"4, ... introduced by Straubing in [16] form a hierarchy which is closely
related to the so-called dot-depth hierarchy introduced by Cohen and Brzozowski in
[7]: A*¥", consists of the empty set and A* and A*¥7 ., denotes the class of
languages over A4 which are boolean combinations of languages of the form
LoayLia;...anL,, (im>=0) with Lo,...,L,€A*¥, and a4,...,a,€A. Let A*¥Y =
Uk s 04*¥. L = A* is star-free if and only if Le A*¥" for some k > 0. The dot-depth
of L is defined as the smallest such k.

The fact that the dot-depth hierarchy is infinite has long been known [6], ie.
AXY oy # A%V, for every k (a proof, using games, is given in [20]). The question of
effectively determining the dot-depth of a given star-free language remains open.
Simon [15] has shown that one can decide if a given language has dot-depth one, and
Straubing [17] gave a decision procedure for k = 2 but which works only for an
A with two letters. Straubing conjectured that his algorithm works for an arbitrary 4.
Results relative to the characterization of dot-depth-two languages are the subject of
this paper.

For k = 1, let us define subhierarchies of A*7", as follows: for all n = 1, let A*¥, ,,
denote the class of boolean combinations of languages of the form Loa;Lqa; ... a,Ly,
O<m<n), with Ly,...,L,€A*¥ -, and ay,...,a,e€A. We have A*¥ ) =
Un > 14*7%, . Easily, A*¥ , € A*¥ 11, and A*Y ", S A*F 4 uiy.

The Straubing hierarchy gives examples of #-varieties of languages. One can show
that ¥7, ¥, and ¥, , are *-varieties of languages. According to Eilenberg, there exist
monoid varieties V, ¥, and V, , corresponding to ¥°, ¥, and ¥’y ,, respectively. V is
the variety of aperiodic monoids. We have that, for L < A*, Le A*¥" if and only if
M(L)eV, for each k = 0, Le A*¥" if and only if M(L)e ¥V, and, for k=1, n> 1,
Le A*¥, , if and only if M(L)e V,_,. The dot-depth-two problem reduces to charac-
terizing effectively the monoids which are in ¥, but not in V;.

1.2. The Ehrenfeucht-Fraisse game technique

Our contributions related to the decidability problem of the dot-depth hierarchy
were obtained by carefully exploiting the Ehrenfeucht—Fraissé game technique. This
method was used by Thomas [19] to give a new proof of the infinity of the dot-depth
hierarchy.

First, one regards a word we A* of length |w| as a word model w = ({1, ...,w},

< ™, (Q¥)ac >, where the universe {1, ...,|w|} represents the set of positions of letters
in w, <" denotes the < -relation in w, and Q are unary relations over {1, ...,|w|}
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containing the positions with letter g, for each ae A. To any k-tuple i = (m,, ..., m;) of
positive integers, where k > 0, and any words u and v from A* corresponds a game
%.(u, v) which is played between two players I and IT on the word models u and v.
A play of the game consists of k moves. In the ith move, player I chooses, in « or in v,
a sequence of m; positions of letters; then player II chooses, in the remaining word,
also a sequence of m; positions of letters. After k moves, by concatenating the position
sequences chosen from u and v, two sequences of positions p; ... p, (p1 < - < pa)
from u and gq;..q, (@1 < -~ <gq, from v have been formed where
n=m; + --- + my. Player II has won the play if the two subwords (a word a, ... a, is
a subword of a word w if there exist words wy, ..., w, such that w = wea,w,a; ... a,w,)
given by the position sequences p; ... p, and ¢, ... ¢, coincide. One writes that u ~; v if
player 1I has a winning strategy to win each play of the game %;(u, v). ~; naturally
defines a congruence on A*. The importance of ~ lies in the fact that ¥V} can be
characterized in terms of the monoids A*/ ~(y, . m,). Thomas [18, 19] and Perrin and
Pin [11] infer that, for k > 1, M e ¥, if and only if there exists m = (my, ..., m;) such
that M divides A*/~;, or, more precisely, fork = 1,n > 1, Me V,_,if and only if there
exists i = (n, my, ...,m_) such that M divides A*/~; (Vi = {A¥/~| ~2 ~m,,...m)
for some (my,...,m)} and ¥, , = {A*/~| ~ 2 ~pm,,...m_, fOr some my,...,my_1}).
Hence the monoids A*/~,; form a class of monoids that generate V in the sense that
every finite aperiodic monoid is a morphic image of a submonoid of a monoid of the
form A*/~ ;.

1.3. Decidability and inclusion results

Reference [5] characterizes the dot-depth-two monoids of the form A*/~j;:
,,,,, m,) is of dot-depth two if and only if k = 2, or k = 3 and m, = 1. This paper
studies dot-depth-two monoids, and in particular the monoids A*/~ ., and
A*/ ~, 1, m)- More specifically, in Sections 2, 3 and 4 we study combinatorial proper-
ties of the ~;, m’s and ~, 1 »’s and the inclusion relations between them. Study-
ing properties of the ~, s and ~, 1 »’s sheds some light on the dot-depth-two
syntactic monoids. Several decidability and inclusion consequences are discussed in
Section 5.

Reference [3] shows that, for |A| =2, A*Y, | £ A*Y 5, = A¥V 5 3 # A*V .,
= A*Y, 5 % - and, for [A]| >3, A*¥ 5.1 & A%V 5 , # A*V, 3 # - (here |A| de-
notes the cardinality of A). Let A*/~z be of dot-depth two. The 2-dot-depth
(abbreviated 2dd) of A*/~y; is defined as the smallest n for which A*/~;€V; ,. In
Section 5.1, we show that the 2-dot-depth of all the generators A4*/~, ) can be
determined from the values of | 4|, n and m, and the 2-dot-depth of all the monoids of
the form A*/~, | ) where |A| = 2 can be determined from the value of n. An upper
bound for the 2-dot-depth of all the monoids of the form A*/~(, | . where [4]| = 3 is
given.

Section 5.2 deals with a conjecture of Pin. A special case of one of the results
in this paper implies that a conjecture of Pin concerning tree hierarchies of mo-
noids (the dot-depth and the Straubing hierarchies being particular cases) is false.
More precisely, {@, A*} is associated with the tree reduced to a point. Then to the
tree
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is associated the boolean algebra ¥, which is generated by all the languages of the
form L;a,L,,a;...a,L;, with 0 < ig < -+ <i, <m, where, for 0<j<r, Lje7,, .

Pin [13] conjectured that ¥, = ¥ if and only if ¢ is extracted from t'.

Section 5.3 contains some results on equations. Equations are used to define
monoid varieties. Abstract arguments show that every monoid variety can be ulti-
mately defined by a sequence of equations. We give equations satisfied in the monoid
varieties V;_,.

In Section 5.4, generalizations of the inclusion results of Section 4 to arbitrary
~my, ..., m,) arc discussed.

The reader is referred to [8, 12] for all the algebraic and logical terms not defined in
this paper. In the following sections, we assume |4 | > 2 (unless otherwise stated). 4™
will denote A*\{1}, where 1 denotes the empty word; |w|, (wa) the number of
occurrences of the letter a in a word w (the set of letters in a word w); my, ..., my,
ni,...,np, m,m, nand ' positive integers, | x | the largest integer smaller than or equal
to x and [x7] the smallest integer larger than or equal to x.

2. Some basic properties of the congruences ~
2.1. An induction lemma

This section is concerned with an induction lemma for the ~;’s.

In what follows, if w = a; ...a,is a word and 1 < i< j< n, wli,jl, w(i,j), w(i J1
and w[i,j) will denote the segments a;...a;, @1 ...G;-1, Gi41...a; and a; ... a1,
respectively.

Lemma 2.1. u ~;, 7 v if and only if

® for every py,...,pacu (py < -+ < p,), there exist qi,....qn€0 (g1 € - < q,)
such that

(1) Qap: if and only if Qaqi, a€ A for 1 <i<n,

(2) ull,p1) ~m vl q1),

(3) u(ps pi+1) ~m v(qi, Giv1) for 1<isn—1,

4) u(p,, lul] ~s n(a__ lv|], and

s i~ LN

e for every qy,...,q,€v (qy < -+ < q,), there exist py,...,p,€U (p1 < -+ < py)
such that (1)—(4) hold.

2.2. An inclusion lemma

This section is concerned with an inclusion lemma which gives conditions which
insure ~y,, 5, to be included in ~;,, . m,) A trivial condition is the following:
k < k' and there exist 1 < i; < --- <, < k' such that m; < n;,,....m < ;.
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Define A (my,...,m)=(m; +1)---(m+1)—1. We can show that x"
~emeomy) XN LN = A (my,...,m)) and that N is the smallest n such that x"

Ul = |V]a < A (Mq,...,m) OF |ul,, |v|, = A (Myq,...,m). The following lemma fol-
lows easily from Lemma 2.1 and the above remarks.

Lemma 2.2. ~pn, _m) S ~H(my,.om)) M ~on,m) F (W lm,.omy) + 1) COnSe-
quently, a necessary condition for ~g . ., to be included in ~, ) is
Ny, ...,m) < A (ny,...,np).  Moreover, if k<k  and there exist
0=jo < -+ <jy—1 <jx =Kk such that m; < ¥/ (n;,_,+1,....n;) for 1 i<k, then

3. Some positions of a word w

This section is concerned with some positions of a word w, i.e. (m) positions, (m, m’)
positions where m > m’, and (m), positions where |A| = r.

3.1. (m) positions

We give induction lemmas for the ~, ,y’s after defining the positions which spell the
first occurrences of every subword of length < m of a word w (or the (m) first
positions in w).

Let we A* and let w, denote the smallest prefix of w such that w,a = wa (call the
last position of wy, p,); let w, denote the smallest prefix of w(p,, |w|] such that
woa = (w(py, |w|])a (call the last position of w,, p,); ... let w,, denote the smallest
prefix of w(p,—1,|w|] such that w,o = (W(p,-1,|w|])a (call the last position of
Wyir Pm)-

If|wa| = 1, py, ..., Py are the (m) first positions in w and the procedure terminates. If
|wat| > 1, py, ..., p,, are among the (m) first positions in w. To find the others, we repeat
the process to find the (m) first positions in w[1, p,) and the (m — i + 1) first positions
inw(pi_,p)for2<i<m

We can define similarly the positions which spell the last occurrences of every
subword of length < m of w (or the (m) last positions in w). The (m) first and the (m)
last positions in w are called the (in) positions in w. The number of (m) positions in w is
bounded above by 2.#(m), where #(m) denotes the index of ~,.

Consider the following example: let A = {a, b, ¢} and

w = abbbbbaaaabbbbadaaabcbeéccbbbbbbebébbeababaaaaabbbéiccchbchebbb-
abécbbbebebaabb.

The overlined positions of w are the (5) first positions in w.

The following facts hold.

Fact 1: If p is among the (m) first positions of w, then w[1, p] can be divided (using
the above process) into at most m segments wy,...,w, whose last positions, say
P1seeosPm—1>P (P1 < -+ < ppm—1 < p), spell the first occurrence of a subword of length
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< m of w (also, py,...,p,— are among the positions which spell such occurrences).
It is clear that w[l,p) ) w[l,pl, and if p; <--- < p,_; <p, then w[l,p]
~m) WL1, plv if and only if va = w,a, where ve 4*,

Fact 2: 1If p is among the (m) first positions of w, then consider the decomposition of
wll,p]asinfact 1. If p, < --- < p,,—; < p, then p is the first occurrence of its letter in
W(Pm-1,|wl|]. If, in addition, g € w(p,,—, p) and q is also among the (m) first positions
of w, then q is the first occurrence of its letter in w(p,,_ 1, |w|].

Fact 3: If pand q (p < g) are among the (m) first positions of w, and there is no such
position between p and g, then there exist py, ..., py—1 €W (P < +++ < pm_1 < p) such
that py,...,pm-1,pand py, ..., pm—1, g spell the first occurrences of subwords of length
< mof w, or w(p, q) = 1 and there exist py,...,pp-1 €W (py < -+ < p_1 = p) such
that py, ..., pm- 1, q spell the first occurrence of a subword of length < m of w (also, in
both situations, py,...,p.-; are among the positions which spell such occurrences).
To see this, consider the decomposition of w['1, g] as in fact 1. Fact 2 implies the result.

Similar facts hold for the (m) last positions of w.

Lemma 3.1. Let u,ve A" be such that u ~y ) v and let py,...,p,€u (py < -+ < p;)
(91, .--,9- €0 (q1 < -+ < qy)) be the (m) positions in u (v), where m < (N (n, n') — 1)/2].
Then

o t=1.

® Qip;if and only if Qiq;, acAfor 1 <i<t.

Here py = q, =1, p, = |u| and g, = |v|.

Proof. We show the result for m = | (A" (n, n') — 1)/2 | (the proof is similar for the other
values of m). For each 1<i<t there exist 1<i;<--<i,_ 1 <i (or
[ <ip-1 €Kiy <t)suchthatp,,....p;, ,pi(Orpi,pi, ,,---,p;,) spell the first (or
the last) occurrence of a subword of length < m in u. The result follows from Lemma
2.1 by considering different plays of the game % = %, ,)(u, v). In a first round of
games, one for each 1 <i<t, player L, in the first move, among p;,, ..., pi,._,» Pis
chooses p; , p;, . ..., and p; for a total of at most » positions since m < nn'’. In a second
round of games, one for each pair (i, j) with 1 < i, j < ¢, for the first move, player
I chooses among p;,, ..., pi.._,» Pis Pjys -+ Pjm-1» Pj» PUt in linear order, the (n’ + 1)th
from the left, the (n’ + 1)th from the right, the 2(n’ + 1)th from the left, the 2(n’ + 1)th
from the right, ... for a total of no more than n positions since A (1, m) < A (n, n').
More details follow.

If n = 1, consider the plays of the game ¢ where player I, in the first move, chooses
pi for some 1<i<t If n>1, let fi,....freu (fi<--<f) (f{,....fr €D
(fi < -+ <f")) be the (m) first positions in u (v). Then r = r, and Q%4f; if and only if
Q.f', aeA for 1<i<r To see this, for each 1 <i<r by fact 1, there exist
1<iy <+ <ip—y <isuchthatf;,,...,f,. _,.f: spell the first occurrence of a subword
of length < m in u. In a round of games, one for each 1 < i < r, player I, in the first
move, among f;,, ..., f;,._,, fi, chooses f; , fi, ., ..., and f; for a total of no more than
n positions. A similar statement is valid for the (m) last positions I;,...,l,eu
h<--<l)l,....evy< - <ly))inu (v).

The proof is complete if we show the following:

(1) fi=1;if and only if £/ = I, and
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) fi<lifandonlyif f/ <[, for1<i<r, 1<j<s.
We show (2) (the proof for (1) is similar). Assume that, for some 1 <i<r 1<j<s5,
fi< Ilybut f = I;. Consider the play of the game & where player I, in the first move
amongfi,, ..., fi,_» foo lin 1o ---» 1j,, chooses the (n” + 1)th from the left, the (n’ 4+ 1)th
from the right, the 2(n’ + 1)th from the left, the 2(n" + 1)th from the right, ... for a total
of at most n positions. Call them ry,...,r, (r; < --- <r,). There exist sq,...,s,
(51 < -+ < 's,) satisfying Lemma 2.1. We have that if r, =f; ., , then s, = f;/ - if
Tat1-k = oy then s,y <L sifrg = fi, then s, > f/; and if ry, = [}, then s, < [},

Ifnis Odd, lj =Fn+ 1)/2- Put r = Fin+ 1/2)—1» ¥ o= Fin+ /2 + 1> S = Sn+1/2) -1 and
§' = Sin + 1y2) + 1- We have that u(r, Ij) ~uy v(s, s 4 1)2)- Let the positions (among the
< A°(1, m) positions considered) which are in u(r,;) be denoted by pi,...,py
(p1 < -+~ < py) (P = f;). However, the word (of length < n’') spelled by p1, ..., p, is in
u(r, I;) but not in v(s, s 1 1y2) since by assumption f = [}

If niseven, putr = ry;, ' =12+ 1, S = Spp and 8" = Spz)+1. [0 < 2,7 = fiand
v =l;.s 2 f;’ and s’ < [} together with f;’ > [;lead to a contradiction. If n” > 2, we have
that u(r, r') ~y, v(s, s'). Let the positions (among the < 47(1, m) positions considered)
which are in u(r, ') be denoted by p’, ..., pw -1 (P} € -+ < pjr—,). However, the word
(of length < n’) spelled by pi,...,pr—1 18 in u(r, ') but not in v(s, s’) since by
assumption f;' = ;. U

The following lemmas are from [5] and give necessary and sufficient conditions for
~ (n. m-€quivalence.

Lemma 3.2. Let uveA* and let p,,...,peu (p1<--<p) (G1,...,qp €V
(g1 < +-- < qv)) be the (m) positions in u (v). u ~q, ) v if and only if

et=t,

® Qup;if and only if Q4q;, ac A for 1 < i< t, and

® u(pi, piv1) ~u V@i girr) for 1 <i<t— 1

Lemma 3.3. Let n > 1. Let u,ve A" and let py,...,peu(pL < - < p) (Q1s-..,qv €D
(q1 < -- < gv)) be the (m) positions in u (v). U ~y ) v if and only if:

e t=t.

o Qup;ifand only if Qoqi, acA for 1 < i<t

® u(pi, Piv1) ~m-2,m V(qis iv1) for 1 <i<t—1

o for 1 <i<t—1 and for every ry,...,r,_1€u(p;, piv1) (ry < +-- < ro—1), there
exist S1,...,8,—1€0(q;, §i+1) (81 < ++- < 5,_1) such that

(1) Qir;if and only if Qis;, ac A for 1 <j<n—1,

(2) ulryyrjv1) ~mvlsj, sje) for 1 <j<n—2,

(3) u(pi, 1) ~emy v(qi> S1)-
Also, there exist 54, ...,8,_1 €v(q;, g;+ 1) (Which may be different from the positions which
satisfy (1), (2) and (3)) (s < -+ < s,-1) such that (1), (2) and

@) ulrn-1,Piv1) ~em) VSn—1,qi+1)
hold. Similarly, for every sy,...,8,—1€v(qi,qi+1) (51 < -+ < s,-1), there exist
Piseos a1 €U(Ps, Pis1) (P < -+ < Fn—q) such that (1), (2) and (3) hold (also (1), (2) and
(4) hold).
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e for 1 <i<t—1 and for every ry,...,r,€u(p;, pi+1) (ry < --- < rp), there exist
S1s 0> S €U(Gi, Qi+ 1) (81 < ++- < 8,) such that

(5) Qur;if and only if Qys;, ac A for 1 <j< n,

(6) ulr, rjv1) ~um 0(Sj, Sj41) for 1 <j<n— L

Similarly, for every si,...,8,€0(qi, qi+1) (81 < -+ < s,), there exist rq,...,r,
eu(p;, pi+1) (ry < +-- < r,) such that (5) and (6) hold.

3.2. (m,m’) positions

Let m > m'. In the proof of Lemma 4.3, we will talk about the (m, m’) first positions
of a word we A™ (they form a subset of the (m) first positions of w). They are defined
recursively as follows: let w; denote the smallest prefix of w such that w,a = wa (call
the last position of wy, p,); let w, denote the smallest prefix of w(p,, |w|] such that
wya = (w(py, [w|])x (call the last position of w,, p,); ... let w,,_; denote the smallest
prefix of w(p,, ., |w|] such that w,,_ o = (W(p,.— 2, |w|])x (call the last position of
Wm—1,Pm—1). The p/s divide w into segments w;= w[p;_1ym + 1, pjm], Where
1<j<|(m— 1)/m| (here py + 1 =1). We describe the (m, m’) first positions in
w  which are included in wj. Case 1 relates to the situation when
PG-1ym +1 < Pli—tym+2 < =+ < P and case 2 to the opposite situation, in which
case w; is the very last segment of w. No (m,m’) first position is included in
W(m_(m — 1ym' Jm's |W|]

Case 1: Here, if |wjor| = 1, p;, is the only (m, m’) first position in w}. If |wja| > 1,
Pjn is among the (m, m') first positions in w}. To find the others, we repeat the process
to find the (m — (j — 1)m’, m') first positions in W[ p;—1ym + 1, Pjm)-

Case 2: If |[wjx| = 1, the procedure terminates. If |wjx| > 1, we repeat the process to
find the (m — (j — \)m’, m) first positions in W[ p;_1ym + 1, Pjm)

We can define similarly the (m, m') last positions of w. The (m, m') first and the
(m, m’) last positions in w are called the (m, m’) positions in w. The number of (m, m’)
positions in w is bounded above by 2|(m — 1)/m’|S;Z8(m| (m — 1)/m’ ], where
r=|wxl

Consider the example in Section 3.1:

w = abbbbbaaaabbbbdaaaabcbécccbbbbbbébebbeababdaaaabbbececchbebe-
bbbabccbbbcbebaabb.

The overlined positions of w are the (5, 2) first positions in w.
The following fact holds (a similar fact holds for the (m, m’) last positions in u (v)).
Fact 4: Let py,...,picu(py < - <p)(@Q1s--»qr €V gy < -+ < qp}) be the (m, m’)
first positions in u (v). If t = ¢, Q4p; il and only if Q}q;, acA for 1 <i< ¢, ull, py)
~emy V(L @1), w(Pis Piv 1) ~emy 0(Gi> Gi+1) for 1 < i<t — 1, and u(ps, [ul] ~emy v(qe, 1011,
then u ~, v.

3.3. (m), positions

Letwe A* and |wx| = r = 2. In the proof of Lemma 4.11, we will talk about the (m),
first positions of w (they form a subset of the (m) first positions of w). They are defined
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recursively as follows: let w, denote the smallest prefix of w such that w a = we (call
the last position of w,, p;); let w, denote the smallest prefix of w(p;, |w|] such that
wyo = (w(py, [w|])a (call the last position of w,, p;);... let w,, denote the smallest
prefix of w(p,,—1,|w|] such that w,x = (W(p._1, |w|])x (call the last position of

i) n ) maxin Y 10 an {m) firet nogition in w. Irv — 2 tha nrocedure tarmin-
Wiy Pmy. THAX Py, - 9[’mj S an ), 1rsl positiocl 11 W «, 1€ pro<cequre wermin

ates. If r > 2, we repeat the process to find the (m), _ , first positions in w[1, p;) and the
(m—i+ 1),_, first positions in w(p;_,p;) for2<i<m.

We can define similarly (m), last positions of w. The (m), first and the (m), last
positions in w are called the (m), positions in w. The number of (m), positions in w is
bounded above by 2¥iZ5m'.

Consider the example in Section 3.1:

w = abbbbbaaaabbbbaaaaabcbecccbbbbbbebibbeababaaaaabbbecceebebebbbab-
ccbbbebebaabb.

The overlined positions of w are the (5); first positions in w.

Th i
The following facts hold.

Fact5: Letp,,...,p.eu(py < --- < p,)(ql,...,q,rev(q1 < e < q,,))be the (m), first
positions in u (v). Let py,...,pieu(py < --- < pJ) (¢}, ...,qv €V (7 < --- < g&)) be the
(m) first positions in u (v} (here p, = p; and qr = qv). Assume that ¢t = ¢/, Qi p; if and
OI]ly if 029, a4 for 1<i<y, u[l pl) ~(2m+1)v[1 ql) and u(pl’pH—I)
~am+ 1) U(qi> @i +1) for 1 < i<t — 1. We can conclude that s = §', Qip; if and only if
Qig:, ac Afor 1 < i< s, and u(pl, pis1) ~u v(gi, gi+1) for 1 < i< s — 1. To see this,

we consider the gaps in u formed bv the s and the gaps in v formed bv the q; ’s. Let o/
1

.............. gapsinu d by the p;/s and the gaps in v formed by the ¢;’s. Let
be such a gap in u and ¢’ be its correspondmg gap in v. One of the followmg is true:

e u'a = v'oaand «/, v' do not contain all the words of length < m over their alphabet
of size 2;

o u =u'au”, v =v"av" where u'o = v"a, {a}géu”oc "o =v"a, u’, v are free
from (m) first positions, and u”’, v"” do not contain all the words of iength < m over
their alphabet of size 2;

e u'a=v'a and v, v are free from (m) first positions.

The fact follows. A 51m11ar fact holds for the (m), last positions in u (v).

Fact 6: Lemma 3.2 together with fact 5 imply the following. Let py,...,p,€u
(pr<--<p)@y,.--,qr€V(q; < -+- < g,)) be the (m), positions in u (v). If t = t', Q4 p;
if and only if Qigq;, aeA for 1<i<r, u[l P1) ~ om 4+ 1) v[l q1), u(pi, Pi+1)

P Ve 1 & 5« 4 1 ,‘..,1 thnin o
T2mA+ 1) VY i+ 1) IV 1T X 0 x U 1, alld “U’ts I”IJ ~2m+ 1) U\‘Ita |U|Ja tnen u ~1,m) U

4. Inclusion relations

4.1. Between the congruences ~y )

The purpose of this section is to find necessary and sufficient conditions for
~tw, m) to be included in ~, ). The proofs provide different winning strategies for
either player 1 or player II. Lemma 2.2 implies that a necessary condition is
N (n,m) < A (n',m’). Applications are discussed in the next section.
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Lemma 4.1. (1) If /' (n,n') = A" (1, m) and if either |A| = 2, or n # 2, or n’ < 2, then
M) S Nt m)-
(2) ~2mE ~Lm+ 1)

Proof. First, we show (1). It is sufficient to show the result for m = [ (A4 (n, n') — 1)/2]
The result is obvious for n = 1. Assume n > 1 and let u, ve A™ be such that u ~, ) v.
There is then a winning strategy for player II to win each play of the game 4 = 4, ,,
(4, v). Let us show that u ~( ,, v by using Lemma 3.2. Let py,...,p. (p1 < - < py)
g1 ---»qr (g1 < -+ < q¢)) denote the (m) positions in u (v). The first two conditions of
Lemma 3.2 hold by Lemma 3.1. To show that the third condition of Lemma 3.2 also
holds, let 1<i<t—1 and let peu(p;, p;+1) (the proof is similar if starting in
v(g;, gi+ 1)) Assume Q;p, ae A. We are looking for gev(g;, q;+ 1) satisfying Qig. We
consider the following four cases (the hypotheses |A] = 2, or n #£ 2, or n’ < 2 will be
used in case 4 only).

Case 1: p; and p;,, are among the (m) first positions in u. First, assume that there
exist 1 € iy < -+ < iy—y <isuchthatp;,...,p; _,,p;and p;, ..., Pi,._ > Pi+1 Spell the
first occurrence of subwords of length < m in u. Consider the play of the game ¥,
where player I, in the first move, chooses among the positions p;,,...,p;,, ., p the
(n')th, (2n')th, ..., and p for a total of at most n positions since m < nn'. Call them
Fiseeestuey, P (P < --<r,-y<p). Hence there exist 54,...,8,-1,
q(sy < -+ < s,-1 < g)satisfying Lemma 2.1 (in particular, Q7q). We have thatr; = p; |
if and only if 5; = g, Let the positions (among the positions p;,,...,p; _, ) which are
in u(rn~ls p) be denoted by p/l’ ""p;l'*l (p’l SSEEEES P;:’f 1)' u(rn* 1s P) ~n') U(S,,, 1s ‘I)
and pi, ..., py—1, pi€ulr,~ 1, p) imply that g € v(q;, g:+). More precisely, g¢v(s,-1, 4:]
since otherwise there would be an occurrence of the word (of length < n') spelled by
Pis--osPw—1, PiIn u(r,— 1, p) but not in v(s,-, q); g€v(g;+1, |v|] since otherwise there
would be an occurrence of the word (of length < n') spelled by p},...,prv -1, Pix1 1D
v(sn—1, q) but not in u(r,_,, p) (the letter of p;, ; differs from the letters in u(p;,, ,, p)
since otherwise there would be contradiction with the fact that p;,, ..., p;.._,, pi+1 spell
the first occurrence of a subword of length < min u); g # ¢;+ since otherwise Q4q; 1,
and hence Qip; ., contradicting the fact that p;,...,p;, _,, Pi+1 spell the first occur-
rence of a subword of length <minu(Qipand p; _, < p < pis1)

Otherwise, using fact 3 of Section 3, u(p,p;+1)=1 and there exist
1<i; < - <ip_y =isuchthatp,,....p;,._,, Pi+1 spell the first occurrence of a sub-
word of length < m in u. In such a situation, we show that v(q;, ¢;+ 1) = 1. To see this,
consider the play of the game ¥, where player I, in the first move, chooses among
Diys o> Din_ 1> Pi+1 the (n)th, 2n')th, ..., and p;., for a total of at most n positions
since m < nn'. Call them ry,...,7,_ 1, pi+1 (r1 < --- < r,—1 < p;)- Hence there exist
SiyeeerSut1>Git1 (51 < - < 5,1 < q;) satisfying Lemma 2.1. We have, as before,
rj = pi, if and only if s; = g;, . Let the positions (among py,, ..., p;,_,) which are in
u(ty—-1, pi+1) be denoted by p'y,....pw—1 (PY < - < ply—y1) T v(q;, g:+1) # 1, then let
q€v(qi, ¢i+1). The word spelled by pi,....p, -1, q is then in v(s,—,, ¢;+ () but not in
u(ry- 1, pi+1), contradicting the fact that u(r,_ 1, pi+1) ~) V(Su—1, Qi+ 1)

Case 2. p; and p;, ; are among the (m) last positions in u. Similar to case 1.

Case 3. p;(pi+1)1is among the (m) first ((m) last) positions in u. Assume case 1 or case
2 do not apply. Then thereexist 1 < i; < - < i1 <Li+ 1 <jp1 < - <j <1,
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such that p;,, ..., pi, 1> Pi (Pi+15 P, 1»--+» Pj,) SPEll the first (last) occurrence of a sub-
word of length < m in u. Consider the play of the game ¢ where player I, in the first
move, chooses among the positions p;,,..., i, ;s Pi» P> Pi+15 Pjo_y» --+>Pj; (at most
A7(1, m)) the (' + D)th from the left, the (v’ + 1)th from the right, the 2(n" + 1)th from
the left, the 2(n’ + 1)th from the right,..., for a total of at most »n positions since
HA(A,m)< A (nn), and call them ry,...,1r, (ry < --- <r,). There exist s;,...,8,
(51 < .-+ <'s,) satisfying Lemma 2.1. We have if r, =p;, . . then s, =g, ; if
Fa+1-k = Djywors th€D Suiy i < g, ., If 1 = pi, then s, > ¢;; and if r, = p;y 1, then
Sk S Giv -

Ifnis odd, p=ry+1y2 and let g = s(,,H)/z We have that Q7g. Put r = v, + 12— 1,
= Fot+ 1)+ 155 = S+ 12— 1, and 8" = 5, 1 1y2) + 1- We have that u(r, p) v(s q)
and u(p, r') ~)v(g, 5'). Let the positions (among the < A7(1, m) positions considered
above) which are in u(r, p) be denoted by pi,....pr (P} < --- < pp) and those in
u(p, r'Yby ry, ..., rp (ry < - < 1y} (pyy = piand ¥y = p; ). Since the words spelled by
Py --es P (F1, ..., P ) must be in v(s, q) (v(g, 5)), it follows that qev(q;, gi+1)-

If nis even, put r = rp, ¥ = Fay+1, 5 = Sy2 and s’ = 54,2+ 1. We have that u(r, r')
~m) U(s, s'). Let the positions (among the < A7(1,m) positions considered above)
which are in u(r,r’) be denoted by py,....ph (P1 << pp) (P =D+
Pi= Ploww+1n2)— 1> Piv1 = Plw+12)+1)- The word (of length < n') spelled by these
positions is in v(s, s'). Let ¢4, ...,q (g1 < -+ < gy) spell that same word in v(s, §').
4 = q(w + n2) 1s such that Qzq and qev(qi, gi+1).

Case 4: p;(p;+.)is among the (m) last ((m) first) positions in u. Assume cases 1-3 do
not apply. There exist 1 < i; £ -+ Sy <4, i+ 1 < jp-y < --- < j; < ¢, such that
Diss s Din— 1> Dit1 (Di> Pjpu_ 1> ...,p,,) spell the first (last) occurrence of a subword of
length < m in w. First of all, the letter of p is not the letter of p; nor the letter of p;, ;.
Hence g = g; or g = ¢;+ are eliminated. Also, the letters of p; and p; , ; differ. Hence, if
|A| = 2 the proof is complete. So for the rest of the proof, we assume |A4| > 2.

If nis odd, or nis even and n’ < 2, we consider the play of the game % where player
I, in the first move, chooses as in case 3. Using the same notations as in case 3, we show
the existence of q in v(q;, q;+) such that Q%q. We have that if r, = Di...y then
Sk Z iy 11 if ryq1-x= = Djywsry tHeN Spp1-4 < qj,, > If 7= pi, then s, < g;; and if

= pi+1, then s = giv 1.

For nodd, g < g; would imply an occurrence of the word (of length < »') spelled by
Pi> ¥a, ..., Py i v(g, s') but not in u(p, +'), and g > ¢;+, would imply an occurrence of
the word (of length < #n') spelled by p,...,pn -1, pi+1 10 v(s, g) but not in u(r, p) (here
we use the fact that the letter of p; does not occur in u(p;, pj,,_,) and the letter of
pi+1 does not occur in u(p;, _,, pi+1)).

For neven and n' <2, r=p; and ¥ = p;,,. We have that s < ¢; and §' = ¢;+4.
s < ¢; would imply an occurrence of the word (of length < n’) spelled by p; in v(s s)
but not in u(r, r'), and ¢;4; < s’ would imply an occurrence of the word (of length
< n') spelled by p; 41 in v(s, s') but not in u(r, #'). Hence s = ¢; and s = ¢;4 1. u(r, r')
~m) v(s, s') implies the existence of g€ v(g;, ¢:+ 1) such that Qjq.

If nis even, n = 4 and n’ > 2, we consider the play of the game ¢ where player I, in
the first move, chooses among the positions p;,,...,p: ,, Di> Pi+1 the (n')th, the
(2n')th, ..., p; and p; 4, for a total of at most n positions since 1 + [m/n’| < n. Call
them ry,...,r, (r1<--<r,_y<r,—y<r,) Hence there exist s;,...,s,
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(1< -+ < Sy-2 < Sp—1 < 5,) satisfying Lemma 2.1. We have that r; = p; if and only
if s;= Gijs Tn—1 = Pis Sp—1 = qis ¥ = Pi+1 and s, = gi+1- U(Pis Pi+1) ~w) V(qi> Gi+1)
implies the existence of ¢ in v(g;, ¢;+4) such that Qug.

Now, we show (2). The proof is similar to the proof of (1) except for case 4. Let
u,ve A" be such that u ~p . v. If p; (pi+1) is among the (m + 1) last ((m + 1) first)
positions in u, there exist 1 < iy < - i, <i, i+ 1<j, < - <j; <t such that
Diys-ves Dips Pi+ 1 (Di> Dj» -+~ Pj,) SPEIl the first (last) occurrence of a subword of length
< m + 1 in u. Consider the play of the game %, ,,(u, v) where player I, in the first
move, chooses p; and p;. . Similarly to case 4 (n even and n’ < 2), we can conclude
that player II has to choose g; and g;+ 1. The existence of g € v(q;, g; + 1) such that Qg
follows. O

Lemma 4.2. If |A]| = 3, then ~(2,m)-¢- ~l,m + 3)-

Proof. The result is obviously true if m < 5 since A7(1, m + 3) > A7(2, m). So assume
m > 5 and let A contain at least the three letters a, b and c. Define

Wy = ... (uv)(uav) (uv)(uav)uo (uv)(uav)(uv) (uav) ...,

and

’

Wy, = ... (uv)(uav)(uv)(uav) uav (uv) (uav)(uv)(uav) ...,

where u = (ab)*®™ and v = (ca)®™, and where the total number of u- and v-
segments preceding and following the underlined segments is exactly m + 2. For
instance, if m = 5,

ws = v(uav ) (v uav)uv (uv)(uav)(uv)u,
and
ws = v(uav)(uv)(uav) uav (uv)(uav)(uv)u,

where u = (ab)!” and v = (ca)!”. w,, and w,, are not ~ », + 3-equivalent. To see this,
we illustrate a winning strategy for player 1. Player I, in the first move, chooses the
middle a of the underlined segment w),. Player II cannot win this play of the game
Y (1.m + 3(Wm, Wy,) since the last b of the u-segment of the underlined segments is an
(m + 3) last position, and the first ¢ of the v-segment of the underlined segments is an
(m + 3) first position.

We now show that w,, and w,, are ~;, »-equivalent:

Wi ~2,m) -+ (uv)(uav)(uv)%(uav)@(uv)?&(uav)(uv)(uav) cees
and
Wi ~2, m)- - - (uv){uav)(uv) ab (uav)uav (uv) ca(uav) (uv)(uav) ...,

where the total number of u- and v-segments preceding and following the underlined
segments is as before. The above equivalences are true since (aby*®™
~a.m @by ="+ and (ca)” *™ ~;, m (cay>™+ . Notice that the segment up to and
including the overlined ab-segment contains all the words of length < m over {a, b, c}.
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The same is true for the segment starting with the overlined ca-segment. Call the word
which is ~, ,-equivalent to w,, by w, and the word ~; .j-equivalent to w;, by w;,. To
see that w,, and w;, are ~, »-equivalent, it is sufficient to show that wj, and w}, are
~2, m-€quivalent. We distinguish the two cases where player I first picks 2 positions
from wj, or player I first picks 2 positions from w,. Note that (ab)* @™
~my @by @™ a and (ca)’ *™ ~, a(ca)¥ @™,

Case 1: Assume that player I has chosen 2 positions from wj,. Player II will pick
exactly corresponding positions in w;,, except possibly when player I chooses one
position from the u-segment and one from the v-segment of the underlined segment of
wy.. In this situation, player II will pick exactly corresponding positions in the
uv-segment immediately following the underlined segment of wj, .

Case 2: Assume now that player I has picked his 2 positions from w), . Player II will
pick exactly corresponding positions in w;,, except possibly when player I picks one
position from the u-segment and one from the v-segment of the underlined segment
of w,/, or the middle a from the underlined segment of w,,. In the first situation,
player 1I will pick exactly corresponding positions in the uav-segment immediately
preceding the underlined segment of wi,. In the second situation, if the other chosen
position is at the left (right) of the middle a of the underlined segment of w,,, then
player II will choose his positions in the segment up to and including the last a of the
underlined u-segment (following and including the first a of the underlined v-segment)

ofw,. O

Lemma 4.3. Letm>m' and n > 1. If 2+ (n — )M)m < n'm’, then ~y wy S ~(n. m)»
where 2| (m — 1)/m’ |M is the maximum number of (m, m') positions in words over A.

Proof. Let u, ve A" and suppose u ~y, ) v. There is a winning strategy for player I
to win each play of the game 4 = %, . (1, v). We will show that u ~, »,) v under the
stated hypotheses by using Lemma 3.3. Let py,...,p,cu (py < - < p) (@1, ...,qr €V
(g1 < -+ < g,)) be the (m) positions in u (v). The first two conditions of Lemma 3.3
hold by Lemma 3.1. To see that the fifth condition of Lemma 3.3 holds (the third and
fourth conditions of Lemma 3.3 will follow similarly), let 1 <i<t—1 and let
FiseoosFa€U(Py, Piv1) (ry < --- < 1) (similar if starting in v(q;, ¢;+1}). We are looking
for sy,....8,€0(qi, gi+1) (51 < --- < s,) satisfying Qgr; if and only if Qs;, ae A4 for
I<j<snand u(rj, v () ~m 0(s) Sj+1) for 1 <j < n— 1. We consider the following
four cases. Details follow as in Lemma 4.1.

Case 1: p; and p;,, are among the (m) first positions in u. First, assume that there
exist 1 < iy < - <ip_y <isuchthatp;,...,p; _,,p;and pi,...,p;, ., Pi+1 spell the
first occurrence of subwords of length < m in u. Consider the play of the game
% where player I, in the first move, chooses p; , p;._, ..., r;, the (m, m’) first positions in
u(re, e+1) and rpiy for 1<k <n—1, for a total of at most n' positions since
[m/m"] + (n — 1)[m/m" M < n'. Obviously, g; , g;, , ... should be among the positions
chosen in v by player II in the first move, and there also exist sy, ...,5, €0 (¢, ¢i+1)
(sy < ---<s,) (corresponding to ry,...,r,) and there exist positions in
v(s1, 82), ..., U(Ss— 1, $,) (corresponding to the positions chosen in u(ry, r,),..., and
u(ra—1,1,)) satisfying Lemma 2.1. u(r;, 74 1) ~pm U(sj, Sj+1) for 1 <j < n— 1 follows
by using fact 4 of Section 3.
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Otherwise, using fact 3 of Section 3, u(p,pi+1)=1 and there exist
=isuch thatp;,....p;, ,, Pi+1 spell the first occurrence of a sub-

e tam 4 T ik o o 1 AL T gemmmnn A1 ol oo

1
1 h <m in u In such a situation, case 1 of Lemma 4.1 shows that
U(qn qdi+ l) L.
Case 2: p; and p;,, are among the (m) last positions in w. Similar to case 1.
Case 3: p;(p;+1)is among the (m) first ((m) last) positions in u. Assume case 1 or case
2 do not apply. Then there exist 1 <i; € - i SLi+ 1< jy <o < Jy <L
such that p;,,....pi,._ ., Pi (Pi+15 Pj_y»----Pj,) spell the first (last) occurrence of a sub-
word of length < m in u. Consider the play of the game ¢ where player I, in the first

move, chooses p; , pi, ,...,"1, the (m, m') first positions in u{r,, r,+,) and r4, for

’

I<ksn—-1, p,, p“m,, ..., for a total of at most n positions since
Amim' T+ (n — D[m/m M < n'.

Case 4: p;(p;+1)1s among the (i) last ((m) first) positions in u. Assume cases 1-3 do
not apply. There exist 1 < i; < -+ < iy -y < i such that p;,...,p;. ,, pi+1 spell the
first occurrence of a subword of iength < min u. Asin case 4 of Lemma 4.1, the ietters
of p;, u(p;, p;+1) and p;+ differ. The proof is hence complete if |[4| = 2. Otherwise, we
consider the play of the game 4 where player I in the first move, chooses the positions

he chooses in case 1 together with p; and p; , ;. The total number of chosen positions is
at most n’ since [m/m" |+ (n — HY[m/m M +2<n. O

Lemma 4.4. If|A| = 2, then ~2n, & (1,m)) = ~MA A, n),m)-
Proof. Details appear in [3]. O

Lemma 4.5, ~g, _ 1,m& ~2n, 1) A ~0n m)& ~@n + 2, 1)-

Proof. The result is obviousif m = 1. So assume m > 1 and let a, b € A. (ab)"ab(ab)™ is
~1, mr€quivalent to (ab)"’ba(ab)"‘, but they are not ~p y-equivalent. Let n be fixed and
let N=4Q2n+1,m). wy={ab¥a@by* bab)")" is ~gu+ 1 mrequivalent to
Wy, = ((ab)Vb(ab)*N a(ab)")", but they are not ~p, 4 2, 1-equivalent. To see that w,, and
Wi, are Not ~(2, 4 2, 1y-€quivalent, consider the play of the game %, 1 2 1y(Wm, Wr,) Where
player L in the first move, chooses the n pairs of consecutive b’s and the last pair of
consecutive a’s in w,,. Player II cannot win this play. The ~q, + 1, m-equivalence of
w,, and w;, follows the technique in [2]. U

TLemma 4.6, ~

emma &.0, (2n, 2my+= (A (1, n),m)-

Proof. Let abeA. Let u=(ab)¥a*"*'(ab)¥ and v = (ab)¥a*""2(ab)", where
N=w#(2n2m). If A (1,n)=0(mod3), then consider the two words
(ur)*~ VB uu)*~ '3 and (uv)""”“v(vu)‘"*”/3 If ./V(l n) = l(mod 3), consider the
words w3 M3yy and w0 Y34, I A7(L, #) = 2(mod 3), then consider
(uv)®*~ Y and (vu)*"~ V3. In each situation, the two given words are ~qn amy
equivalent but are not ~p,. i m-equivalent. Let us show the result when
A(1, n) = 0(mod 3) (the other cases are similar). Fix n. Put w,, = (uv)®~ Y 3u(vu)~ 113
and w,, = (uv)®~ y(ou)”~ V3. First, w,, and wj, are not ~p, 1 1, m-equivalent. To see
this, player I, in the first move, chooses the overlined three a’s in each of the



F. Blanchet-Sadri | Discrete Applied Mathematics 50 (1994 ) 1-25 15

v-segments of wy, (there are (n — 1)/3 + (n — 1)/3 + 1 such segments):
v=...aamaa"a...

So he chooses a total of 2n + 1 positions. Player 11 cannot win this play of the game
%on + 1,m)Wm, W). The ~q, om-equivalence of w,, and wy, follows the technique in
Lemma 4.2. [

Lemma 4.7. If 4] =3, then ~M2LI)E MBI

Proof. Let u, ve A" be such that u ~p 3 v. If u and v contain < 2 letters, then the
result follows from Lemma 4.4. Otherwise, we want to show that u~g 1,v. Let p, g and
r(p < g < r)be positions in u (the proof is similar if starting in v) chosen by player I in
the first move (if two of these positions are equal, player II uses his strategy in
%3, 3y(u, v)). The gaps in u formed by p, g and r will be denoted (in order) by gapl,
gap2, gap3 and gap4. We will show that p’, ¢’ and ¥ ev (p’ < g’ < r') exist such that
Qup if and only if Qp’, Q4q if and only if Qiq’, Qir if and only if Qir', ae 4, u[l, p)
~0y L p")s u(p, @) ~u) v(P, '), u(g,r) ~u, v(g’, r') and u(r, [u|] ~qu) v(r, [v]]. Since
u ~q3, 30, then the (3) positions p;,...,peu (p1<--<p) (g1 < <qre€VD
(g1 < -+~ < g,)) in u (v) satisfy Lemma 3.3. The proof is divided into the following
cases. The result follows by considering different plays of the game ¥ = %, 3,(u, v).
For each case, we assume that the preceding cases do not apply. (s, s') will abbreviate
the play of the game ¢ where player I, in the first move, chooses s and s in u.

Case 1: q = p; for some 1 < j < t. Consider 4(p, q) and then %(q, r).

Case 2. p = p;for some 1 < j < t and p; is a (2) first position in u (similar if r = p;
for some 1 <j<t and p; is a (2) last position in u). In order to choose ¢’ and
consider %(q, r). Let p’' = g;.

Case 3: pjegap2 for some 1 <j<t and p; is a (2) first position in u (similar if
pjegap3 for some 1 < j < t and p;is a (2) last position in u). Consider (g, r), and then
g(p, p])

Case 4; gapl consists of 1 letter only, say gapl consists of a’s only (similar if gap4
~1) ). Since, by assumption, the preceding cases do not apply, Qi p and gap2 ~;, 1 or
gap2 ~q, a. In order to choose ¢" and ', consider %(q, r). In such situations, u[1, q)
~3) VL1, ¢') implies the existence of p’ e v[1, g') such that Q5p’, u[1, p) ~4yv[1,p’)and
u(p’ ‘1) ~(1) U(P’» q/)

Case 5: gap! consists of 2 letters, say consists of a’s and b’s (a # b) (similar if gap4
~u) ab). Let c be the other letter in 4. We have the following subcases.

Case 5.1: p;egap3 forsome 1 < j < ¢, p;is a (1) first position in u and Q¢ p;. In order
to choose 7', consider 4(p;, r) (player II has to choose g;).

If gap2 and u(q, p;) are either 1, or consist of a’s only or b’s only, then in order to
choose p’, consider %(p, p;). In such situations, u(p, p;) ~@) v(p’, q;) implies the exist-
ence of g'ev(p, q;) such that Q4q if and only if Qiq" or Qjq if and only if Qiq’, u(p, q)
~uy v(p, q') and u(g, p;) ~u) v(q’, q;)-

If gap2 ~ , ab, then in order to choose ¢, consider %(q, p;). In such situations,
ull, g) ~3yv[l, ¢') implies the existence of p’ ev[1, ¢') such that Q%p if and only if Q5 p’
or Q¢p if and only if Qpp’, u[1, p) ~u) v[1, p') and u(p, ) ~u, v(p', 4).
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If gap2 is either 1, or consists of a’s only or b’s only, and if u(g, p;) ~) ab, then in
order to choose p’, consider the play where player I chooses p and the last of the (1)
first positions in u(g, p;).

Case 5.2: r = p;forsome 1 < j < ¢, p;is a (1) first position in u and Qfp;. Similar to

cace 5.1. Here v = g,

Here r' = g;.
Case 5.3: p;egap4 for some 1 < j < t, p;is a (1) first position in u and Q¢ p;. If gap2

~1) ab, then in order to choose g’ and #’, consider ¥(gq, r). If gap2 and gap3 are either 1,

or consist of a’s only or b’s only, then to choose p’ and ¥/, consider %(p, r). Otherwise,

consider #(p, s), where s denotes the position following immediately the last of the (1)

first positions in gap3 and such that @jr if and only if Q4s, or Qfr if and only if Ojs.
Case 6: gapl ~(,abc and gap4 ~, abc, where A = {a,b,c}. It is sufficient to
consider the following subcases (the others follow similarly).

Case 6.1: gap2 ~, abc. To choose ¢’ and 7, consider %(q, r).

For cases 6.2-6.5, in order to choose p’ and r’, consider %(p, r).

Case 6.2: gap2 and gap3 are either 1, or consist of @’s only, or b’s only or ¢’s only.

Case 6.3: Q:q, a¢gap2cx and a¢gap3oz

Case 6.4 gaq yupz. ~1 G and yuy_) ~1) be.

Case 6.5: gap2, gap3 ~, ab.

In the following cases, s denotes the first of the (1) last positions in gap2: s" denotes
the position preceding immediately the first of the (1) last positions in gap2 and
satisfying Q%p if and only if Q%s’, or @} p if and only if Q}s’, or Q%p if and only if Q¥s’; s”
denotes the last of the (1) first positions in gap3; s denotes the position following
immediately the last of the (1) first positions in gap3 and satisfying Qjr if and only if
QUs”', or QU if and only if Qi or Q% if and only if Q¥s”

or Qpr if and only if Qis”, or Q¥r if and only if
Case 6.6: gap2 ~, 1 or a, and gap3 ~;, ab (similar 1f gap2 ~1) 4, 1Q4q, and gap3
~u) be). If Qir, then consider %(p, s”'); otherwise, player I chooses p and s™.
Case 6.7: gap2 ~y ab and gap3 ~ ac. If =1 Q¢p and —1Q}r, then consider (s, s');
if 3Q¥p and QYr, then consider 4(s/, s”); if Q¥p and — Qjr, then player I chooses s and
s"; otherwise he chooses s and s7. J

21 i L e 1
€N~ my¥+ ~3,1)-

Proof. The result is obvious if m = 1 since A7(3, 1) > A4"(2, m). So assume m > 1 and
let A contain at least the four letters a, b, ¢ and d. Let N — 1 = A4(2, m) and define

= (uvd)¥ v(duv)¥,
where u = (ab)¥(ca)¥ and v = (ab)"aica)". w, and w,, are not ~g3 y-equivalent. We
illustrate a winning strategy for player 1. Player L in the first move, chooses the
following (overlined) positions in w;,:

Wy, = ...uvd(ab)¥d(caY duv ...

Player IT cannot win this play of the game %3 1)(Wm, Wi)-
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Now, we show that w,, and w,, are ~q, ,-¢quivalent. To see this, we distinguish the
two cases where player I first picks 2 positions from w,, or player I first picks
2 positions from w),. Note that (ab)" ~, (ab)¥a and (ca)® ~, alca)®.

Case 1: Assume that player 1 has chosen 2 positions from w,,. Player IT will pick
exactly corresponding positions in w,,, except possibly when player I chooses one
position from the (ab)”-segrnent of the middle u-segment of w,, and one position from
the (ca)N-segment of the middle u-segment of w,,. In this situation, the two positions
chosen by player I are in the initial (uvd)" u-segment of w,,. Player II will pick his
positions in the initial (uvd)™ ~* u-segment of wj, according to his strategy in the game
Yo m((wvd)u, wod)® "'u) (since N —1=.4(2,m), we have that (uvd)"u
~2.m) (wod)N " 1u).

Case 2: Assume now that player I has picked his first 2 positions from wy,. Player IT
will pick exactly corresponding positions in w,,, except possibly when player I picks
the middle a from the middle v-segment of w,, or one position from the (ab)¥-segment
of the middle v-segment of w), and one position from the (ca)¥-segment of the middle
v-segment of wy,.

When the positions chosen by player |
II can pick his positions in the last v(duv)
in the game % (v(duv), v(duv)¥ ~1).

When the positions chosen by player I are in the initial (uvd)" (ab)¥a-segment of w,,
player II can pick his positions in the initial (uvd)¥(ab)" ~ 'a-segment of w,, according
to his strategy in the game %, »((uvd)¥(ab)¥a, (uvd)¥ (ab)¥~*a). LI

are in the last u\uuu; -segimnent of Wm, pla_yc1
N~ !.segment of w,, according to his strategy

| A1 DY s Ve sl
A 2 3, then ~p myE ~3,2)

Proof. The result is obviously true if m < 3 since A7(3,2) > A"(2, m). So assume
m = 3 and let A contain at least the three letters a, b and ¢. Let N — 1 = A7(2, m) and
define

Wy = (c(ba) ca(ba)™ )V c(ba)¥ c(ca(ba)¥ c(ba)¥)¥

&
=
(=%

W, = (c(ba)" ca(ba)")¥ ca(ba)¥ c(ca(ba)¥ c(ba)™) .

w,, and w,, are not ~g y-equivalent. To see this, we illustrate a winning strategy for
player L. Player I, in the first move, chooses the three following (overlined) positions in
Wi,

w,, = ...calba)¥cé

Player II cannot win this play of the game %3 ) (Wp, w,). By Lemma 2.1, player 11, in
the first move, would need three positions p, ¢, ¥ (p < g <r) in w,, satisfying the
following conditions (among others): Qr=p, Qi™q, Qr=r, 1~q w,,,( D, q), (ba)N c
~) Wm(4, ). Assume such positions exist. a(ba)¥c ~p) w,(p, r) obviously implies that
w,(p, r) should be a sequence of a’s and b’s followed by the letter c. Hence player II

should choose p and r as follows (p is the first overlined position and r the second one):

Wy = ...c(ba)"ce
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However, there is no position g between p and r satisfying both 1 ~) w,(p, q) (i.e.
p and g should be consecutive) and Q};™q. Similarly to the proof of Lemma 4.8, we can
show that w,, and wy, are ~q py-equivalent. O

Lemma 4.10. If |A| > 3 and n = 2, then ~p, )& ~2n +1,1)-

Proof. The result is obvious if m=1 since 4 (2n + 1, 1) > A4 (2n, 1). So assume
m > 1 and let 4 contain at least the three letters a, b and c¢. Let n > 2 be fixed,

xo = xMNu'v(cv'bv)" " 2u'x”,
xy = xNubv(cv'bv)" " *u'xN,
x; = xNuwu(cv'bv) " 2u'x”,

’ .

Xai43 = XN v(cv'bv) (cu'bv)(cv'bv) 3 TwxY for0<ig<n—3,

<
X214 4 = XNuv(ct'bv) (cv'bu)(cv'bo) 3 TTu'xN forO0<ig<n—3
and
Xon—1 = xu'v(cv'bv)" 2cu'x”,

where N — 1 = 4°(2n, m) and where u = (ab)"(ca)", v = (ab) a(ca)®, ' = (ac)"(ba)¥,
v = (ac)¥a(ba)" and x = abc. Define

Wa = (X4 ---x2n—1)an(x1 "'xln—l)N
and
Wi = (X4 ---xzn—1)Nxo(x1 ~"x2n*1)N-

We first show that w,, and w,, are not ~,+, ,-equivalent. We illustrate a winning
strategy for player 1. Player I, in the first move, chooses the following (overlined)
2n + 1 positions in wp,:

g

Wi, = ... uv(ct'bv)" ...
...(ac)¥(ba)" " baab(ab)" " a(ca)c(ac)¥aba) b(ab)¥a(ca)" ...
c(ac)a(ba) b(ab) a(ca)N ~caac(ac) 1 (ba)" ...

More precisely, the chosen positions belong to the middle u'v(cv'bv)" ™ *u’-segment of
the xo-segment of w,,,. They consist of the two middle a’s of the u'v-segment, the 2n — 3
middle a’s of the v- and v'-segments, and the two middle @’s of the vu'-segment. Player
1I cannot win this play of the game %, +1, 1)(Wm, Wn). Player II, in the first move,
would need 2n + 1 positions py,...,Pan+1 (P1 < -+ < Pan+1) in w,, satisfying the
following conditions (among others): Q¥™p, for 1 <i<2n+ 1, 1 ~4y wu(py, p2), ab
~1) WalP2i» Paiv1) for 1 <i<n—1,ac ~)y Wu(pai+1, P2iv2)for 1 <i<n—1,and
1~y Wn(P2n» P2n+1)- In w,, no sequence w'v(cv'bv)"” 2w’ exists. The best player 11
can find is a sequence w'bv(cv'bv)"”%u, or a sequence w'u(cv'bv)" *u/, or a seq-
uence wv(co'bv) (cw’bv)(cv'bv)" 3 ~'u' for some 0<i<n-—3, or a sequence
W o(cv'bo) (cv'bu) (cv'bv)” 2 ~'u’ for some 0 < i < n — 3, or a sequence u'v(cv'bv)" ™ cu’.
In the first situation, the first u'v-segment has been replaced by «’'bv. For instance, we
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would have
Wo = ... (ac)¥(ba)Vb(ab)Ya(ca)¥ c(ac)Va(ba) b(ab) a(ca)™ ...
c(ac)¥a(ba)*b(ab)a(ca)¥ ~cadc(acy® ~(ba)" ...,

where the overlined positions are (in order) ps, P4, Psy---»Pan—25Pan—1> P2n> Pant 1-
However, there are no positions p; and p, before p; satisfying Q)~p; and Q)™ p,,
I ~1) Ww(p1,p2), and ab ~4y w,(p;, p3). The result similarly follows in the other
situations.

We now show that w, and wj, are ~p, n-equivalent. For the proof of
W ~(2n, m) Wm We distinguish the two cases where player I first picks 2n positions from
wy, or player I first picks 2n positions from wy,. Note that xo ~pm) X,.

Case 1: Assume that player I has chosen 2n positions from w,,. Player I will pick
exactly corresponding positions in wj,, except possibly when player I chooses some
positions from the middle x,-segment of w,,.

If some of the positions (in the first move) are chosen from the middle x,-segment of
w,,, We have

Xn

f—_j%
W, = (xl ...xz,,,l)N xN...xN (xl ...xznvl)N

szM3

=(x1...x2,,-1)NxM1 ...lex_Nszs(xl...xZ”-l)N,

where M| + M, + M3;=N, N+ N, + N3 =N, M, ,N, > m and the underlined
segments x*2 and x2 are free of chosen positions after the first move.

Wi = (X1 oo X2p— )V 71X o X0 - 1) X0 (X e Xago )Y
= (% e Xap o )N X e X 1 XX ces Xap—1)Xo(Xy ~~x2n—1)N

Xn
A

-
MaixMaxMs  xNixNaxNs x 1o Xon-1)

r
= (xl ...X2n_1)N_l(xl e Xp—1 X

Xo(x; ~-'-x2n*1)N

~an,my (X1 <o Xop— 1)V XM XN My by (e’ bo)  2u/xNx, . x, _  xMIXM2

M xNixNaxNax e Xo, o XMW 0(er'bo) T 2 x NN x N (xy L X, 1 )Y

Player II, in the first move, does not choose any position from the above under-
lined segments. The first underlined segment is ~g,-equivalent to x> and the
second one to xV2. Player II chooses corresponding positions in the remaining
segments.

Case 2: Assume now that player I has picked his first 2n positions from w,,. Player
IT will pick exactly corresponding positions in w,,, except possibly when player I picks
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some positions from the middle x,-segment of w,. Assume first that n > 3:

w = Y
W B s I

= ...u'v(cv'bv)" " %u

1

= ...uav’(cv'bv)" 3cv'bv"a

.. ayau ...

We have the following subcases

ay AL IQNOWIALE SRR,

Case 2.1: If after the first move, the middle y-segment of x, has some of his v-, v'-,

or v"’-segments free from chosen positions, then the ith segment of y (a v-, a /-,

a v’'- or a v"’-segment) is free of chosen positions for some 1 < i < 2n — 3. Player 11

can pick the last x;,-segment in the initial (x; ... x,,_;)"-segment of w,, and play
similarly as in case 1.

Case 2.2: Otherwise, after the first move, the middle y-segment of x, has none of his
v-, v'-, ¥"'- or v"”’-segments free from chosen positions and there are at most three
chosen positions not in that middle y-segment of x,.

If none of the chosen positions are at the left (right) of y, then player II can pick up
the last x; (x;,-)-segment in the initial (x;...x,,_,)"-segment of w,, and play
similarly as in case 1.

If two of the chosen positions are at the left of y and one a
of the v-, v'-, v~ and v"’-segments of the middle y-segment of x, contains exactly one
chosen position. We may assume that the chosen positions in the v-, v'-, v”’- and
v"”’-segments are the middle a’s (otherwise, player II can play as in case 2.1). In this
situation, player II can choose the last x,,_;-segment in the initial (x; ... X5,_{)"-
segment of w,, and play similarly as in case 1. The situation when one of the chosen

positions is at the left of y and two at the right of y is similar.

If one of the chogsen nogitione ig at the laft of v and one at the richt af vy then either
a1 O6v U1 wull CHaOLGLH POSIIICIS 15 dl il 18I O1 )Y aliG O6IC duv uld Tigin C1 ), uiClil ClicT

the v”- or the v""-segment of the middle y-segment of x4 contains exactly one chosen
position which we may assume to be the middle a. The result follows similarly as in the
preceding situation.

1. oyle 4 Py My
nt Ul y LllCu calil

71

Now, if n = 2,
14
W, =...Xg...
= ...uayau ...

If after the first move, the middle y-segment of x, is free from chosen positions, then
player II can pick the last x,-segment in the initial (x;x,x3)"-segment of w,, and play
similarly as in case 1. Otherwise, after the first move, the middle y-segment of x, is not
free from chosen positions and there are at most three chosen positions not in that
middle y-segment of x,. If none of the chosen positions are at the left (right) of y,

then nlaver I can nick un the last x. (x.)-ceoment in the initial {x. x-xz)¥-seoment

...... PRyl i1 Lall PIVK WP WU 1dst Aj (A3 ToCEalICR L UL LLlGs \.»vl./\,‘n_,l SCeavian

of w,, and play similarly as in case 1. If two of the chosen positions are at the left
of y and one at the right of y, then the middle y-segment of x, contains exactly
one chosen position which we may assume to be the middle a. In this situation,
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player II can choose the last xs-segment in the initial (x;x,x3)"-segment of w,,
and play similarly as in case 1. The situation when one of the chosen positions is
at the left of y and two at the right of y is similar. If one of the chosen positions
is at the left of y and one at the right of y, then either the initial b(ab)"-segment

of y is free of chosen nnmhnnq or the middle (nh\mn(r’n\m-qPBmPnf or the last

(ca)’"c -segment. In the ﬁrst case, player II can ple the last x;-segment of
the initial (x;x,x3)"-segment of w,, and play as in case 1, in the second case, he can
choose the last x,-segment, and in the third case, the last x;-segment. The result
follows. [

4.2. Between the congruences ~p, m) Ahd ~u 1, m)

The purpose of this section is to give an inclusion relation between ~, ) and
~n, 1, m)- Applications are discussed in the next section.

Lemma 4.11. If |A| =r = 2, then ~oup, 43, m) S ~n, 1, m)» Where 2M is the maximum
number of (m), positions in words over A.

Proof. Let u, ve A be such that u ~pup am + 3) v- If u and v consist of one letter only,
then the result follows by Lemma 2.2 since A" (n, 1, m) < A (2nM, 4m + 3). Otherwise,
we first show the result for n = 1. We want to show that u ~ ) v. Let p be a position

in 4 chogen hvy nlavnr T in the first move {the nroof is similar if starting in »). Plaver 11
I ¥ CNosen Dy piayer 1 1n e Irst move (1€ prool 1s simuar o sta. riung mn v). iayer .

chooses a position g in v by considering the following play of the game
YoM, 4m + 3 (4, v). In the first move, player I chooses the (m), last positions in u[1, p),
say Pi,-.-.Pm (P1 < - < py), and the (m), first positions in u(p,|ul],
PMm+1s--sPam (Pm+1 < -+ < pay), for a total of at most 2M positions. There
exist ¢y,...,qam In v (g € -+ < qap) satisfying Lemma 2.1, u(pa, prra1)
~4m + 3) U(@m, qrr+1) implies the existence of gev such that Qjp if and only if Qbg,
a€A, (P, P) ~ams 0@ @ and  u(p, pare1) ~ans 0@ qu+1).  Since
U ~oM,4m+ 3 U and u[l, p) ~om + 1y v[1, g), the following clalm concerning the (m),
positions in u[l,p) and o[l,q) holds. Let r,....,r;eu[l,p) (ri< -+ <ry)
(r1,....reev[l,q) (ry < .- <ry)) be the (m), positions in u[1, p) (v[1, q)). We have
that s = ¢, QYr; if and only if Q ri, a€A for 1 <i<s, ull,r) ~gm+1y v[1,71),
u(ris Tiv 1) ~em+ 1) V0L i) for 1 < i< s — 1, and u(ry, p) ~om + 1) 0(r5, @) A similar
claim holds for the (m), positions in u(p, |u|] and v(g, |v|]. Using fact 6 (of Section 3),
we can conclude that u[1, p) ~y ) v[1, g) and u(p, [u|] ~q, m vig, lv]].

Now, if n > 1 and player I in the first move chooses n positions in u or in v,
a winning strategy for player Il in the game %, 1, (1, v) to win each play is described
as follows. Let p', ..., p, (p1 < --- < p;) be positions in u chosen by player I in the first
move (the proof is similar when starting in v). Player II chooses positions q’l, cees gy in

vilad, < ... < ) hy considerine the following nlav of tha game 1 n) In
VW¥i & % ¢,) OY COnsiaering ne iouowing piay oi tne game J(ZnM dm + j)\u, v). 1l

the first move, player I chooses the (m), last positions in u[1, p}), the (m), positions in
u(p1, pa), ..., u(Pn-1, Pn), and the (m), first positions in u( p,, |u|] for a total of at most
2nM positions. The result follows similarly as above. O
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5. Decidability and inclusion results
5.1. On 2-dot-depth

This section deals with a first application of the results of the preceding section. Let
A*/ ~; be of dot-depth two, ie. m is either of the form (n, m) or (n, 1, m). The
2-dot-depth (abbreviated 2dd) of A*/ ~y is defined as the smallest n for which A*/
~i€ V3, .. We show that the 2-dot-depth of 4*/ ~, ) is computable for an arbitrary
A, and the 2-dot-depth of A*/ ~, | ) is computable for [4| = 2. For [4] > 3, an upper
bound on the 2-dot-depth of A*/ ~, 1 ) is given.

Theorem 5.1. The 2-dot-depth of A*/ ~y, m) is computable for an arbitrary A.

Proof. 2dd(A*/ ~u, m) = 1. 2dd(A*/ ~uu m) = 2n by Lemma 4.5. If |A| = 2, then
2dd(A*] ~au+1.m) = 2n by Lemmas 4.4 and 4.5. If |A] = 3, then 2dd(A*/ ~; 1)) = 2
by Lemmas 4.5 and 4.7. If | A| = 4, then 2dd(A*/ ~ . 1)) = 3 by Lemma 4.8.1f |[4]| = 3
and m > 1, then 2dd(A*/ ~ 3, )= 3 by Lemma 4.9. In the case where |[4| > 3 and
n = 2, we have 2dd(A*/ ~pn+1,m) = 2n+ 1 by Lemma 4.10. [

Theorem 5.2. If |A| = 2, then 2dd(A*/ ~p 1.m) = 21.

Proof. First, ~n 1,m) S NN (n, 1), m) by Lemma 2.2, or ~in, 1,m) & ~azn+ 1, my- Using the
proof of Theorem 5.1, 2dd(A*/~, 1, m) is d = 2n since 2dd(A*/~gu ¢ 1,m)) = 2n.
Lemma 4.11 shows that d < 2n. O

Theorem 5.3. If |A| =r = 3, then 2dd(A*] ~, 1, m) < 2nY[2gm'.
Proof. By Lemma 4.11. O

5.2. On a conjecture of Pin

This section deals with a second application of the results in Section 4.

We will denote by 7 the set of trees on the alphabet {a, a}. Formally, 7 is the set of
words in {a, d}* congruent to 1 in the congruence generated by the relation aa = 1.
Intuitively, the words in . are obtained as follows: we draw a tree and starting from
the root we code a for going down and a for going up. For example,

is coded by aaaaadadaaaaaa. The number of leaves of a word ¢ in {a, a}*, denoted by
I(z), is by definition the number of occurrences of the factor ad in t. Each tree ¢ factors
uniquely into t = at,dat,a... at,,a, where m > 0 and where the t;’s are trees. Let t be
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a tree and let t = t,at,at, be a factorization of t. We say that the occurrences of a and
a defined by this factorization are related if ¢, is atree. Lett and t’ be two trees. We say
tho iq pvterantad frnaa i fia nltainad fenne ¢+ v ramATINg a rartain nitmhar Af
Lllal L ID CAllavivu 11ulIl L ll L 1D UULalllbu 11Ukl L U_y 1\4111\)\’1115 111 L A vwlialll 11uilivvl vl

related occurrences of a and a.
To the tree reduced to a point is associated {@, A*}. Then to the tree

t= AR

A

is associated the boolean algebra ¥, which is generated by all the languages of the
form L;a,L;.a;...a.L;, with 0 < iy < --- <i,<m, where, for0<j<r, L, e“/f,i In
Pin [13] it was shown that if ¢ is extracted from ¢, then ¥; < ¥, and it was
conjectured that if t,'e T, ¥; < ¥ if and only if t is extracted from t'. Here, 7~
denotes the set of trees in which each node is of arity different from 1.

Let m = (m,,...,m;). By induction on k, we define a tree t; as follows: if
Innn&l«{uﬁ\ — 1 tha [PV TR b G S S (YR 1w N\t — (ot AL E S PR
vl lll\”l} - 1, Lll\lll Lm \uu’ s 1L 11 — \Il«, 'Ill, ...’Illk}’ Lm - \ub(ml’_”’mk)u} « AL 1D

easy to see that [(ty,, . m)) is A (my,...om)+ 1=(m; + 1)...(m+ 1). ¥,; = L,
where %, denotes the *- variety of languages which are unions of classes of ~; (details
appear in [17).

Theorem 5.4. The above conjecture is false.

Proof. For any language L over A, the syntactic congruence of L is defined by
1, y if and only if, for all u, ve A*, uxve L if and only if uyve L. L is a union of
classes of a congruence ~ if and oniy if ~<~;. Now, %4 < L) since

~2 1 & ~u,2 (aspecial case of Lemma 4.1). Hence ¥, , < ¥, . However it is easy
to verify that the tree t,; ,, is not extracted from the tree t,, O

J {1, 2) ~ov(2, 1)
5.3. Eguations and the V, s

i Zy h

isfied in the monoid varietv V, and the

o the de01dab111ty of V, and the V, s, is the

monoid varieties Vz, s
subject of this section.

Let w, w' e A*. A monoid M satisfies the equation w = w' if and only if wp = w'¢ for
all morphisms qo :A* - M. One can show that the class of monoids M satisfying the
equation w = w' is a monoid variety, denoted by W{w, w'). Let (W, Wi)m >0 be
a sequence of pairs of words of A* Consider the following monoid variety:
W=1{Jn>0Vm>n W(Wnm, ). We say that W is ultimately defined by the equations
W, = wp, (m > 0): this corresponds to the fact that a monoid M is in W if and only if
M satisfies the equations w,, = wy, for all m sufficiently large. The equational approach

to varieties is discussed in Eilenberg [9]. Eilenberg showed that every monoid variety

The nrnhlem of fi djn
ap
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is ultimately defined by a sequence of equations. For example, the monoid variety V of
aperiodic monoids is ultimately defined by the equations x™ = x™*! (m > 0).

Theorem 5.5. Every monoid in V, , satisfies w, = wy, for all sufficiently large m,

where w,, and w,, denote the words in Lemmas 4.2, 4.5 and 4.8-4.10 that are shown

to be ~y, my-equivalent, or the words in Lemma 4.6 that are shown to be ~y ym)y
equivalent.

Proof. It is easily seen, using the above lemmas, that monoids in V;_,, satisfy w,, = wy,
for some m. This comes from the fact that if M eV, ,, then M divides A*/ ~, ., for
some m. Since A*/ ~y, . satisfies w,, = w,,, M satisfies w,, = w,,. Moreover, if M in
V5, a satisfies w,, = wy, for some m, then it satisfies w,, = w,, for all m" = m since

~mm) S ~nm) for those m'. O

5.4. Generalizations to the congruences ~y

This section gives generalizations of some of the results in Section 4.

Theorem 5.6. Let k> 3. ~(,, .. w) S ~,m if and only if A (nq,...,m) = A (1, m).

1se0es

Proof. The necessity of the condition comes from Lemma 22 ~;, . S
~H g y).m) Dy Lemma 22, Since we have both A (A '(ny,...,m_ 1), m)

=N, ..om)z A {d,m) and A {ny,...,m_y) #2, then  ~up,,..on. ))&
~1,m) by Lemma 4.1(1). The sufficiency of the condition follows. [J

Theorem 5.7. Let k' = 2 and n > 1. If there exists 1 < k < k' such that
m>N(gyi,....,00) and Q+mn—DMmMS Ay, oo, )N (Mg 1o i),

thon whore 2
vy 7re L

i ~i 3 C ~ YVIiic l
Ry ey} = (0, m) L

positions in words over A.

Proof. The special case k' =2 is Lemma 4.3. The general statement follows from
that special case and Lemma 2.2 SINCE ~pu, . n) S ~np,ocon tesrsoene) =

O LT R N T
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